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Abstract

Non-verbal communication plays a particularly important role
in a wide range of scenarios in Human-Robot Interaction
(HRI). Accordingly, this work addresses the problem of human
gesture recognition. In particular, we focus on head and eye
gestures, and adopt an egocentric (first-person) perspective us-
ing eyewear cameras. We argue that this egocentric view may
offer a number of conceptual and technical benefits over scene-
or robot-centric perspectives.

A motion-based recognition approach is proposed, which op-
erates at two temporal granularities. Locally, frame-to-frame
homographies are estimated with a convolutional neural net-
work (CNN). The output of this CNN is input to a long short-
term memory (LSTM) to capture longer-term temporal visual
relationships, which are relevant to characterize gestures.

Regarding the configuration of the network architecture, one
particularly interesting finding is that using the output of an
internal layer of the homography CNN increases the recogni-
tion rate with respect to using the homography matrix itself.
While this work focuses on action recognition, and no robot or
user study has been conducted yet, the system has been de-
signed to meet real-time constraints. The encouraging results
suggest that the proposed egocentric perspective is viable, and
this proof-of-concept work provides novel and useful contribu-
tions to the exciting area of HRI.

1 INTRODUCTION

With the advances in Social Robotics, Human-Robot Interac-
tion (HRI) is an increasingly important area of research. Much
work has been conducted on the robot side of the interaction
so as to generate gaze and body motions which are expres-
sive [2], natural, and effective for interaction [28] and collabo-
rations [39, 41], and correspond well to human speech [34, 17].
However, given the importance of non-verbal cues in commu-
nication, a successful interaction requires the proper analysis
of human action [20] as well. While head and eye-based ges-
tures have been investigated in the broader context of human-
computer interaction (HCI) [33, 12, 43, 42, 16], less efforts have
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arguably been devoted in the HRI domain, for instance, to as-
sist and improve human-robot task performance [5, 14].

In HCI, head gestures can be useful for interacting with mo-
bile devices. For instance, touch input can be enriched with
slight head motions for shortcut commands [16]. Combining
gaze and head allows for more natural and accurate interac-
tion [43]. Based on smart glasses, gaze and head can be com-
bined following the paradigm of selection-by-looking followed
by manipulation-by-moving [33]. Since small objects can be
hard to select using only gaze, subtle head movements can
provide additional cues for more accurate hands-free point-
ing [42]. As a further recent evidence, a synergistic use of
gaze and head movements can provide users with more flexibil-
ity for gaze-based point-and-select tasks [37]. Although these
concepts and techniques are useful and, to some extent, also
applicable in HRI, most research in HCI focuses on interaction
with on-screen objects. In contrast, gesture in HRI should
consider wider and more natural interaction with a physical
robot and, optionally, with in-scene objects. Notwithstand-
ing this kind of differences, a common conceptual framework
for gestures [7] in the more general field of human-machine in-
teraction may increase cross-fertilization of otherwise separate
research efforts.

In this work, the use of visual-based egocentric perspective
for head and eye gesture recognition in the context of HRI is
proposed. We argue that the first-person view (FPV) may of-
fer benefits over a third-person view (TPV), as follows: (1) the
hard problem of localizing and segmenting human body parts is
naturally circumvented; (2) no external (scene or robot) cam-
eras are required; (3) no need that cameras point in specific
direction, so the robot might respond to user gestures even if
it is not facing the person or is unaware of their presence; (4)
the robot does not need to be ne(uby (it can be in another room
in a building or even far away); (5) multiple robots can poten-
tially be interacted with using a single eyewear device. There-
fore, scenarios where the egocentric perspective can be helpful
include initiating a dialogue when the robot is not yet ready;
interacting with scene objects, where gaze cues are relevant to
understand or disambiguate head gestures (e.g. “grasp this”
command); in contexts where robot-centric or scene-centric vi-
sion are either not possible (e.g. the robot has no camera, or it
is remotely operated, or in outdoors interaction), or affordable
(e.g. surveillance-like cameras not available in every room).
There are certainly also some drawbacks such as that the eye-
wear devices may be uncomfortable to wear, and they might



be less cost-effective if multiple persons have to interact with
a shared robot. Occlusions may affect both FPV and TPV,
although differently, so a redundant system with both types of
cameras can perform synergistically and overcome this limita-
tion.

