
Efficient algorithms for computing a rank-revealing UTV factorization

on parallel computing architectures

N. Heavner∗ F. D. Igual† G. Quintana-Ort́ı‡ P.G. Martinsson§

Abstract

The randomized singular value decomposition (RSVD) is by now a well established technique
for efficiently computing an approximate singular value decomposition of a matrix. Building on
the ideas that underpin the RSVD, the recently proposed algorithm “randUTV” computes a full
factorization of a given matrix that provides low-rank approximations with near-optimal error.
Because the bulk of randUTV is cast in terms of communication-efficient operations like matrix-
matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing
factorization methods like column pivoted QR in most high performance computational settings.
In this article, optimized randUTV implementations are presented for both shared memory and
distributed memory computing environments. For shared memory, randUTV is redesigned in terms
of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from
data synchronization points to achieve acceleration over the standard blocked algorithm, based on a
purely fork-join approach. The distributed memory implementation is based on the ScaLAPACK
library. The performances of our new codes compare favorably with competing factorizations
available on both shared memory and distributed memory architectures.

1 Introduction.

1.1 Overview.

Computational linear algebra faces significant challenges as high performance computing moves further
away from the serial into the parallel. Classical algorithms were designed to minimize the number of
floating point operations, and do not always lead to optimal performance on modern communication-
bound architectures. The obstacle is particularly apparent in the area of rank-revealing matrix factor-
izations. Traditional techniques based on column pivoted QR factorizations or Krylov methods tend
to be challenging to parallelize well, as they are most naturally viewed as a sequence of matrix-vector
operations.

In this paper, we describe techniques for efficiently implementing a randomized algorithm for
computing a so-called rank-revealing UTV decomposition [21]. Given an input matrix A of size m×n,
the objective is to compute a factorization

A = U T V ∗,
m× n m×m m× n n× n (1)

where the middle factor T is upper triangular (or upper trapezoidal in the case m < n) and the left
and right factors U, V are orthogonal. The factorization is rank-revealing in the sense that

‖A− U(:, 1 : k)T (1 : k, :)V ∗‖ ≈ inf{‖A−B‖ : B has rank k}. (2)

∗Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB, Boulder, CO 80309-0526, USA.
e-mail: nathanheavner@hotmail.com

†Depto. de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040–Madrid, Spain.
e-mail: figual@ucm.es

‡Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain. e-mail:
gquintan@uji.es

§Department of Mathematics, University of Texas at Austin, Stop C1200, Austin, TX 78712-1202, USA. e-mail:
pgm@ices.utexas.edu

1

ar
X

iv
:2

10
4.

05
78

2v
1

 [
cs

.M
S]

 1
2

A
pr

 2
02

1

In a factorization resulting from randUTV, the middle matrix T often has elements above the diag-
onal that are very small in modulus, which means that the diagonal entries of T become excellent
approximations to the singular values of A. A factorization of this type is useful for solving tasks such
as low-rank approximation, for determined basis to approximations to the fundamental subspaces of
A, for solving ill-conditioned or over/under-determined linear systems in a least-square sense, and for
estimating the singular values of A.

The randomized UTV algorithm randUTV that we implement has characteristics that in many
environments make it preferable to classical rank-revealing factorizations like column pivoted QR
(CPQR) and the singular value decomposition (SVD):

• It consistently produces matrix factors which yield low-rank approximations with accuracy com-
parable to the SVD. The particular use of randomization in the algorithm is essentially risk free.
The reliability of the method is supported by theoretical analysis, as well as extensive numerical
experiments.

• It casts most of its operations in terms of matrix-matrix multiplications, which are highly ef-
ficient in parallel computing environments. It was demonstrated in [21] that a straightforward
blocked implementation of randUTV executes faster than even highly optimized implementations
of CPQR in symmetric multiprocessing (SMP) systems. In this manuscript, we present an im-
plementation that improves on the performances in [21] for SMP and obtain similar findings for
distributed memory architectures.

• It processes the input matrix in sets of multiple columns, so it can be stopped part way through
the factorization process if it is found that a requested tolerance has been met. If k columns end
up having been computed, only O(mnk) flops will have been expended.

