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ABSTRACT In this work, a generalized study of the conditions for the appearance of limit cycle oscillations
induced by any kind of sampler with multilevel fixed thresholds is presented. These kinds of samplers,
which will be referred to as Fixed Threshold Samplers (FTS), are characterized by a series of parameters,
which, when selected properly, allow obtaining some of the most used forms of quantization in Event-Based
Control (EBC). Because of some sampler characteristics, the obtained limit cycle oscillations can present
a bias, therefore, to characterize them the Dual Input Describing Function (DIDF) method is used. The
obtainedDIDF is analyzed revealing some interesting properties allowing to simplify the robustness analysis.
The analysis takes into account the effect of the disturbance and reference signal influence on the system,
generally overlooked in DF analysis. Guidelines about how to perform the robustness analysis are given,
showing their application through some study cases.

INDEX TERMS DIDF, limit cycle, robustness, sampling.

I. INTRODUCTION
In recent days, Event-Based Control (EBC) is becoming a
more and more popular control alternative. This change of
paradigm is motivated by the apparition of a new industrial
framework named Industry 4.0. This new communication
benchmark requires efficient data flow through the industrial
networks, fostering the implementation of EBC algorithms.

Several authors have already applied the EBC to well
known control algorithms, notably to the PID algorithm,
which constitutes one of the most simple and reliable
algorithms, and therefore, it is placed among the most used
in the industry [1]. In addition, its role within the context of
Industry 4.0 has been brought forward in [2].

One of the first works referring to Event-Based PID control
algorithm was Årzén’s contribution [3], in which it was
shown how this algorithm could be used as a tool to reduce
the CPU usage to perform the control of a process without
affecting significantly its performance. In that work some
key aspects about EBC were identified, specially, the error
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involving the calculation of integral and derivative terms
when the elapsed time between samples increases.

Subsequently, some works have been addressed to resolve
these problems, mainly regarding the integral time calcula-
tion. In that sense, the contributions made by Durand [4],
[5] and Vasyutynskyy [6], [7] must be highlighted. Other
works like [8] show the validity of this kind of algorithms
when implemented with the standard IEC 61499 [9], which
supports the implementation of distributed control systems.

As important as the control algorithm is the sampling
strategy used to regulate them, which is in charge of
generating events whenever significant changes are detected
in the state of the controlled system. Among the most
used strategies the Fixed Threshold Samplers (FTS) can be
found. Some examples of this kind of sampling strategies
are the Regular Quantization (RQ), the Symmetric-Send-
On-Delta SSOD [10] or the Regular Quantization with
Hysteresis (RQH) [11] which represents an intermediate
case.

A lot of works have been addressed considering these
strategies into the loop. There can be found works in which
they have been used for identification purposes [12]–[14], but
more importantly, for the control of processes [15]–[17] and,
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for a correct performance, several tuning rules and procedures
have been proposed [18]–[21].

Most of the aforementioned works deal with a drawback of
these kinds of FTS, which is that they can induce limit cycle
oscillations. Under the perspective of EBC these oscillations
degrade the loop performance, accelerate the wear out of
actuators and overload the communication networks with
unnecessary events. Therefore, the study of the conditions for
the existence of limit cycles as well as the characterization of
the oscillation by predicting the amplitude and frequency is
a key point in the analysis and design of event-based control
systems.

The presence of limit cycle oscillations when a FTS
is included in the control loop has been study following
different approaches and assumptions. The characterization
of limit cycles for different kind of systems, such as integrator
processes plus time delay (IPTD), first order processes plus
time delay (FOPTD), and second order processes plus time
delay (SOPTD), when using a SSOD sampling strategy has
been presented in [22]. In [19], [23] and [24], tuning methods
for PI controllers with SSOD sampler have been developed
based in new robustness margins for limit cycles, that were
obtained by applying the Describing Function (DF) technique
and entail with the classical concepts of phase and gain
margins. The same approachwas used in [25], where a unified
design of SSOD-PID control architecture for self-regulating
and integral processes was investigated. In [26] and [20], the
authors proposed a new robustness measure to avoid limit
cycle on SSOD based PI controllers. The proposal is based
on the Tsypkin’s method [27], which has been widely used to
study relay control systems.

In this work, which extends the results in [28], the
limit cycle oscillations induced by any kind of FTS are
characterized. To that end, a variant of the Describing
Function (DF) known as Dual Input Describing Function
(DIDF) [29] is used as analysis tool. To perform the study
the FTS is parametrized and the general DIDF is obtained.
The results presented here are relevant in twofold: first,
it allows avoiding the assumption that input signals to the
control loop, that is, reference and disturbance, are equal
to zero, which is a generalized assumption when applying
the Describing Function technique in the previous works
about FTS. However, this is an unrealistic premise for most
of control systems. We prove that these inputs strongly
determine the existence of limit cycles depending on the
model structure of plant and controller. Consequently, this
result shed light about the proper selection of the controller
structure for a given plant in order to effectively avoid
limit cycles. Secondly, the characterization of limit cycle
oscillations presented in this paper could improve the use
of FTS for system identification. As aforementioned, some
papers have shown the effectiveness of using the oscillation
induced by FTS for estimating process models. In those
works, symmetric and unbiased oscillation are assumed. It is
known, however, that this kind of oscillation are hardly ever
obtained in actual plants, furthermore, previous works has

FIGURE 1. Sinusoidal oscillation sampled with a given FTS (parameters:
1δ/δ=1/2, 1ε/ε=1/4, ε/δ=2, h/δ=1/2, explained below).

demonstrated that the asymmetric behavior can improve the
identification results [30]. In that sense, the study presented
in this paper will allow to extend the previous works on FTS
based identification for the case of asymmetric and biased
oscillation.

The paper is organized as follows. Section II presents the
generalized FTS, defining its characteristic parameters, and
shows how other samplers can be obtained by choosing the
correct parameters. Section III presents the DIDF approach
and some preliminary properties necessary to develop further
analysis. Section IV studies the behavior of different type
of process under FTS loops and how to analyze them.
An experimental case validating the analysis methodology
is presented in Section V. In Section VI it is discussed the
effectiveness of the presented DIDF analysis for the design
of control systems. Finally, the conclusions about this work
are drawn in Section VII.

