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Abstract
Wegive upper bounds for the bottom of the essential spectrum of properly immersedminimal
submanifolds of R

n in terms of their volume growth. Our result can be viewed as an extrinsic
version of Brooks’s essential spectrum estimate (Brooks, Math Z 178(4): 501–508, 1981,
Thm. 1) and it gives a fairly general answer to a question of Yau (Asian J Math 4(1): 235–
278, 2000) about upper bounds for the first eigenvalue (bottom of the spectrum) of immersed
minimal surfaces of R

3.
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1 Introduction

LetM be a complete Riemannian n-manifold and let� = div ◦grad be the Laplace-Beltrami
operator (Laplacian) acting on C∞

0 (M) the space of smooth functions with compact support.
The Laplacian has a unique self-adjoint extension to an operator�: D(�) → L2(M)whose
domain is D(�) = { f ∈ L2(M) : � f ∈ L2(M)}. The spectrum � is the set of λ ∈ R for
whichKer(�+λI ) �= {0} or (�+λI )−1 is unbounded.Wewill refer to σ(�) as the spectrum
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of M and denote it by σ(M). Those λ’s for which Ker(� + λI ) �= {0} are the eigenvalues
of M and the elements of Ker(� + λI ) are the eigenfunctions associated to λ. The set of
all eigenvalues of M is the point spectrum σp(M) and the subset of the point spectrum
formed by the isolated eigenvalues with finite multiplicity (dim Ker(�+λI ) < ∞) is called
the discrete spectrum, σd(M). The essential spectrum of M is σess(M) = σ(M)\σd(M),
[8]. When M is compact the spectrum of � is discrete while when M is non-compact the
spectrum may be purely continuous, meaning σp(M) = ∅, like the Euclidean space R

n,
purely discrete (σess(M) = ∅), as the simply connected Riemannian manifolds with highly
negative curvature, [11] or a mixture of both types, see [9,10].

The very basic question [25] is: for what geometries inf σ(M) > 0? It was shown by
McKean [23] that if M is a simply connected Riemannian manifold with curvature KM ≤
−δ2 < 0 then inf σ(M) ≥ (n − 1)2δ2/4. Cheng has shown in [7] that if M is complete with
non-negative Ricci curvature RicM ≥ 0 then inf σ(M) = 0. On the other hand, a curvature
free estimate for the bottom of the spectrum was obtained by R. Brooks in [6]. Precisely,
let M be a complete Riemannian manifold of infinite volume and v(r) = vol(Bp(r)) be the
volume of the geodesic ball Bp(r) of radius r centred at p ∈ M . Set

μ = lim sup
r→∞

log(v(r))

r
·

Brooks proved that inf σess(M) ≤ μ2/4.
It is a classical result due to Efimov-Hilbert that complete surfaces with strictly negative

curvature KM ≤ −δ2 < 0 can not be isometrically immersed inR
3, [12,15]. Naturally, one is

lead to ask if a complete surface with positive inf σ(M) > 0 can be isometrically immersed
in R

3. It turns out that the examples, constructed by Nadirashvili [24] and the Spanish School
of Geometry [1,19–22], of bounded complete minimal surfaces ofR

3 all have inf σ(M) > 0,
see [2–4]. However, the question whether a manifold with inf σ(M) > 0 can be minimally
and properly immersed in the Euclidean space is still valid. In some sense, it complements
the question raised by S. T. Yau in [26, p. 240] when he asked what upper bounds can one
give for the bottom of the spectrum of complete immersed minimal surfaces in R

3.
Ilias et al. [16, Cor.3] gave an answer to Yau’s question establishing a Brook’s type upper

estimate for the bottom of the essential spectrum of any properly immersed submanifold of
R
n with infinite volume. They observed that v(r) = vol(Bp(r)) ≤ vol(�r ) where �r =

ϕ−1(Bp(r)) is the extrinsic ball of radius r of a properly immersedm-submanifold ϕ : M →
R
n . Thus applying Brooks spectral estimate they obtain that

inf σess(M) ≤
[
lim inf
r→∞ r−1 log(vol(�r ))

]2
/4.

In this note we prove a stronger Brook’s type upper estimate for the bottom of the essential
spectrum of properly immersed minimal m-submanifolds of the Euclidean n-space. Indeed,
letting �r ⊂ M be the extrinsic geodesic ball of radius r > 0 of a properly minimal
immersion ξ : M ↪→ R

n of a complete Riemannian m-manifold M into R
n with ξ(p) = o,

i.e. �r = ξ−1(Bo(r)), we prove the following result.