Despite the potential advantages of the egocentric-based
head and eye gesture recognition, this problem has been
scarcely addressed in HRI. Exceptions include a system to re-
quest and guide a robot to find some object [46], helping nav-
igation to wheelchair users with limited hand mobility [26], or
predicting user intention from gaze in grasping tasks [25] and
hand-held robots [40]. Most of these works have in common
that they seek to assist disabled people. While these are very
important target users to consider, we believe the egocentric
perspective can benefit a larger general population, in partic-
ular when it comes to interacting with robots in our daily-life
environments. In fact, human gestures recognition can assist
human workers in collaborative tasks in industrial settings [29],
and play an important role for effective and natural human-
robot communication in a wide range of applications in social
robotics [4], such as education or entertainment. At least in
some of those contexts, an egocentric vision perspective repre-
sents a valuable alternative or complement to the mainstream
robot-centric and scene-centric visual sensors. For instance,
when the human subject is holding some objects, smart glasses
can capture useful head and eye cues for hands-free interac-
tion [35]. Human-based egocentric sensors are also helpful in
controlling remote robots such as as aerial ones [3].

To address the problem of egocentric head and eye gesture
recognition, we propose a motion-based, computer vision sys-
tem which operates at two temporal levels of the incoming
egocentric visual streams. First, frame-to-frame motions are
analyzed with a convolutional neural network (CNN) for ho-
mography estimation. The output of this network is used as
input to a long short-term memory (LSTM) so as to capture
longer-range temporal dependencies required to characterize
gestures. LSTMs have recently been proposed in the context
of human action recognition, for example using 3D skeleton
data encoding parts and joints of the human body [27, 38, §],
or in multimodal approaches [18].

The contributions of this work are: (1) An egocentric per-
spective for head and eye gesture recognition for HRI. This
contrasts with the mainstream work which uses robot- or scene-
centric vision, and hence further work in this area is promoted.
(2) The exploration of an homography estimation network and
its joint use with LSTMs. Although the combination of CNN
and LSTMs is not new, the study of a recent homography
estimation network, and the fusion of head and eye informa-
tion are novel aspects. (3) Design decisions and experimental
work that provide additional insights for interested practition-
ers to develop similar systems. The good computational and
recognition performance are encouraging, and foster further
investigation, for which some possibilities are suggested.

2 METHODOLOGY

To address the problem of head and eye gesture recognition,
an eyewear device with a world camera (W) and one or two
eye cameras (E) is assumed.

2.1 Gestures

Some studies propose generic gestures for deictic hand ges-
tures [9], grasp types [13], or combining hand gestures and
language in the context of HRI [31], but nothing was found
regarding head and eye gestures, specifically for the context of
HRI, that could guide our work.

When gestures-to-commands mappings are arbitrary, like ge-
ometric shapes [10], the gestures need to be learned and re-
membered. This issue can be addressed by using on-screen
drawings that induce gaze patterns [30], or make user’s gaze
follow object contour [22]. While valuable, these approaches
have some limitations such as that gestures may still be unnat-
ural, or executing them may require some skill, and the need of
a display hinders its applicability in some contexts, like many
HRI scenarios. More generally speaking, there are a number
of factors affecting the usability of gaze [19] and head ges-
tures [26], which are important to consider in many practical
settings.

In this work, the following criteria for head and eye ges-
tures were considered: (1) oriented to social robots; (2) general
(not application-dependent); (3) universal (easily understand-
able by users); (4) natural (avoiding gestures which are hard to
perform or memorize); and (5) supportive (to express common
communication needs).