II. PROBLEM STATEMENT
The choice of a proper sampler, or the task to adequate it to the
given necessities, can be challenging, specially considering
that the mere fact of quantifying can induce limit cycle
oscillations.

In addition, as the complexity of the sampler increases,
the resulting oscillations can become difficult to predict.
For example consider the oscillation presented in Fig. 1
produced by a given FTS. In this figure, it can be observed
a huge difference between the input signal x(φ) and the
output of the FTS x̄(φ). Among the main differences it can
be seen that the quantization step is higher than the increase
in the signal, the switching thresholds do not start at the
origin, the output of the FTS is not symmetric and the
number of levels crossed differs between upwards (four) and
downwards (three) direction.

All this characteristics can be parametrized by regarding
the relationship between input (x) and output (x̄) of a general
FTS, which is summarized graphically in Fig. 2. In this figure,
it can be seen all the parameters that characterize a FTS,
namely, the detection width δ, the detection hysteresis h,
the detection asymmetry 1δ, the output quantification ε
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FIGURE 2. Relationship between input and output of a generic FTS.

and the output asymmetry 1ε. The asymmetries have been
measured with regard to the center of the rectangle δ × ε
and the hysteresis h is vertically centered on that rectangle.
It is considered without loss of generalization that 1ε ∈
[−ε/2, ε/2] and 1δ ∈ [−δ/2, δ/2].
These parameters already prognosticate the behavior of

the sampler and the system. For example, the sampler
will contain a dead zone only if 1ε = ±ε/2, it will
present a symmetric output only if 1δ = ±δ/2 or it will
present a certain amplification or attenuation depending on
the relationship between ε and δ. Additionally, it is worth
noticing that by choosing a certain combination of parameters
the most common FTS samplers traditionally studied can also
be found. A summary with some of them can be found in
Table 1. Obviously, this table only presents some cases of
multileveled samplers, there exist many other options that can
be obtained with the appropriate configuration.

III. DIDF APPROACH
As it has been previously commented, one of the most
important phenomena when using a FTS is that they
can induce limit cycle oscillations. To study this kind of
non-linear behavior there exist several tools, among them, the
Describing Function approach excels due to its ease of use
and accuracy in the obtained results [23], [31].

The generic FTS under study includes, depending on the
chosen parameters, a wide variety of commonly used sam-
plers, SSOD [10], RQH [11] or an RQ sampling among them,
as it has been shown in the precedent section. Therefore,
by addressing an analysis considering the most generic case
a wide variety of samplers can be characterized. Considering
the parameters previously described, the relationship between
the input signal to the sampler x(t) and its output x̄(t) is
defined in (1), as shown at the bottom of the next page.
To apply the DF technique consider a generic control loop
like the one presented in Fig. 3. Consider that the controller
C(jω) and the process G(jω) can be grouped in a single block
Gol(jω)=C(jω)G(jω) representing the open-loop transfer
function which gathers the linear behavior on the loop.

TABLE 1. Summary of samplers and their parameter configuration.

Because of the inherent generalization induced by the FTS,
theremay exist some possible bias in the output of the sampler
which may not be attenuated through the loop and, therefore,
it must be considered at the input of the non-linearity. Thus,
in this type of oscillatory steady-state the input to the sampler
corresponds to the form x(t) = A sin(ωt)+ B. Therefore,
to include in the study the cases where a bias appears,
a variant of the DF is used called Dual Input Describing
Function (DIDF), which studies the sustainability of the
oscillation and the bias.

Applying the DIDF principles, it is known that the con-
dition for the maintainability of an unattenuated oscillation,
called limit cycle, in this kind of systems is given by:

Gol(jω) = −
1
NA

, ∀ω, (2)
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FIGURE 3. Generic loop structure that allows the DF technique
application.

where NA is the describing function of the non-linear
element related to the dynamic behavior. This condition
can be interpreted graphically as: if it exists intersection
betweenGol(jω) and the inverse negative ofNA in theNyquist
diagram, a limit cycle can occur.

In addition to the condition for the dynamic part presented
in (2), the sustainability of the bias through the loop
should also be studied. The conditions involving the bias
maintenance were presented in [32] and, as in the oscillation
maintenance, also depend on the linear part of the process
under study. However, those conditions did not take into
account the effect of the disturbance and reference input,
which were considered to be r(t) = 0 and p(t) = 0, therefore,
they have to be adjusted to take into account these signals.

Consider the loop structure presented in Fig. 3 and assume
reference and disturbance inputs to be step-like signals.
Assume also that a biased oscillation appears, so that the bias
on x(t) is B. Then, considering only the non-oscillatory parts
of the elements in the loop:

x(∞) = r(∞)− y(∞)

B = r(∞)− G(0)[p(∞)+ BNBC(0)],

where r(∞) and p(∞) are the magnitude of the changes
in reference and disturbance signals, G(0) and C(0) the
steady-state gains of the process and the open-loop transfer
function, B the bias and NB the describing function for the
maintenance of the bias. Arranging the previous expression,
the condition for the maintenance of the bias is obtained:

r(∞)− p(∞)G(0) = B(1+NBGol(0)), (3)

whereGol(0) is the steady-state gain of the open-loop transfer
function. This expression depends on the form of G(s) and
C(s) since it depends on the steady-state gain of both. For
several combinations between the form of G(s) and C(s),
expression (3) has been further developed in Table 2 of
Appendix B.

The DIDF of the general FTS involving the bias main-
tenance and the dynamic oscillations are given respectively
by expressions (4)-(5), as shown at the bottom of the next

page, (calculated in Appendix A), where i0 is the initial or
base level, around which the oscillations are produced. The
oscillations can have a number of msup levels crossed in
upwards direction and minf in downwards direction from i0.
These parameters are calculated as follows:

msup =
⌊
A+ B−1δ − h/2− δi0

δ

⌋
+ 1,

minf = −
⌊
−A+ B−1δ + h/2− δi0

δ

⌋
− 1, (6)

and:

i0 =


⌊
B−1δ − h/2

δ

⌋
+ 1 if B ≥ 0⌊

B−1δ + h/2
δ

⌋
if B < 0.