Theorem 1.1 Let ξ: M → R
n be a proper isometric minimal immersion of a complete m-

submanifold M of Rn with ξ(p) = o. The bottom of the essential spectrum is bounded above
by

inf σess(M) ≤ m · lim inf
r→∞

[
r−2 log(vol(�r ))

]
.
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Theorem 1.1 has a number of corollaries. Let 	(r) = vol(�r )/vol(Bm(r), where Bm(r)
is a geodesic ball of radius r in the Euclidean space R

m. In [18], Lima et al., proved that
if lim infs→∞(log(	(s))/ log(s)) = 0 then σ(M) = [0,∞). Regarding the bottom of the
essential spectrum of a properly immersed minimal submanifold our next result extends
greatly Lima et al.’s.

Corollary 1.2 Let ξ: M → R
n be a complete properly immersed minimal m-submanifold M

of R
n with ξ(p) = o. If

lim inf
r→∞

log(	(r))

r2
= 0

then inf σess(M) = 0.

Corollary 1.3 Let ξ: M → R
3 be a complete properly embedded minimal surface M of R

3

with ξ(p) = o and let κ(r) = infx∈�r

{
KM (x)

}
, where KM (x) is the Gaussian curvature of

M at x. If

lim inf
r→∞

log(|κ(r)|)
r2

= 0

then inf σess(M) = 0.

Corollary 1.4 Let ξ : M → R
n be an isometric minimal immersion of a complete m-

dimensional Riemannian manifold into R
n with ξ(p) = o. Suppose that for some σ > 0

∫

M
e−σ‖ξ(x)‖2dμ(x) < ∞.

Then the immersion ξ is proper, see [13, Thm.1.1], and

inf σess(M) ≤ mσ.

2 Proof of the results

A model n-manifold M
n
h , with radial sectional curvature −G(r) along the geodesics issuing

from the origin, where G : R → R is a smooth even function, is the quotient space

M
n
h = [0, Rh) × S

n−1/ ∼
with (ρ, θ) ∼ (ρ̃, β) ⇔ ρ = ρ̃ = 0 or ρ = ρ̃ and θ = β, endowed with the metric
ds2h = dρ2+h2(ρ)dθ2 where h : [0,∞) → R is the unique solution of the Cauchy problem

⎧⎨
⎩
h′′ − Gh = 0,

h′(0) = 1,
h(2k)(0) = 0, k = 0, 1, . . . ,

and Rh is the largest positive real number such that h|(0,Rh) > 0. The model M
n
h is non-

compact with pole at the origin o = {0} × S
n−1/ ∼ if Rh = ∞. Observe that M

n
t = R

n ,
M

n
sinh(t) = H

n(−1) and if h(t) = sin(t) and Rh = π then M
n
sin(t) = S

n .

If G satisfies

G− ∈ L1(R+) and
∫ ∞

t
G−(s)ds ≤ 1

4t
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then h′ > 0 in R
+ and M

n
h is geodesically complete, [5, Proposition 1.21]. The geodesic ball

centered at the origin with radius r < Rh is the set Bh(r) = [0, r)×S
n−1/ ∼ whose volume

and the volume of its boundary are given respectively, by

V (r) = ωn

∫ r

0
hn−1(s)ds and S(r) = ωnhn−1(r),

where ωn = vol(Sn−1). The Laplace operator on Bh(r), expressed in polar coordinates
(ρ, θ), is given by

� = ∂2

∂ρ2 + (n − 1)
h′

h

∂

∂ρ
+ 1

h2
�θ .

Let ρ(x) = distMn
h
(o, x) be the distance function to the origin o on M

n
h . The hessian of ρ is

given by the following expression

Hess ρ(x)(ei , ei ) = h′

h
(ρ(x)) {〈ei , ei 〉 − dρ ⊗ dρ(ei , ei )} , (1)

where {e1, . . . , em} is an orthormal basis of TxMn
h . Let ϕ : M ↪→ M

n
h be an isometric

immersion of a completem-manifold into M
n
h . Suppose that ϕ(p) = o for some p ∈ M . The

function t : M → R given by t(y) = ρ ◦ ϕ(y) is smooth in M\ϕ−1(o). The hessian of t is
given by

Hess M t(q)(ei , ei ) = Hess
M
n
h
ρ(ei , ei ) + 〈grad ρ, α(ei , ei )〉.

Here we are identifying ei = dϕ · ei , see [17]. In particular,

�M t(q) =
m∑
i=1

Hess
M
n
h
ρ(dϕ · ei , dϕ · ei ) + 〈grad ρ,

→
H〉. (2)

Letϕ : M → M
n
h be a complete properly andminimally immersedm-submanifold ofMn

h with
radial sectional curvature −G(ρ) ≤ 0, ϕ(p) = o and let �r be the pre-image ϕ−1(Bo(r)).