With these criteria in mind, an initial catalog of interaction
units (IUs) was proposed (Table 1). The IUs have been classi-
fied according to the taxonomy of illocutionary acts [36], which
includes representatives (Rep) for assertions, directives (Dir) for
requests or commands, commissives for promises, expressives
(Exp) for psychological states, and declarations. Although this
proposal is not definitive and this work only explores a subset
of it (the boldfaced IUs, illustrated in Fig. 1 and in videos in
the folder ‘gestures’ of Supplementary material), we believe it
is a good starting point that can guide further work.

The five head gestures (nodding, turning left/right, and tilt-
ing left/right) considered in [43] resemble our general-purpose
gestures. With respect to [46], our work shares the idea of
using eyewear to communicate with a robot, and exploits the
head movements, even though with different purposes and pro-
cedures. The human-robot interaction scenarios where the pro-
posed system might be useful, share commonalities to the kind
of non-verbal communication situations considered in [6], with
the difference that that work is based on hand gestures rather
than head-eyes. As an example, one specific usage case for
the proposed gesture set might be one question-based educa-
tional or entertainment game with yes/no answers: after some
conversation initiation (ComeHere), the robot may ask ques-
tions for which the human interactant may respond affirma-
tively (NoddingHead), negatively (ShakingHead), or show some
hesitation (Maybe); the robot may also provide some informa-
tion for which the user may react by displaying understand-
ing (NoddingHead), disagreement (ShakingHead), or surprise
(Surprise), which might be used by the robot to guide subse-
quent interaction.

2.2 Network architecture and training

For gesture recognition, we propose a motion-based ap-
proach which processes image sequences at two temporal levels

Table 1: Proposed IU catalog. The IUs in bold are followed by
the identifier used in this paper. The type of IU and involved
eyewear images are also given

Interaction unit Type | Image(s)
Neutral (Neutral) - -
Come here (ComeHere) Dir W
Go away Dir TBD
Stop Dir TBD
Listen! Look! Hey! Dir TBD
Head nod (NoddingHead) Rep W, E
Partial nodding Rep W, E
Head shake (ShakingHead) Rep W, E
Positive surprise (Surprise) | Exp W, E
Negative surprise Exp TBD
Maybe (Maybe) Rep w

Figure 1: Simplified description of interaction units in terms
of rotations (R;) around, or translations (7;) along some axis
i € {X,Y,Z} (a). Side-to-side motions (b) are involved in
ShakingHead via Ry, and Maybe via Rz. Up-and-down mo-
tions (c) are involved in NoddingHead and ComeHere via Ry,
with some differences (e.g. repetitions in ComeHere more time-
spaced). Surprise may involve a quick gentle backwards motion
(d) combining T and Ry.

(Fig. 2). First, to analyze global motion between two con-
secutive video frames, we explore a convolutional network for
homography estimation [45], which we refer to as CAUDHE
(Content-Aware Unsupervised Deep Homography Estimation).
Two key features of this recently proposed network are (1) its
unsupervised nature, which facilitates training since no true
homography values are required for each input frame pair,
and (2) its robustness to independently moving objects since
the object regions are masked out through an outlier rejector.
CAUDHE addresses some limitations of previous works such as
an unsupervised approach [32], whose loss function operates on
intensity values rather than on feature space. Second, to cap-
ture long-term visual relationships, the output of CAUDHE
is used as input to a long short-term memory (LSTM). For
the size of the output of the LSTM, values {16,32,...,512}
were tested, and 128 was chosen as a good balance between
model accuracy and computational cost. A single-layer LSTM
was chosen since no benefit was observed with more layers (2, 4
and 8). Including a batch normalization (BN) layer previous to
the input to the LSTM was observed to result in slightly lower
mazimum test accuracy over a set of training runs. However,
on average, including this BN layer results in more stable train-
ing, quicker convergence, and better average accuracy, which
we found generally preferable. After the LSTM, a classification
module of a fully connected (FC) layer of N units (the number
of TIUs considered), is used.
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@
S
c
o
S
g’.ﬂ
s 2
£
=
c
]
E
5
2
5]
o

H -
-
PEE:
8B
CAUDHE CAUDHE Hb
2>
(Eye) (Head) B
CES:
-0
HE -
. \ H 1=
{e] (e} 3 H
Ia, L
world
camera

eye

camera (__J/

Figure 2: Proposed architecture for head and eye gesture recog-
nition. If only head gestures are considered, only the head
CAUDHE instance is required, and no concatenation of the
world and eye output features is needed.