The DF for the bias and for the sinusoidal part can be
expressed with a series of meaningful dimensionless ratios,
namely, ε/A, ε/B, δ/A, δ/B,1ε/ε,1δ/δ and h/δ. The ratios
that describe the sampler are bounded: 1ε/ε ∈ [−1/2, 1/2],
1δ/δ ∈ [−1/2, 1/2] and it will only be considered h/δ ∈
[0, 1] even though it can take a wider range. The other
ratios involve the input signal and, therefore, they cannot be
bounded.

By substituting in the previous expressions the parameter
configurations presented in Table 1, the dynamic describing
function (NA) considering B = 0 can be found for the
RQ [31], RQH [11] or SSOD [23] for example.

A. CHARACTERISTICS OF THE DYNAMIC PART OF THE
DIDF
Due to the generality of the expression presented above
and the number of parameters involved, the analysis study
will result in a complex research. Therefore, to bound this
study, NA is evaluated analyzing its behavior under certain
conditions. This evaluation leads to a better comprehension
of the behavior of NA and to a significant reduction of the
analysis study effort.

The first behavior has been already presented in Fig. 1,
where the oscillations present different number of levels
crossed upwards and downwards from i0, i.e. msup 6= minf .
Nevertheless, the same sampler can provide oscillations with
the same number of levels crossed upwards and downwards,
msup=minf , depending on the amplitude A of the oscillation.
This behavior is reflected in the dynamic part of the DF
by presenting two alternating ‘‘series’’ of bands, one where
msup 6= minf and another with msup=minf alternatively. That

x̄(t) =


1ε −

ε

2
+ ε(i+ 1) if x(t) ≥ 1δ +

h
2
+ δi and x̄(t−) = 1ε −

ε

2
+ εi, i ∈ Z

1ε −
ε

2
+ ε(i− 1) if x(t) ≤ 1δ −

h
2
+ δ(i− 1) and x̄(t−) = 1ε −

ε

2
+ εi

1ε −
ε

2
+ εi if x(t) ∈

[
1δ −

h
2
+ δ(i− 1),1δ +

h
2
+ δi

]
and x̄(t−) = 1ε −

ε

2
+ εi

(1)
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can also be seen evaluating the expressions in (6) for a range
of values of A.

On the top image of Fig. 4, the inverse negative
of the dynamic DF NA (see (5)) of a sampler with
1ε/ε=1δ/δ=1/3 and ε=δ=h and without bias has been
represented. The presented traces are grouped in two series
that have been plotted in different colors. In that image,
two squares, one in each series, have been marked, which
correspond to the oscillation presented on the images below.
As it can be seen, the orange oscillation only has one upper
level and no levels are crossed downwards from the initial
level, whereas the violet oscillation has the same number of
levels crossed in both directions.

Despite the ratio ε/δ not being a ratio used to define
the DF, as it can be seen from (4) and (5), it has a great
influence on the placement of the DF traces. This ratio
describes the relationship between the detection and the
output thresholds of the sampler, therefore, it has the same
behavior as a gain. Thus, the DF traces present a radial
shrink when this ratio increases and a radial expansion when
it decreases. Therefore, this parameter is of great influence
to the robustness of the loop since it restricts the frequency
response of the linear elements. This radial variation of
−1/NA has been represented in Fig. 5 where the inverse
negative of a sampler with 1ε/ε=1/4, 1δ/δ=1/3 and
h/δ=1/2 has been presented using three different ratios ε/δ.
Another parameter which plays a paramount role is the

relative hysteresis, presented by the ratio h/δ, which prevents
the generation of unnecessary events due to the presence
of noise in the sampled signal [11]. In addition, regarding
this parameter from the non-linear analysis point of view,
it makes the sampler take into consideration from where
does the sampled signal come, i.e. it adds a memory effect.
As it was stated in [32], non-linearities with memory present
an imaginary part in the inverse negative of their DF and
those without memory only have a real part. This fact is
corroborated in Fig. 6, in which a sampler with 1ε/ε=1/5,
1δ/δ=1/2 and ε/δ=0.75 has been tested with three different
levels of relative hysteresis, showing that the traces fold
gradually towards the real axis as the hysteresis is reduced.

In addition to the influence of the parameters of the
sampler, in those cases where a bias is present, i.e. the input
to the non-linearity is of the form x(t)=A sin(ωt)+B with

FIGURE 4. NA of a sampler with two series of traces regarding to the
levels crossed in each direction. (Parameters used: 1ε/ε=1δ/δ=1/3,
ε=δ=h).

B 6= 0, it plays an important role on the shape of the DF
under study.

The presence of this bias can change completely the
behavior expected of a given sampler. For example, imagine
any FTS with a deadband (SSOD, RQH, etc.). If the loop
contains any element that accomplishes a bias B such as
1δ = B, then the behavior of the FTS will not correspond
to a deadband, but it will be more similar, for example, to a
multilevel relay, i.e. a sampler with no deadband. This fact
is logical because the value of the bias B compensates the
asymmetry 1δ, and therefore the same behavior is expected.
Traduced to the analysis of NA, this fact implies that for

NB =
21ε + ε(msup − minf + 2i0 − 1)

2B

−
ε

2πB

msup−1∑
k=−minf

[
arcsin

(
1
A

(
1δ +

h
2
− B+ δ(k + i0)

))
+ arcsin

(
1
A

(
1δ −

h
2
− B+ δ(k + i0)

))]
(4)

NA =
ε

πA

msup−1∑
k=−minf

√1−
(
1
A

(
1δ +

h
2
− B+ δ(k + i0)

))2

+

√
1−

(
1
A

(
1δ −

h
2
− B+ δ(k + i0)

))2


− j
εh
πA2

[msup + minf ] (5)
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FIGURE 5. Radial variance of −1/NA with the ratio ε/δ. (Parameters
used: 1ε/ε=1/4, 1δ/δ=1/3 and h/δ=1/2).

FIGURE 6. Effect of the hysteresis on −1/NA (Parameters used:
1ε/ε=1/5, 1δ/δ=1/2 and ε/δ=0.75).

a given sampler in which 1δ = B a straight line that
reaches the imaginary axis will appear, as it appears for
other non-linearities without deadband, for example, the ideal
relay. This effect of the asymmetry compensation with the
bias is illustrated in Fig. 7, where the parameters of the SSOD
are used and it can be seen how an horizontal line that reaches
the imaginary axes appears.