In this manuscript, we present two efficient implementations for computing the randUTV factoriza-
tion: the first one for shared-memory machines, and the second one for distributed-memory machines.
Regarding shared-memory architectures, the implementation presented in our paper [21] proposed a
blocked algorithm in which parallelism was extracted on a per-task basis, relying on parallel BLAS
implementations, and hence following a fork-join parallel execution model. Here, we propose a novel
algorithm-by-blocks [28], in which sequential tasks are dynamically added to a Directed Acyclic Graph
(DAG) and executed by means of a runtime task scheduler (libflame’s SuperMatrix [6]). This ap-
proach enhances performance by mitigating the effects of the inherent synchronization points in fork-
join models, and has shown its potential in other linear algebra implementations [7]. In addition,
given the recent improvements in terms of performance of modern SVD implementations (e.g. in Intel
MKL), we show how runtime-based implementations of randUTV are still on par with them in terms
of performance. Regarding our second proposal, it is the first time a distributed-memory version of
randUTV is presented in the literature; performance results reveal excellent scalability results compared
with state-of-the-art distributed-memory implementations.

Specifically, the main contributions of the paper compared with the state-of-the-art are:

1. We propose a novel algorithm-by-blocks for computing the randUTV factorization that maximizes
performance at no programmability cost.

2. We have integrated our solution with an existing task-based software infrastructure (libflame
SuperMatrix), hence providing an out-of-the-box implementation based on tasks for randUTV.

3. On shared-memory architectures, we provide a detailed study of the optimal block sizes compared
with a parallel-BLAS-based solution, and report qualitative and quantitative differences between
them that can be of interest for the community. Similarly, we have carried out a detailed
performance and scalability study on two highly-parallel shared-memory machines.

4. Performance results reveal the benefits of the algorithm-by-blocks compared with the blocked
algorithm on our target testbed, yielding performance improvements between 1.73× and 2.54×
for the largest tested matrices. Accelerations compared with proprietary MKL SVD implemen-
tations also reveal substantial performance gains, with improvements up to 3.65× for selected
cases, and in general in all cases that involve relatively large matrices (n > 4000).

2

5. On distributed-memory architectures, the comparison in terms of execution time with ScaLA-
PACK SVD and CPQR and PLiC CPQR reveal consistent performance gains ranging from 2.8×
to 6.6×, and an excellent scalability on the tested platforms.

6. On distributed-memory architectures, we provide a detailed performance study regarding block
sizes, grid sizes, threads per process, etc. on several number of nodes.

The paper is structured as follows: We first discuss the notation that will be used throughout the
paper in Section 2. In Section 3, we familiarize the reader with the randUTV algorithm that was recently
described in [21]. Sections 4 and 5 describe the shared and distributed memory implementations that
form the main contribution of this manuscript. In Section 6, we present numerical results that compare
our implementations to highly optimized implementations of competing factorizations. Section 7
summarizes the key findings and outlines some possibilities for further improvements and extensions.

2 Preliminaries.

We use the notation A ∈ Rm×n to specify that A is an m× n matrix with real entries. An orthogonal
matrix is a square matrix whose column vectors each have unit norm and are pairwise orthogonal.
σi(A) represents the i-th singular value of A, and inf(A) = min

i
{σi(A)}. The default norm ‖ · ‖ is

the spectral norm. We also use the standard matrix indexing notation A(c : d, e : f) to denote the
submatrix of A consisting of the entries in the c-th through d-th rows of the e-th through f -th columns.

2.1 The Singular Value Decomposition (SVD)

Let A ∈ Rm×n and p = min(m,n). It is well known [15, 34, 33] that any matrix A admits a singular
value decomposition (SVD) of the form

A = U Σ V ∗,
m× n m×m m× n n× n

where U and V are orthogonal and Σ is diagonal. We may also speak of the economic SVD of A,
given by

A = U Σ V ∗,
m× n m× p p× p p× n

in which case U and V are not necessarily orthogonal (because they are not square), but their columns
remain orthonormal. The diagonal elements of Σ are the singular values {σi}pi=1 of A. These are
ordered so that σ1 ≥ σ2 ≥ . . . ≥ σp−1 ≥ σp ≥ 0. The columns ui and vi of U and V are called the left
and right singular vectors, respectively, of A.