For training, the available pretrained CAUDHE’s weights®
were used, and the weights of the LSTM and the FC layer
were supervisedly learned using the true IU labels, with the
negative log likelihood as the loss function. Fig. 2 illustrates
the complete proposed model, which includes two CAUDHE
instances, for the the head and the eye images, respectively.
The outputs of these two CNNs are concatenated and input to
the LSTM network, as reasoned before.

For the actual training of the rest of the model (the sequence
analysis and IU classification parts in Fig. 2), the precomputed
features (m;) from the training videos were split into snippets
of length S = 40 and overlap O = 30. Batches of M = 32
snippets were used for training speedup, better performance of
the BN layer, and faster convergence.

2.3 Practical considerations

Two important design factors for the system to perform effi-
ciently and effectively are the frame rate and the image sizes,
since they play important roles in different aspects, and a care-
ful design and proper tradeoff is called for. Since CAUDHE as-
sumes a small baseline (B) in the input frame pairs, the higher
the frame rate (f), the more likely this constraint will be satis-
fied. On the other hand, the world camera of the eyewear de-
vice can operate at several spatial resolutions (from 1080p Full
HD to QVGA), but the highest frame rates are only selectable

Lhttps://github.com/JirongZhang/DeepHomography



Table 2: Final configuration of acquisition (A) and working
(W) resolutions after subsampling

Table 3: Summary of experimental conditions. Image
(W=World, E=Eye), Features (H=Homography, D=Deep),
IUs (A=all, A~ =all but Surprise, B=two IUs)
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Figure 3: Pupil Core headset. Please refer to pupil-labs.
com/products/core and [23] for technical details

with lower resolutions of these world images. Furthermore,
higher quality images have a notable GPU memory footprint,
often exceeding the available resources. Therefore, since frames
will be later resized, it makes little sense to acquire frames at
high spatial resolution.

When using low frame rates, we observed blurring artifacts
in the world images when fast head movements were performed.
These effects were alleviated with f > 30 fps. Thus, if images
are high quality, homography estimation should improve. How-
ever, computational resources impose constraints on both the
image size (to prevent memory overflow) and the frame rate (to
keep under the limited computational power). Therefore, both
spatial and temporal subsampling were required (Table 2), and
their effects are discussed below (subsection 3.4).

2.4 Inference and online recognition

For efficiency at inference time, the input video frames are fed
into CAUDHE in batches of K frame pairs for processing K
homographies in parallel on the GPU. The K resulting fea-
tures (my) are reshaped and fed to the LSTM as a K-length
sequence. Although predictions of IUs are performed frame-
wise, for more robust classification, majority voting can be
applied to the resulting K predicted IU labels. Here, K = 10
was chosen as a good tradeoff between computational efficiency
and classification delay.

3 EXPERIMENTS

3.1 Configuration

For the purposes of this work, the images from the world cam-
era and from the right-eye camera of the Pupil Core head-
set [23] (Fig. 3) were used.

To the best of our knowledge, no public egocentric gesture
dataset exists that meets the required criteria (subsection 2.1).

s Tmage size, w x h (px) frame rate (fps) | [ Aspect ¥\ Figure » 4 5]6] 7 [80910,11
amera

A W A W Images W {W, E, W+E} ‘ W+E
World 640 x 480 192 x 144 (SOZO) 60 Up to 30 Features {H, D} D
Eye 192 x 192 192 x 192 (100%) Us A A B | A