The apparition of a bias can also propitiate a lag between
the upwards and downwards crossed levels. This can be
seen from expressions in (6): having a given sampler makes
the number of levels vary differently when sweeping A for
different values of B. That is to say that the apparition of a
bias is equivalent to an asymmetry.

For the analysis study it can be very concerning this big
variance of the traces of−1/NA with the biasB. Nevertheless,
it has been observed that the placement of these traces is
periodically repeated with the change of B. Concretely, the
placement of the traces will be the same for:

−1
NA(B)

=
−1

NA(B′)
,

FIGURE 7. Asymmetry compensation with the bias B and its effect on
−1/NA (Parameters used: 1ε/ε=1/2, 1δ/δ=1/2 and ε=δ=h).

where B′ = B+kδ and k ∈ Z. This result is logical because
it only represents a shift, and it can be observable from the
expressions of NA and of the levels crossed msup and minf
where the ratio δ/B and the levels are presented together.

Besides this periodicity, it has also been observed that
−1/NA presents the same traces for given variations of B
lesser than δ. Concretely, the obtained traces are the same if
B changes with regard to some symmetry axes, being these
symmetry axes the extreme and the center of the square
δ × ε. Therefore, the obtained traces will be the same for
B=1δ − δ/2+α and for B′=1δ − δ/2 − α, α ∈ <. And
regarding the other symmetry axis, the same traces will be
obtained considering B=1δ+β and B′=1δ − β, β ∈ <.

With regard to NB, no generic properties can be extracted
from its study as for the case of NA. The application of the
part of the DIDF related to the bias will be treated deeply in
the next section.

IV. OSCILLATION CONDITIONS STUDY
The study will pursue different objectives depending on the
studied sampler, its application and the process involved. For
example, it may be desired that a given system presents an
oscillatory response around a given set point with controlled
oscillations or that a system presents a robust behavior against
these limit cycle oscillations that the DIDF describes.

To perform the analysis it is necessary to know the bias and
if it is not attenuated through the loop even though the exact
bias is not known a priori. However, it can be estimated by
considering that the changes produced on the loop, whether
their source is the disturbance or the reference, are big enough
with regard to the detection threshold δ. In that case, the effect
of the sampler can be substituted by ε/δ, which is the slope
of input-output relationship (see Fig. 2). Then, an estimation
of the bias, which will be referred to as bias central value Bc,
can be obtained from expression (3):

Bc =
r(∞)− p(∞)G(0)
1+ ε/δGol(0)

. (7)
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FIGURE 8. Input-Output relationship of the sampler used in the example
presented in Section IV-A (Parameters: 1ε/ε=1δ/δ=0, ε/δ=1 and
h/δ=1/2).

From this central value, a set of candidate biases with
amplitude δ will be considered defined as Bs ∈ [Bc −
δ/2,Bc + δ/2]. The amplitude of the set is chosen to be δ
due to the symmetry property and periodicity of the dynamic
part explained above.

Then, using the maintenance condition of the bias, which
will be one of the presented in Table 2 depending on the
elements of the loop, for the values in Bs, pairs {A,B} which
are candidate to present limit cycle oscillations are obtained
for the given process, controller and sampler. Nevertheless,
the pairs {A,B} must be evaluated to determine whether they
conduce to an unattenuated propagation of the sinusoidal part
of the signal. This evaluation will be done with the expression
presented in (2), which also depends on the bias B. If the pairs
{A,B} that fulfill the corresponding expression in Table 2 are
also those that intersect the open-loop transfer function in the
Nyquist diagram, analytically:

Gol(jωo) = −
1

NA(A,B)
,

then a limit cycle oscillation of the type A sin(ωot) + B will
be obtained.

This concept will be introduced through an example in the
following subsection.

A. ILLUSTRATIVE EXAMPLE
Consider a process with transfer function

G(s) =
1

(s+ 1)3
,

and for illustrative purposes, consider that this process is
placed in a loop with a sampler with 1ε/ε = 0, 1δ/δ = 0,
ε/δ = 1 and h/δ = 1/2, whose input-output relationship is
shown in Fig. 8, with a controller C(s) = 1.
This case will correspond to the stability condition for the

bias where both controller and process have neither poles
nor zeros at the origin presented in Table 2. Adapting that
equation to the current case, L1(0) = 1 and L2(0) = G(0),
resulting in:

B(1+NBG(0)) = r(∞)− p(∞)G(0). (8)

Five scenarios will be considered:

FIGURE 9. Graphical representation of the oscillation conditions for
Scenario 1.

1) Unitary reference input without disturbance.
2) Reference input of magnitude 0.95 without disturbance.
3) Unitary reference input and disturbance of magnitude

0.95.
4) Same as scenario 3 but increasing the gain of the process.
5) Same as scenario 3 but doubling the value ε of the

sampler.
Scenario 1: In this case, the equation for the maintenance

of the bias is simplified, resulting in:

B(1+NBG(0)) = r(∞). (9)

The central value Bc can be obtained from (7) as:

Bc =
r(∞)

1+ ε/δG(0)
=

1
2
.

Thus, the set of values to evaluate will be Bs ∈ [Bc −
δ/2,Bc + δ/2]. A width of the set equal to δ is chosen
because of the symmetry properties of NA explained in the
previous section. The set of values Bs has been evaluated
with (9). Regarding that expression, the left hand term varies
with each term of the set Bs evaluated, while the right hand
term is constant. Therefore, the solutions A and B to that
expression can be easily found by representing the left hand
term, and the horizontal line representing the right hand term
and evaluating the intersections between them.

The graphical representation of the left hand term has been
presented in Fig. 9a, each trace representing an item of the set.
As it can be seen, it only exists one trace that equals to r(∞),
the right hand term, which has been represented by a dashed
black line. The trace that exactly matches the dashed black
line corresponds to the trace obtained for B = 0.5. As all
the values of that trace are equal to the searched solution,
if the inverse negative of NA intersects at any point with the
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FIGURE 10. Temporal response of the error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario 1.