Lemma 2.1 For almost any r > 0 we have that
∫

∂�r

|grad t | dν ≤ m
h′

h
(r) vol(�r ).

Proof: Let φ : M → R be given by

φ(y) =
(∫ t

0
h(s)ds

)
◦ ρ ◦ ϕ(y) =

∫ ρ(ϕ(y))

0
h(s)ds. (3)

At a point q ∈ M and an orthonormal basis {e1, . . . , em} of TqM that, using (1) and (2), we
have

�Mφ =
m∑
i=1

[
φ′′(ρ)〈grad ρ, ei 〉2 + φ′(ρ)

h′

h
(ρ)

{〈ei , ei 〉 − 〈grad ρ, ei 〉2
}]

= m h′(ρ).

Since G ≥ 0, we have that h′′(s) = G(s)h(s) ≥ 0 for s > 0, which implies that h′ is
non-decreasing. In view of Sard’s theorem, �r is smoothly bounded for almost any r > 0.
For any such r , we compute
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m h′(r)vol(�r ) ≥
∫

�r

�Mφ dμ

=
∫

∂�r

〈
grad φ,

grad t

|grad t |
〉
dν

= h(r)
∫

∂�r

|grad t |dν.

Thus
∫

∂�r

|grad t |dν ≤ m
h′(r)
h(r)

vol(�r ).

This proves Lemma 2.1.
Let H1

0(M) be the space of square-integrable functions with square-integrable gradient.
Given a non-zero u ∈ H1

0(M), set

R(u) =
∫
M ‖grad u‖2∫

M u2
.

For r > 0, define ur : M → [0,+∞) by

ur (x) =
{

φ(r) − φ(t(x)) for x ∈ �r ,

0 else.

Here φ is defined in (3). It should be noticed that ur ∈ H1
0(M), being compactly supported

and Lipschitz. Consider also the function

vr = ur(∫
M u2r

)1/2 .

This renormalization gives rise to sequences of functions which converge weakly to zero as
the next lemma indicates.

Lemma 2.2 For any sequence (rn)n∈N ⊂ (0,+∞) with rn → +∞ we have that vrn⇀0 in
L2(M).

Proof: From now on our model manifold is R
n and h(s) = s. For any c > 0 we compute,

∫

�c

v2rn =
∫
�c

(r2n − t2)2∫
�rn

(r2n − t2)2
≤ r4nvol(�c)∫

�rn/2
(r2n − t2)2

≤ 16vol(�c)

9vol(�rn/2)
→ 0.

Keeping in mind that (vrn )n∈N is bounded in L2(M), this shows that vrn⇀0. This completes
the proof Lemma 2.2.

The significance of considering sequences that convergeweakly to zero in order to estimate
the bottom of the essential spectrum is illustrated in the following.

Proposition 2.3 Consider (vn)n∈N ⊂ H1
0(M) with ‖vn‖L2(M) = 1 and vn⇀0 in L2(M).

Then the minimum of the essential spectrum of M is bounded by

inf σess(M) ≤ lim inf
n

R(vn).
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Proof: If the right hand side is infinite, there is nothing to prove. If it is finite, we denote it by
λ and after passing to a subsequence if necessary, we may suppose thatR(vn) → λ. Assume
by contradiction that inf σess(M) > λ. Then

σ(�) ∩ (−∞, λ] = σd(�) ∩ [0, λ] = {λ1, . . . , λk},

where λi ’s are eigenvalues of the unique self-adjoint extension −� of minus the Laplacian
of finite multiplicity, for some k ∈ N. Let Ei be the eigenspace corresponding to λi and
denote by E their sum. Then the spectrum of the restriction �|E⊥ of � to the L2-orthogonal
complement of E is given byσ(�|E⊥) = σ(�)�{λ1, . . . , λk} and in particular, theminimum
of its spectrum is greater than λ.

Writing vn = un + wn with un ∈ E and wn ⊥ E , we readily see that un → 0 and
�un → 0 in L2(M), since vn⇀0 and E is finite dimensional. This implies that

∫

M
|grad un |2 = −

∫

M
un�un → 0.

Moreover, we obtain that ‖wn‖L2(M) → 1 and

∫

M
|gradwn |2 = −

∫

M
|grad (vn − un)|2 → λ.

We conclude that R(wn) → λ, which yields that the minimum of the spectrum of �|E⊥ is
less or equal to λ, which is a contradiction, that establishes Proposition 2.3.

2.1 Proof of Theorem 1.1

To proceed with the proof of Theorem 1.1 we need to estimate

R(vr ) = R(ur )

from above. To this end, using the co-area formula and Lemma 2.1, we compute

∫

�r

|grad u|2 dμ =
∫

�r

h2(t(x))|grad t |2dμ

=
∫ r

0
h2(s)

∫

∂�s

|grad t | dνds

≤ m
∫ r

0
h(s)h′(s)vol(�s)ds

≤ m h′(r)
∫ r

0
h(s)vol(�s)ds.