Table 4: Distribution of instances of IUs in the dataset

TU Length (s) | % | # instances
Neutral 423.77 70.63 N/A
ShakingHead 37.38 6.23 25
NoddingHead 34.73 5.79 26
ComeHere 27.13 4.52 30
Maybe 46.74 7.79 30
Surprise 30.25 5.04 32
All TUs 600.00 100 —

Therefore, we collected a dataset with 10 minutes of video, half
indoors (close-to-camera walls and objects) and half outdoors
(distant background), with about 150 seconds (10 videos x 15
seconds/video) from each of four participants®. The partici-
pants, volunteer master students, were each briefly instructed
about the gestures, without much detail, so that performance
was as naturally as possible. Some IUs required additional
guidance (see section 4). Prior to the actual recording, a cal-
ibration step (about 10-20 seconds long) per participant plus
a few trial gestures were performed. Each of the 40 videos
(10 videos per participant) contains 3-4 non-overlapping rep-
etitions of a single non-neutral IU. The IU statistics of the
dataset are summarized in Table 4. Video frames were manu-
ally annotated with the corresponding true IU for supervised
learning. Since Surprise turned out to be a particularly subtle
IU, it is considered in Fig. 6 in subsection 3.3 to separately
study the effect of including the eye images, while the rest of
the reported results consider the other five IUs. All tests in-
clude the world and eye images except in subsection 3.2, which
focuses on the effect of deep features. Conditions are summa-
rized in Table 3.

The Neutral IU is more represented in the dataset, which re-
sults in a significant class imbalance situation. To deal with it,
the Neutral class as under-sampled (a ratio of training snippets
from this class are discarded) so as to reduce the imbalance
level. This was proven very effective and used in all reported
experiments.

To account for the stochastic nature of training neural mod-
els, 30 repetitions were performed, over which performance
statistics on the validation sets are reported. Experiments were
run on modest low-cost hardware (PC, 8 GB, 1.8 GHz, GeForce
MX250 with 2 GB GPU). Most software was developed using
the Python ecosystem (NumPy, pandas, scikit-learn, PyTorch,
etc.).

The model was trained for 30 epochs, with Adam optimizer,
a learning rate of 5 - 1074, weight decay penalty of 1072,

2This work has been approved by the deontological board of Univer-
sitat Jaume I (file code “CD/70/2021”, date June 17th, 2021). Human
subjects participated after their informed consent.
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Figure 4: Maximum accuracy with different motion represen-
tations used as input to the LSTM

£1 = 0.9, B2 = 0.999, and PyTorch’s ReduceLROnPlateau
scheduler. A stratified, IU label-based split of 75% of training
instances was used, except in subsection 3.5.

3.2 Homography vs. deep features

For gesture recognition, an obvious first choice is to use the 8
values of the estimated homography as input to the LSTM
(m; in Fig. 2). However, we are not concerned on motion es-
timation itself, but on a qualitative representation of motion
that can properly characterize the different interaction units.
Therefore, we hypothesized that using the output of a hid-
den layer of CAUDHE could be beneficial. In particular, the
output of the last 2D average pooling layer of CAUDHE (512
features) was used as deep features, and compared with the
8-dim homography values. As found by the distribution of the
maximum accuracy (Fig. 4), using the deep features for m;
turns out to be favorable, which indicates that this qualitative
representation of motion is richer and more discriminative than
the homography estimates. Similar results were obtained for
other performance metrics (precision, recall, and Fy score).

3.3 Using the world and/or eye images

We evaluated how the world (I) and eye (I*)) images con-
tribute to the recognition performance. It can be observed
(Fig. 5) that the performance is lower when only eye images
are considered, which is not surprising given that the inter-
action units are heavily head-based. Although the joint
consideration of the world and eye images does not improve
performance, it is interesting that the recognition does not de-
grade even when eye images do not bring clearly distinctive
information. This is a promising indication that the model
might leverage on eye images for capturing commonalities and
individual differences for a larger set of images from more par-
ticipants and repetitions, or when more interaction units, some
relying more on eye cues (blinks, winks, subtle motions, etc.),
are considered. As an illustrative example, the recognition of
the Surprise IU benefits significantly from including the eye
images, with an F; score about twice that of using the world
images only (Fig. 6).