FIGURE 11. Graphical representation of the oscillation conditions for
Scenario 2.

open-loop transfer function, then an oscillation will appear.
The oscillation condition for the dynamic part has been
presented in Fig. 9b where it can be seen that −1/N (A,B =
0.5) intersects with G(jω).

The temporal response of the process under the conditions
presented in this scenario has been obtained, and the error
and sampled error signals have been presented in Fig. 10. The
oscillation period has beenmeasured in this figure andG(jωo)
has been represented in the Nyquist diagram in Fig. 9b with
a red circle, proving the validity of the method.
Scenario 2: To evaluate the maintenance of the bias,

(9) remains valid because only the magnitude of the signal
has changed. The procedure to obtain the set of values of bias
Bs is also the same, firstly the central value is obtained, in this
case Bc = 0.475, and then a margin of ±δ/2 for symmetry
reasons is established.

The set of values Bs has been evaluated with (9) and
the graphical representation of the left hand term has been
presented in Fig. 11a, each trace representing an item of
the set. A dashed black line has been added representing

FIGURE 12. Temporal response of the error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario 2.

the right hand term of (9). The intersections between right
and left hand terms constitute a set of pairs {A,B} that
will allow the maintenance of the bias in the oscillation.
However, it must be evaluated if the dynamic part is also
maintained through the loop. Hence, in Fig. 11b the inverse
negative of NA for each value of B in the pair have been
presented in gray, the matching values of A have not been
considered and instead a wide range of A has been swept for
each B. This representation in gray matches with the classical
DF plot, where all the parameters are fixed and only the
amplitude of the oscillations varies. Then, the specific points
−1/NA(A,B), where the pairs {A,B} are solution of (9), have
been encircled. The plots in gray are illustrative and not
necessary for the stability analysis. As it can be seen, the
open-loop transfer function does not intersect with any of the
highlighted points, therefore, no oscillations will take place,
and so it has been observed in the simulation presented in
Fig. 12.
Scenario 3: In this scenario, a disturbance signal is present

on the loop, therefore, the expression to determine the central
value Bc obtained from (7) is:

Bc =
r(∞)− p(∞)G(0)

1+ ε/δG(0)
=

1− 0.95
2

= 0.025.

A set of values for the bias as in the previous cases have
been evaluated, obtaining the representation of the left hand
term of (8) presented in Fig. 13a. In this figure, the dashed
black line presented corresponds to the right hand term of (8).
A set of pairs {A,B} is obtained, and as in the previous case,
it can be observed in Fig. 13b that no intersection between the
inverse negative of the DIDF evaluated at those points and the
open-loop transfer function is observed. Hence, no oscillation
will take place.

This result evinces that, in this type of loop architectures,
the disturbance input can act both as a stabilizing or
destabilizing agent. In Fig. 14, the previous statement can
be seen. The first half of the experiment corresponds to
the temporal response of the error signal to the reference
input change, which also corresponds to Scenario 1, where
it was proven the oscillatory behavior. However, by applying
the disturbance change at t = 40 s the process manages to
stabilize within the evaluated range of biases.
Scenario 4: In this scenario, there will be reference and

disturbance changes and the process gain will be 4 times the
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FIGURE 13. Graphical representation of the oscillation conditions for
Scenario 3.

FIGURE 14. Temporal response of the error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario 3.

original. For the sake of brevity the repetitive steps followed
above are omitted.

The graphical representation of the oscillation conditions is
presented in Fig. 15. In Fig. 15a, the graphical representation
of the left hand term of (8) is presented with different colored
lines and the right hand term of that equation is presentedwith
a dashed black line. The intersections between both terms
represent the solutions of the equations from which the pairs
{A,B} are obtained. Then, in Fig. 15b, all the traces −1/NA
are presented for the different values of B and the specific
solutions are highlighted. In this last figure, it can be observed
that there exist an intersection betweenG(jω) and some of the
highlighted points, revealing that a limit cycle oscillation can
occur.

The temporal response of this system has been obtained
and it is represented in Fig. 16. In this simulation, the
reference change has been applied at t = 0 s and the
disturbance at t = 40 s. In this scenario, it can be seen that
two different limit cycle oscillations are obtained, the first
one with msup + minf = 1 resulting from the application
of a step change, which has not been evaluated theoretically,

FIGURE 15. Graphical representation of the oscillation conditions for
Scenario 4.

FIGURE 16. Temporal response of the error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario 4.

but it could be done as in the Scenario 1. The second limit
cycle is the expected result of the study in this scenario, with
msup=minf=1 after the application of the disturbance change.
The period of the resulting oscillation has been measured
and G(jωo) has been represented in the Nyquist diagram in
Fig. 15b with a red square, validating the prediction of the
DIDF method.

The apparition of different type of oscillations modifying
the disturbance or reference input signals can be interesting
for the identification of processes, in which different types
of oscillations with different oscillation periods can be used
to identify multiple points of the frequency response of a
process. However, for those cases the correct case study
regarding the equations must be applied.
Scenario 5: In this final scenario, the ratio ε/δ, that so far

in precedent scenarios was 1, has been doubled. Thus, this
change must be introduced in the calculation of the central
value:

Bc =
r(∞)− p(∞)G(0)

1+ ε/δG(0)
=

1− 0.95
3

= 0.0167.
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FIGURE 17. Graphical representation of the oscillation conditions for
Scenario 5.

FIGURE 18. Temporal response of the error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario 5.

As in previous scenarios, a set of values Bs is obtained
to compute the stability conditions, obtaining the graphical
representations presented in Fig. 17. From these figures it can
be seen that the DIDF method predicts an oscillation.

The system has been tested in simulation obtaining the
temporal response presented in Fig. 18. The period of the
obtained oscillation has been measured and G(jωo) has been
represented in the Nyquist diagram of Fig. 17b with a red
square proving the validity of the prediction.

In this scenario, the opposite case to the presented in
the Scenario 3 can be seen, starting from a stable temporal
response as a consequence of the reference change, the
application of the disturbance input to the system acts as a
destabilizing agent, resulting in the apparition of a limit cycle
oscillation.