A key fact about the SVD is that it provides theoretically optimal rank-k approximations to A.
Specifically, the Eckart-Young-Mirsky Theorem [13, 25] states that given the SVD of a matrix A as
described above and a fixed 1 ≤ k ≤ p, we have that

‖A− U(:, 1 : k)Σ(1 : k, 1 : k)(V (:, 1 : k))∗‖ = inf{‖A−B‖ : B has rank k}.

A corollary of this result is that the subspaces spanned by the leading k left and right singular vectors
of A provide the optimal rank-k approximations to the column and row spaces, respectively, of A. For
instance, if P is the orthogonal projection onto the subspace spanned by the left singular vectors of
A, then PA = U(:, 1 : k)Σ(1 : k, 1 : k)(V (:, 1 : k))∗, so ‖A− PA‖ = inf{‖A−B‖ : B has rank k}.

2.2 The QR decomposition

Given a matrix A ∈ Rm×n, let p = min(m,n). A QR decomposition of A is given by

A = Q R,
m× n m×m m× n

3

where Q is orthogonal and R is upper triangular. If m > n, then any QR can be reduced to the
“economic” QR

A = Q R.
m× n m× n n× n

The standard algorithm for computing a QR factorization relies on Householder reflectors. We
refer to this algorithm as HQR in this article. A full discussion of the HQR algorithm can be found in
[15, 34, 33]; for our purposes, it is only necessary to note that the outputs of HQR are the following:
an upper triangular matrix R of the QR factorization, and a unit lower triangular matrix V ∈ Rm×p

and a vector v ∈ Rp that can be used to build or to apply Q (see Section 2.3). 1 In this article, we
make critical use of the fact that for m > n, the leading p columns of Q form an orthonormal basis
for the column space of A.

2.3 Compact WY representation of collections of Householder reflectors.

Consider a matrix A ∈ Rn×n, and let Hi ∈ Rn×n, i = 1, . . . , b be Householder transformations. As
a Householder transformation has the following structure: Hi = I − τiviv∗i , applying it to a matrix
A requires a matrix-vector product and a rank-1 update. If all Hi are applied one after another,
the computation requires O(bn2) flops in overall because of the special structure of the Householder
transformations. Both operations are matrix-vector based, and therefore they do not render high
performances on modern architectures.

If several Householder transformations must be applied, the product H = HbHb−1 · · ·H2H1 may
be expressed in the form

H = I −WTW ∗,

where W ∈ Rn×b is lower trapezoidal and T ∈ Rb×b is upper triangular. This formation of the product
of Householder matrices is called the compact WY representation [30]. If the Householder transfor-
mations used to form each Hi are known, matrices W and T of the compact WY are inexpensive to
compute. The above expression can be used to build the product HA:

HA = A−WTW ∗A.

In this case, the cost is about the same, but only matrix-matrix operations are employed. Since on
modern architectures matrix-matrix operations are usually much more efficient that matrix-vector
operations, this approach will render higher performances. Recall that one flop (floating-point opera-
tion) in a matrix-matrix operation can be much faster (several times) than a flop in a matrix-vector
operation.

3 The UTV factorization.

In this section, we discuss the rank-revealing UTV matrix factorization, establishing its usefulness
in computational linear algebra and reviewing efficient algorithms for its computation. In Section
3.1, we review the classical UTV matrix decomposition, summarizing its benefits over other standard
decompositions like column-pivoted QR and the SVD. In Section 3.2, we summarize recent work [21]
that proposes a randomized blocked algorithm for computing this factorization.

3.1 The classical UTV factorization.

Let A ∈ Rm×n and set p = min(m,n). A UTV decomposition of A is any factorization of the form

A = U T V ∗,
m× n m×m m× n n× n (3)

1We should say that V holds the “Householder vectors”.

4

where T is triangular and U and V are both orthogonal. In this paper, we take T to be upper
triangular, which is typically the more convenient choice when m ≥ n. It is often desirable to compute
a rank-revealing UTV (RRUTV) decomposition. For any 1 ≤ k ≤ p, consider the partitioning of T

T →
(
T11 T12
T21 T22

)
, (4)

where T11 is k × k. We say a UTV factorization is rank-revealing if

1. inf(T11) ≈ σk(A),

2. ‖T12‖ ≈ σk+1(A).