As a controlled experiment, we considered a weighted con-

catenation [aemﬁe),awmgw)], and trained the network sepa-
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Figure 5: Average accuracy with world and/or eye images
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Figure 6: Average F; for Surprise with and without eye images

rately for NoddingHead vs Neutral and Surprise vs Neutral with
a. = 1 and varying a,, € [0,2], so as to include ae < ),
e ~ y and @, > ay,. Results (Fig. 7) show that the con-
vergence is faster and the final performance better with bigger
a,, for NoddingHead, whereas a,, has smaller relevance for the
performance for Surprise. This is a sign that eye images pro-
vide higher discriminative cues than world images for some IUs
such as Surprise.

3.4 Effect of subsampling

Regarding spatial subsampling, it was observed that 192 x 144
(30% of the original VGA resolution) worked well in most sce-
narios. For temporal subsampling, the analysis of the network
convergence with different frame rates (Fig. 8) reveals that, al-
though all get to approximately the same recognition accuracy,
convergence is faster with higher frame rates. For instance, for
f =10 fps, more than 10 epochs are required to get an accu-
racy which is obtained with 5 or less epochs for the other frame
rates. The likely reason for this behavior is that the baseline
between two consecutive frames is smaller with higher frame
rates, and this benefits the homography estimation network.
Furthermore, the robustness against smaller frame rates can
be attributed to the use of deep features. For the final version
of the proposed system, f = 20 fps is chosen as a good tradeoff
solution.
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Figure 8: Average accuracy with different frame rates

3.5 Generalization ability

To evaluate the ability of the proposed model to recognize
IUs performed by different subjects (authors) or against dif-
ferent backgrounds (places), we compare the stratified dataset
split to the author-based splits (i.e. leaving-one-author out),
and place-based splits (i.e. indoor and outdoor recordings are
separately considered in the training and test splits). Results
(Fig. 9) indicate that in the author-based case the maximum
accuracy has larger variability than in the stratified case, since
different subjects perform the gestures differently, but in most
training repetitions the maximum accuracy was nonetheless
high (about 84%). Regarding the place-based split, the perfor-
mance metric has lower variability and similar or better average
value than the stratified case, which is a good sign of the ability
of CAUDHE to deal with scenes with backgrounds at different
depths, and possibly the positive effect of using deep features.
Furthermore, being motion-based, the recognition approach is
not biased by the different backgrounds, which might be dis-
tracting with appearance-based approaches. Taken these re-
sults together, and given the limited data available, it can be
argued that the model generalizes reasonably well to different
scenes and users.
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Figure 9: Distribution of the maximum accuracy on validation
videos during training, for different dataset split methods
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Figure 10: Confusion matrix. Ne=Neutral, Sh=ShakingHead,
Nh=NoddingHead, Ch=ComeHere, Mb=Maybe

3.6 Overall performance

To understand which IUs are generally better recognized, or
with which other IUs they can be misrecognized, it is useful
to analyze the confusion matrix (Fig. 10). It is revealed that
Neutral is recognized well by our model. Maybe is recognized
with a high accuracy, and is the best recognized “non-neutral”
TU. ShakingHead is recognized fine as well, but is confused
sometimes with Neutral. Finally, NoddingHead and ComeHere
can also be mistaken, as they both imply vertical head move-
ments, and their difference is somehow subtle and hard to dis-
tinguish. As the ComeHere movements are more subtle, it is
more frequently confused with Neutral. Globally, this perfor-
mance can be understood by the similarity among groups of
the IUs (Fig. 1), and by other factors such as the variability
in the performance by different participants, and the limited
dataset size (section 4). As a representative performance sum-
mary, an overall accuracy of 90% resulted from averaging the
peak validation accuracy over 40 training runs, for these five
1Us, using deep features and both the world and eye images.