V. EXPERIMENTAL CASE STUDY
In this section, experimental results are presented to validate
the theoretical outcomes obtained in the previous sections.
The experimental setup is composed of a DC motor and a
PLC unit. The goal of the application is to control the speed

FIGURE 19. Experimental setup composed of a PLC unit with its modules
that controls a DC motor.

of the motor, which is read from an encoder. To actuate
on the motor a PWM signal is used, being able to regulate
the functioning with its duty rate. The PLC rack contains
the corresponding modules for reading encoder inputs and
producing PWM signals. Some electronics are required for
adapting the power levels ofmotor and PLC.All the described
elements are presented in Fig. 19.

The loop configuration corresponds to the one presented
in Fig. 3. The processG(s) describes the relationship between
the DCmotor speed and the PWMduty rate which is modeled
by the following transfer function:

G(s) =
172487e−0.007s

(s+ 178.2)(s+ 91.16)(s+ 85.35)(s+ 52.27)
,

the controller C(s) is considered to be a proportional
controller with Kp = 768 and for the sampler a SSOD with
δ = 3 is chosen. These last two elements are implemented
within the PLC. The reference and disturbance signals are
introduced also within the PLC scope.

Three scenarios will be presented, which will be analyzed
with the principles developed in previous sections:
A) Reference step change of magnitude r(∞) = 12 induces

oscillation.
B) From scenario 1, introducing a disturbance ofmagnitude

p(∞) = 500 avoids oscillation.
C) Disturbance of magnitude p(∞) = −700 induces oscil-

lation on system stabilized with reference magnitude
r(∞) = 10.5.

Since G(s) and C(s) do not have poles nor zeros at the origin,
and regarding to Table 2, the sustainability of the bias is
studied by the following equation:

B(1+NBC(0)G(0)) = r(∞)− p(∞)G(0) (10)

Scenario A: In this case, only a reference change is
introduced, therefore, the theoretical study is conducted as in
Scenario 1 and 2 from Section IV.

The DIDF study is presented graphically in Fig. 20, where
the sustainability of the bias is presented in Fig. 20a and the
sustained oscillations are studied in Fig. 20b.

The temporal response of the process under the conditions
presented in this scenario is presented in Fig. 21, where the
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FIGURE 20. Graphical representation of the oscillation conditions for
Scenario A.

FIGURE 21. Temporal response of error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario A.

error signal x(t) and the sampled error signal x̄(t) have been
plotted in black and teal respectively. From this oscillation,
the pair (A,B) has been measured and, using this pair, the left
hand term of equation (10) has been presented on Fig. 20a,
and −1/N (A,B) in Fig. 20b, both with a red square.
As it can be seen, in Fig. 20a, the square that represents

the measured limit cycle is placed near to the critical line,
defined by the right hand member of equation (10). Besides,
in Fig. 20a a similar behavior is observed, being the inverse
negative of the dynamic DF evaluated with the real data
placed near to the candidate points from the theoretical
studies and to the open-loop transfer function.

With regard to the oscillation frequency, it has been mea-
sured from the experimental data, presenting an oscillation
frequency of ωo = 47.6 [rad/s]. From the theoretical study,
possible intersections between the candidate points of the
dynamic DF and the open-loop transfer function are produced
at similar frequencies around ωo = 45.5 [rad/s]. The
theoretical study forecasts an oscillation frequency similar
to the observed frequency. Obviously, the accuracy on this
estimation heavily relies on having an accurate process
model, which lies beyond the scope of this contribution.

FIGURE 22. Graphical representation of the oscillation conditions for
Scenario B.

Scenario B: The starting point for this scenario is the
oscillatory state presented in the previous one, which has been
already analyzed. In this case, a disturbance is introduced
within the PLC as an increase of 500 units in the control
action.

The theoretical analysis has been performed as in Scenar-
ios 3-5 of the previous section, in which both reference and
disturbance signals are present. The DIDF study is presented
graphically in Fig. 22, and as in previous cases the dynamic
part of DIDF is presented in Fig. 22b and the sustainability of
the bias is studied in Fig. 22a.

As it can be seen in this case, even if the open-loop
transfer function intersects some of the traces of the dynamic
part of the DIDF, it is still far from the candidate points
highlighted in Fig. 22b. These points have been obtained from
the intersection in Fig. 22a between the left hand term and
the right hand term of equation (10), being the left hand term
presented with different colors and the right hand term with
a dashed black line.

Therefore, from this study no limit cycle oscillation
are expected under these conditions, which is corroborated
experimentally from the temporal response of the system
in Fig. 23. In this figure, it can be seen the error signal
in black and the sampled error signal in teal, which start
from the oscillatory state predicted in Scenario A and, once
the disturbance is introduced, the limit cycle oscillation
disappears.
Scenario C: This last scenario is similar to the previous

one in the fact that reference and disturbance signals are
involved in the analysis. Therefore, the theoretical analysis
is performed as in Scenarios 3-5 of the previous section.
The DIDF study is presented graphically in Fig. 24, in
which the the dynamic part of DIDF is presented in Fig. 24b
and the sustainability of the bias is studied in Fig. 24a.
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FIGURE 23. Temporal response of error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario B.

FIGURE 24. Graphical representation of the oscillation conditions for
Scenario C.

FIGURE 25. Temporal response of error x(t) and sampled error x̄(t)
signals under the conditions of the Scenario C.

The temporal responses of the error and sampled error
signals under the conditions presented in this scenario are
presented in Fig. 25, where the error signal is presented in
black and the sampled error signal in teal. As it can be seen,
the system starts from a non-oscillatory state which is reached
as a consequence of a reference change. However, once the
disturbance is introduced, a limit cycle oscillation is induced
on the temporal response. From the data obtained of these
oscillations, the pair (A,B) has been measured and it has been
used to calculate the left hand term of equation (10), which

FIGURE 26. Analysis of limit cycle oscillation apparition with DF and
Tsypkin methods.

has been presented on Fig. 24a, and to compute−1/N (A,B),
which is shown in Fig. 24b, both points with a red square.
As it can be seen, these squares are placed on a vicinity of the
candidate oscillation points.