The flexibility of the factors in a UTV decomposition renders certain advantages over other canon-
ical forms like CPQR and SVD (note that each of these are specific examples of UTV factorizations).
Since the right factor in CPQR is restricted to a permutation matrix, UTV has more freedom to
provide better low-rank and subspace approximations. Also, since UTV does not have the SVD’s
restriction of diagonality on the middle factor, the UTV is less expensive to compute and has more
efficient methods for updating and downdating (see, e.g. [31, 32, 2, 14, 26]).

3.2 The randUTV algorithm.

In [21], a new algorithm called randUTV was proposed for computing an RRUTV factorization. randUTV
is designed to parallelize well, enhancing the RRUTVs viability as a competitor to both CPQR and
the SVD for a wide class of problem types. It yields low-rank approximations comparable to the SVD
at computational speeds that match, and in many cases outperform both CPQR and SVD. Unlike
classical methods for building SVDs and RRUTVs, randUTV processes the input matrix by blocks of
b contiguous columns. randUTV shares the advantage of CPQR that the factorization is computed
incrementally, and may be stopped early to incur an overall cost of O(mnk), where k is the rank of
the computed factorization.

The driving idea behind the structure of the randUTV algorithm is to build the middle factor T
with a right-looking approach, that is, in each iteration multiple columns of T (a column block) are
obtained simultaneously and only the right part of T is accessed. To illustrate, consider an input
matrix A ∈ Rm×n, and let p = min(m,n). A block size parameter b with 1 ≤ b ≤ p must be chosen
before randUTV begins. For simplicity, assume b divides p evenly. The algorithm begins by initializing
T (0) := A. Then, the bulk of the work is done in a loop requiring p

b steps. In the i-th step, a new

matrix T (i+1) is computed with
T (i+1) := (U (i))∗T (i)V (i),

for some orthogonal matrices U (i) and V (i). U (i) and V (i) are chosen such that:

• the leading ib columns of T (i+1) are upper triangular with b × b diagonal blocks on the main
diagonal.

• using the partitioning in Equation 4 to define T
(i)
11 and T

(i)
22 , we have inf(T

(i)
11) ≈ σk(A) and

‖T (i)
22 ‖ ≈ σk+1(A) for 1 ≤ k ≤ ib.

• T
(i)
11 (k, k) ≈ σk(A) for 1 ≤ k ≤ ib.

An example of the sparsity patterns for each T (i) is shown in Figure 1.
Once T (i) is upper triangular, U and V can then be built with

V := V (0)V (1) · · ·V (p/b−1)

and
U := U (0)U (1) · · ·U (p/b−1).

In practice, V (i) and U (i) are constructed in two separate stages and applied to T (i) at different

points in the algorithm. We will henceforth refer to these matrices as V
(i)
α , U

(i)
α and V

(i)
β , U

(i)
β for the

5

after 0 steps: after 1 step: after 2 steps:

T (0) := A T (1) := (U (0))∗T (0)V (0) T (2) := (U (1))∗T (1)V (1)

Figure 1: An illustration of the sparsity pattern followed by the first three T (i) for randUTV if n =
12, b = 3. randUTV continues until the entirety of T (i) is upper triangular.

first and second stages, respectively. Also, just one T matrix is stored, whose contents are overwritten
with the new T (i+1) at each step. Similarly, in case the matrices U and V are required to be formed,
only one matrix U and one matrix V would be stored. The outline for randUTV is therefore the
following:

1. Initialize T := A, V := I, U := I.

2. for i = 0, 1, . . . , b/p− 1:

i. Build V
(i)
α .

ii. Update T and V : T ← TV
(i)
α , V ← V V

(i)
α .

iii. Build U
(i)
α .

iv. Update T and U : T ← (U
(i)
α)∗T, U ← UU

(i)
α .

v. Build V
(i)
β and U

(i)
β simultaneously.

vi. Update T , V , and U : T ← (U
(i)
β)∗TV

(i)
β , V ← V V

(i)
β , U ← UU

(i)
β .

A matlab code for an easily readable (but inefficient) implementation of randUTV is given in Figure
2.