3.7 Online prediction

Finally, in addition to global performance metrics, it is insight-
ful to see the predicted IUs over time. To that end, the network
is fed with consecutive pairs of frames, and its output (the pre-
dicted IU) at each time step is reported as is, unfiltered. Re-
sults (Fig. 11) indicate that ShakingHead (Fig. 11a) and Maybe
(Fig. 11d) are generally the best recognized interaction units,
and the model tends to label incorrectly only the frames close
to transitions. NoddingHead (Fig. 11b) is confused with Come-
Here and even Maybe, but the recognition performance is still
acceptable. In the case of ComeHere (Fig. 11c), although the
overall accuracy is low (actions are often misrecognized as Nod-
dingHead), the correct IU is detected on the onset of the IU,
which is the most important part in practical situations. A
video demonstration is given in folder ‘online’ in the Supple-
mentary material, where majority voting (subsection 2.4) is
applied for robustness.

4 DISCUSSION

Data aspects. The proposed approach for egocentric motion-
based gesture recognition has been proven reliable in the col-
lected dataset. Further work would be required to test the
system with more interaction units and more data. Class im-
balance was addressed by under-sampling the majority class.
It could be explored whether additional mechanisms [21] bring
some further benefit.

Gestures. At collection time, some IUs (NoddingHead and
ShakingHead) simply required some prompts from the experi-
menter to ensure natural performance, but some other IUs re-
quired some hints (to avoid “shrugging shoulders” for Maybe,
since that would not involve head or eyes), or suggestions for
some exaggeration (Surprise was too subtle otherwise). In the
future, elicitation studies might help waive such indications for
more natural performance. The gesture catalog was proposed
towards meeting criteria such as universality and usability.
However, some gestures are subject to differences in context
of use and cultural variations, with implications in their mean-
ing [11], social acceptability [1, 15], etc. Therefore, adaptation
of some gestures to different applications or world regions may
be required.

Network design. Fusion techniques other than feature con-
catenation for combining world and eye images could be ex-
plored. Possibly, an alternative, local encoding of eye images
(e.g. optic-flow based) would be preferable over the current
global motion assumption. An open interesting question is
whether performance can be improved if the homography es-
timation network is trained or fine-tuned with gesture-specific
sequences instead of using the available pretrained weights.

Egocentric view. Since the eyewear device is light-weight,
it can be reasonably comfortable to wear, mostly in compari-
son to virtual-reality devices. It is a also preferable over head-
mounted cameras because it allows the recognition of gestures
where eye cues are important, including deictic gestures. In
addition, having a view closer to the wearer’s eyes is generally
desirable. Beyond gestures, gaze provides proxies for cognitive
states (e.g. attention) which can be relevant for the interac-
tion. Although the human-egocentric perspective is promising
and potentially useful in some practical scenarios, this view
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Figure 11: Time diagrams of some validation videos involving
various IUs. The bottom gray line helps to appreciate correct
recognitions (“hit”) and misrecognitions (“miss”

can be complemented, where possible, with robot-egocentric
and scene-centric visual sensors (e.g. for face, upper-body or
full-body analysis), thus aiming at more robust recognition and
wider applicability. While this work focuses on human gesture
recognition, the interesting related problem of human-to-robot
motion retargeting [44, 24] might be explored from an alterna-
tive, egocentric perspective, for generating robot (head) move-
ments.

5 CONCLUSIONS

A motion-based head and eye gesture recognition framework
has been proposed that leverages on egocentric visual data
from an eyewear device. The approach relies on the combi-



nation of an homography estimation convolutional neural net-
work for frame-to-frame motion characterization, and a long
short-term memory for capturing longer-range visual depen-

dencies.

Five general-purpose interaction units have been

shown to be recognized with reasonable high accuracy while
the system can run in real time with commodity hardware.
Moreover, the system performs equally well in a range of frame
rates (e.g. 20-30 fps). These are very encouraging results for

practical human-robot interaction requirements.

One of the

most interesting findings is that using the output of a hid-
den layer of the homography network increases the recognition
performance over using the actual output of raw homography
values.
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