With regard to the oscillation frequency, from the theo-
retical study presented in Fig. 24b, the open-loop transfer
function crosses nearby the candidate points −1/N (A,B) at
a frequency ωo = 46.1 [rad/s]. This frequency is similar to
the oscillation frequency observed experimentally, which has
been measured to be of ωo = 47.242 [rad/s].
Regarding to the estimation results, it can be said that

the proposed DIDF method correctly predicts the apparition
of limit cycle oscillations, since the real oscillation point is
placed near the candidate points and the open-loop transfer
function, and the forecast oscillation frequency is also similar
to the experimental oscillation frequency.

A. COMPARISON WITH OTHER METHODS
Taking advantage of the theoretical and experimental results
presented previously on this section, in this subsection,
it would be presented a comparison between the proposed
DIDF method and other methods that analyze the apparition
of limit cycle oscillations when a SSOD sampler is used.

In recent years, several contributions have published
addressing the robustness issues arisen from SSOD sampling.
The comparison will be conducted using as analysis method
the DF method presented in [11], which defines robustness
margins in terms of classical gain and phase margins,
and [20], which analyzes the apparition of limit cycle
oscillations using the Tsypkin method, which does not
neglect the contribution of high order harmonics in the
apparition of limit cycles as the DF method does.

The analysis has been conducted according to the prin-
ciples stated in the cited references, obtaining the graphical
representation of the robustness analysis presented in Fig. 26,
in which the traces of the inverse negative of the describing
function of the SSOD sampler have been presented in red and
the critical Tsypkin branch BT (ωmin), to which the robustness
marginMT is measured, in light green.

Graphically, it can be seen that no intersection occurs
between the inverse negative of the describing function traces
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and the open-loop transfer function at any frequency, which
indicates that a stable response is expected according to the
DF method. Similarly, it can be seen that the critical Tsypkin
branch BT (ωmin) does not intersect the open-loop transfer
function point for which it has been obtained (Gol(jωmin))
which has also been indicated.

Numerically, the classical DF method approach presents
a phase and gain margins of 8h/δ = 10.59◦ and γh/δ =
0.8271 [dB] respectively, and the Tsypkin approach presents
a Tsypkinmargin ofMT = 0.08. Therefore, according to both
methods, a non-oscillatory behavior is expected theoretically.

It could be stated that the obtained margins are insufficient
to provide a robust response, justifying the limit cycle
apparition observed experimentally. However, the margins
that these methods provide evaluate the apparition of a type
of oscillation that does not correspond with the type of
oscillation observed experimentally. More specifically, these
methods evaluate the apparition of limit cycle oscillations
without bias, B = 0, and with the same number of levels
crossed in each direction minf = msup (see Fig. 4), whereas
the observed oscillation presents bias and different number
of levels crossed in each direction minf 6= msup, thus,
justifying the development of the analysis presented in this
work.

VI. DIDF FOR EFFECTIVE DESIGN OF CONTROL SYSTEMS
Even thought the design of control systems with FTS is out of
the scope of this paper, this section addresses how the results
presented in the previous sections can be applied to avoid
limit cycle in closed loop control systems or to regulate the
limit cycle oscillations in systems controlled in a relay-like
fashion.

Focusing on the avoidance of limit cycle oscillations, there
exist several approaches that can be followed, including the
modification of the input/output characteristic of the FTS or
selecting and tuning a proper controller.

Regarding to the input-output characteristic of the FTS,
it can be modified according to the dynamic DF behavior
presented in Section III-A to avoid the intersection with the
open-loop transfer function Gol(jω). For example, the ratio
ε/δ can be reduced, which will push the inverse negative
traces of the dynamic DF deeper into the third quadrant (see
Fig. 5). Also, increasing the value of the hysteresis can lead
to similar effects (see Fig. 6).
Regarding to the selection and tuning the controller,

it must be taken into account that the model structure of
Gol(jω) as well as the signals involved in the loop play
an important role in the appearance of limit cycle, as it is
summarized in Table 2, where three kinds of Gol(jω) can be
differentiated:
• Cases where the open-loop transfer function Gol(jω)
has not integrative nor derivative predominance, which
correspond to cases 4, 7 and 12 in the table. One of
these cases has been presented in Sections IV-A and V,
which requires a full analysis with the DIDF as shown.
In these cases, the FTS can be modified as mentioned,

by adjusting the ratio ε/δ and the hysteresis, to avoid
limit cycle oscillations.

• Cases where Gol(jω) is predominantly derivative, cor-
responding to cases 1, 2, 3, 6 and 11. In those cases,
there exist only one candidate bias which is a function
of reference and disturbance signals not depending on
the describing function for the maintenance of the bias,
NB. Therefore, only the inverse negative of the dynamic
DF has to be analyzed, and the controller can be tuned
to avoid intersection between −1/NA and Gol(jω).

• Cases where Gol(jω) is predominantly integrative,
which correspond to cases 5, 8, 9, 10 and 13. In cases
5, 9, 10 and 13 there is only one candidate bias,
B = 0, and consequently the limit cycles can be
sidestepped by tuning the controller to avoid intersection
between −1/NA and Gol(jω). This result is the base
of several tuning methods for PI under different FTS
strategies [11], [19], [24]. In fact, cases 9, 10 and 13,
where the controller has an integrator, corresponds to
the structure of Gol(jω) assumed in those works, which
include a PI controller. Only in case 8 the usage of
NB is required, therefore, the analysis must be done
considering both NB and NA.