It follows from [18, Lemma 2, Propositions 2 and 3] that vol(�s) is locally absolutely
continuous with

d vol(�s)

ds
=

∫

∂�s

1

|grad t |dν,
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and ∫

�r

u2dμ =
∫ r

0
(φ(r) − φ(s))2

∫

∂�s

1

|grad t |dνds

=
∫ r

0
(φ(r) − φ(s))2

d vol(�s)

ds
ds

= 2
∫ r

0
(φ(r) − φ(s))φ′(s) vol(�s)ds.

Thus,

R(ur ) ≤
m h′(r)

∫ r

0
h(s) vol(�s)ds

2
∫ r

0
(φ(r) − φ(s))h(s) vol(�s)ds

·

Letting F(r) =
∫ r

0
(φ(r) − φ(s))h(s) vol(�s)ds we have that

F ′(r) = h(r)
∫ r

0
h(s) vol(�s)ds.

Therefore,

R(vr ) = R(ur ) ≤ m

2

h′(r)
h(r)

F ′(r)
F(r)

·

When h(s) = s, i.e. the model M
m
h = R

m, this inequality reads as

R(vr ) ≤ m
(log F(r))′

2r

for any r > 0. We deduce from Lemma 2.2 and Proposition 2.3 that

inf σess(M) ≤ m lim inf
r→+∞

(log F(r))′

2r
· (4)

Consider any c ∈ R with

c ≤ lim inf
r→+∞

(log F(r))′

2r
·

Then for any ε > 0 there exists r0 > 0 such that

(log F(r))′ ≥ 2(c − ε)r

for any r ≥ r0. Integrating gives that

log F(r) − log F(r0) ≥ (c − ε)(r2 − r20 )

for any r ≥ r0, which yields that

lim inf
r→+∞

log F(r)

r2
= lim inf

r→+∞
log F(r) − log F(r0)

r2 − r20
≥ c − ε.

We conclude from this together with (4) that

inf σess(M) ≤ m lim inf
r→+∞

log F(r)

r2
·
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This establishes Theorem 1.1 after noticing that

F(r) =
∫ r

0
(φ(r) − φ(s)) h(s)vol(�s)ds

≤ vol(�r )

∫ r

0

(
r2

2
− s2

2

)
sds

= vol(�r ) r
4/8

2.2 Proof of the colloraries

To prove the corollaries we proceed as follows. Observe that

vol(�r ) = 	(r)vol(Bm(r))

then

log(vol(�r ))

r2
= log(	(r))

r2
+ log(vol(Bm(r))

r2
·

Thus by Theorem 1.1

inf σess(M) ≤ m lim inf
r→∞

(
log(	(r))

r2

)
.

This proves Corollary 1.2.
Given a unit normal vector field N : M → R

3, consider the tubular neighbourhood of
ϕ(�r ),

Tε(�r ) = {y ∈ R
3 : y = q + xN (q), −ε < x < ε, q ∈ M}.

By [14, p.9] the volume of Tε(�r ) for ε small enough is given by

vol(Tε(�r )) = 2ε vol(�r ) + 2ε2

3

∫

�r

KM (x)dμ(x)

≤ vol(B3(ε + r))

= 4π

3
(ε + r)3 .

On the other hand

2ε vol(�r ) + 2ε2

3

∫

�r

KM (x)dμ(x) ≥ 2ε
(
1 + ε

3
κ(r)

)
vol(�r ).

Observe that the immersion ξ : M → R
3 is minimal and assuming that ξ(M) is not a plane

we have that κ(r) < 0. Choosing 0 < α < 1 so that ε = − 3α
κ(r) we have that

vol(�r ) ≤ 4π

3

(
r − 3α

κ(r)

)3

− 6α
κ(r) (1 − α)

= 4π

18α(1 − α)

(
r − 3α

κ(r)

)3

(−κ(r)).

Thus

lim inf
r→∞

log(vol(�r ))

r2
≤ lim inf

r→∞
log(|κ(r)|)

r2
·
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This proves Corollary 1.3.

Suppose that C = ∫
M e−σ‖ξ(x)‖2dμ(x) < ∞ for some σ > 0. Then

C ≥
∫

�r

e−σ‖ξ(x)‖2dμ(x) ≥ e−σr2vol(�r )

for any r > 0. We derive from [13, Thm. 1.1] that the immersion ξ is proper, and the proof
of Corollary 1.4 is completed by Theorem 1.1.
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