On the other hand, for systems controlled in a relay-
like fashion, it may be desired to control a given limit
cycle oscillation. Assuming that an oscillatory state has
been reached, which is accomplished by fulfilling the DIDF
conditions, it may be pursued a modification in the amplitude
or frequency of the oscillations.
Regarding to the amplitude of oscillation, it can be

modified by directly changing the output quantification ε
and keeping the dimensionless ratios of the FTS detailed in
Section III. This modification will result in a proportional
change of the amplitude keeping the current oscillation
frequency. This is sustained by the dimensionless prop-
erties of the DF, which will result in the same −1/NA
traces without changing the point where they intersect
with Gol(jω).
However, regarding to the oscillation frequency, its modifi-

cation would entail a change in the intersection point between
the dynamic DF traces and Gol(jω), implying a change also
in the amplitude. Taking for example the Nyquist diagram
presented in Fig. 9b, the intersection between −1/NA and
Gol(jω) takes place at a given frequency. Changing that
frequency would entail either to modify the DF traces to
intersect another point, or modify the open-loop transfer
function. Some of the strategies that can be applied are:
change the hysteresis h or to introduce a proper compensator
in the linear part of the system.
Regarding to the hysteresis, its effect on −1/NA has been

explained in Section III-A, expanding or folding the traces.
Alternatively, a compensator can be introduced into the loop
in order to guarantee the intersection between Gol(jω) and
−1/NA at a given frequency.
Both of the approaches to modify the oscillation fre-

quency entail a modification of the amplitude, therefore, the
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TABLE 2. Expanded requirements for any combination of process and controller for the maintenance of the bias under step-like changes in reference and
disturbance inputs. L1(s) and L2(s) have neither poles nor zeros at the origin and it is considered that n,m ≥ 1.

described procedure to modify the oscillation amplitude must
be applied afterwards.

VII. CONCLUSION
In this work, the tools to characterize the limit cycle oscil-
lations induced by any kind of multilevel Fixed Threshold
Sampler (FTS) have been provided. To that end, the structure
of these kinds of samplers have been parametrized and it has
been shown that by choosing some specific set of parameters
some of the most used quantifiers can be obtained. Some
notable specific cases are RQ quantization, Symmetric-Send-
On-Delta or any kind of multi-level relays.

In order to characterize the oscillations induced by these
samplers the Describing Function technique has been used.
Since depending on the set of parameters chosen for the
sampler oscillations with a bias can be obtained, a variant
called the Dual Input Describing Function (DIDF) has been
used, which already contemplates the apparition of this
bias.

The DIDF has been obtained for the generalized param-
eters describing any FTS. In addition, the DIDF involving
the dynamic part has been deeply analyzed, revealing some
interesting effects of the parameters on its traces and some
properties such as periodicity and symmetry depending on
the bias.

The guidelines to perform the robustness analysis have
been provided. In the analysis study, it has been shown
the paramount importance of the loop configuration and the
signals involved in the loop, because they have a direct effect
on the limit cycle oscillation conditions. Some examples with
specific cases have been included to show how the analysis
methodology should be applied. From these examples some
features like the appearance of different types of oscillations
produced by the application of some signals have been
revealed, which can be used in further works for identification
purposes.

APPENDIX A
DIDF CALCULATION
The input-output relationship of a FTS whose main parame-
ters are represented in Figure 2 is described in (1).

Let the input to the FTS be described by x(φ) = A sin(φ)+
B. Then, the output can be expressed as:

x̄(φ) = 1ε −
ε

2
+ εi0 + ε

i∑
k=1

sgn

(
dx(φ)
dφ

∣∣∣∣
φk

)

= 1ε −
ε

2
+ εi0 + ε

i∑
k=1

sgn(cos(φk )),

∀φ; φi < φ < φi+1

where i0 is the level around which the oscillation is centered.
Under this assumption of the form of x(φ) and because of a
possible output bias that propitiates this type of oscillation
the Dual Input Describing Function (DIDF) must be used.
This variant of the Describing Function has two components,
one related to the sustainability of the bias, and another
one related to the dynamic part of the signal, which can be
respectively calculated with the following expressions:

NB =
1

2πB

∫ 2π

0
x̄(φ)dφ, NA =

j
πA

∫ 2π

0
x̄(φ)e−jφdφ.

Developing, for example, for NA as can be seen in (11), as
shown at the top of the next page, where l = 2msup + 2minf
being msup and minf the number of levels crossed in upwards
and downwards direction respectively. Arranging terms:

NA =
j
πA

[(
1ε −

ε

2
+ εi0

) ∫ 2π

0
e−jφdφ

+ ε

l∑
k=1

∫ 2π

φk

sgn(cos(φk ))e−jφdφ

]
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NA =
j
πA

[∫ φ1

0

(
1ε −

ε

2
+ εi0

)
e−jφdφ +

∫ φ2

φ1

(
1ε −

ε

2
+ εi0 + ε sgn(cos(φ1))

)
e−jφdφ + . . .

+

φl∫
φl−1

(
1ε −

ε

2
+ εi0 + ε

l−1∑
k=1

sgn(cos(φk ))

)
e−jφdφ +

2π∫
φl

(
1ε −

ε

2
+ εi0 + ε

l∑
k=1

sgn(cos(φk ))

)
e−jφdφ

 (11)

The first integral equals 0, and for the second, it is known
that:

sgn(cos(φi)) =


+1 1 ≤ i ≤ msup
−1 msup < i ≤ 2msup + minf
+1 2msup + minf < i ≤ 2msup + 2minf

This leads to the following expression:

NA =
ε

πA

msup−1∑
k=−minf

√1−
(
1
A

(
1δ+

h
2
−B+δ(k + i0)

))2

+

√
1−

(
1
A

(
1δ −

h
2
− B+ δ(k + i0)

))2


− j
εh
πA2

[msup + minf ]

The same procedure is followed for obtaining the expres-
sion of NB:

NB

=
21ε + ε(msup − minf + 2i0 − 1)

2B

−
ε

2πB

msup−1∑
k=−minf

[
arcsin

(
1
A

(
1δ +

h
2
− B+ δ(k + i0)

))

+ arcsin
(
1
A

(
1δ −

h
2
− B+ δ(k + i0)

))]
The expressions for msup and minf can be calculated with:

msup =
⌊
A+ B−1δ − h/2− δi0

δ

⌋
+ 1,

minf = −
⌊
−A+ B−1δ + h/2− δi0

δ

⌋
− 1

and the initial level i0 with:

i0 =


⌊
B−1δ − h/2

δ

⌋
+ 1 if B ≥ 0⌊

B−1δ + h/2
δ

⌋
if B < 0.

APPENDIX B
CONDITIONS ON THE BIAS
Depending on the process and controller in the loop
there exist different situations which define the necessary
conditions to obtain a sustained bias. The disturbance and
reference signals have been considered to be step-like signals

of magnitude p(∞) and r(∞) respectively, resulting in
the oscillation conditions to be a function of the process
and controller involved. Then, the different combinations
between these elements and their respective oscillation
condition are presented in Table 2.
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