3.2.1 Building V
(i)
α .

V
(i)
α is constructed to maximize the rank-revealing properties of the final factorization. Specifically,

consider the partitioning at step i of matrices T and V
(i)
α

T →
(
T11 T12
T21 T22

)
, V (i)

α →
(
I 0

0 (V
(i)
α)22

)
,

where the top left block of each partition is ib× ib. Then V
(i)
α is constructed such that the leading b

columns of (V
(i)
α)22 form an orthonormal approximate basis for the leading b right singular vectors of

T22. An efficient method for such a construction has been developed recently (see, e.g. [29, 18, 24, 22,

23]) using ideas in random matrix theory. V
(i)
α is built as follows:

1. Draw a thin Gaussian random matrix G(i) ∈ R(m−ib)×b.

2. Compute Y (i) := (T ∗
22T22)

q (T22)
∗G(i) for some small integer q.

3. Perform an unpivoted QR factorization on Y (i) to obtain an orthogonal Q(i) and upper triangular
R(i) such that Y (i) = Q(i)R(i).

4. Set (V
(i)
α)22 := Q(i).

6

The parameter q, often called the “power iteration” parameter, determines the accuracy of the approx-

imate basis found in (V
(i)
α)22. Thus, raising q improves the rank-revealing properties of the resulting

factorization but also increases the computational cost. For more details, see, e.g. [18].

3.2.2 Building U
(i)
α .

U
(i)
α is constructed to satisfy both the rank-revealing and upper triangular requirements of the RRUTV.

First, we partition U
(i)
α

U (i)
α →

(
I 0

0 (U
(i)
α)22

)
.

To obtain (U
(i)
α)22 such that ((U

(i)
α)22)

∗T22(:, 1 : b) is upper triangular, we may compute the unpivoted
QR factorization of T22(:, 1 : b) to obtain W (i), S(i) such that T22(:, 1 : b) = W (i)S(i). Next, observe

that when the building of U
(i)
α occurs, the range of the leading b columns of T22 is approximately the

same as that of the leading b left singular vectors of T22. Therefore, the W (i) from the unpivoted QR
factorization also forms an orthonormal approximate basis for the leading b left singular vectors of
T22, so W (i) is an approximately optimal choice of matrix from a rank-revealing perspective. Thus we

let (U
(i)
α)22 := W (i).

3.2.3 Building V
(i)
β and U

(i)
β .

V
(i)
β and U

(i)
β introduce more sparsity into T at low computational cost, pushing it closer to diagonality

and thus decreasing |T (k, k) − σk(A)| for k = 1, . . . , (i + 1)b. They are computed simultaneously by

calculating the SVD of T22(1 : b, 1 : b) to obtain U
(i)
SV D, V

(i)
SV D, D

(i)
SV D such that T22(1 : b, 1 : b) =

U
(i)
SV DD

(i)
SV D(V

(i)
SV D)∗. Then we set

V
(i)
β :=

 I 0 0

0 V
(i)
SV D 0

0 0 I

 , U
(i)
β :=

 I 0 0

0 U
(i)
SV D 0

0 0 I

 .

Following the update step T → (U
(i)
β)∗TV

(i)
β , T22(1 : b, 1 : b) is diagonal.

4 Efficient shared memory randUTV implementation.

Since the shared memory multicore computing architecture is ubiquitous in modern computing, it
is therefore a prime candidate for an efficiently designed implementation of the randUTV algorithm
presented in Section 3.2. Martinsson et al. [21] provided an efficient blocked implementation of the
randUTV factorization that was faster than competing rank-revealing factorizations, such as SVD
and CPQR.

Blocked implementations for solving linear algebra problems are usually efficient since they are
based on matrix-matrix operations. The ratio of flops to memory accesses in vector-vector operations
and matrix-vector operations is usually very low: O(1) (O(n) flops to O(n) memory accesses, and
O(n2) flops to O(n2) memory accesses, respectively). Performances are low on this type of operations
since the memory becomes a significant bottleneck with a so low ratio. In contrast, the ratio of flops
to memory accesses in matrix-matrix operations is much higher: O(n) (O(n3) flops to O(n2) memory
accesses). This increased ratio provides much higher performances on modern computers since they
require many flops per each memory access.

As usual in many linear algebra codes, this blocked implementation of randUTV kept all the
parallelism inside the BLAS library. However, the performances of this type of implementations based
on a parallel BLAS are not so efficient as the number of cores increases in modern computers [28].

7

function [U,T,V] = randUTV(A,b,q)

T = A;

U = eye(size(A,1));

V = eye(size(A,2));

for i = 1:ceil(size(A,2)/b)

I1 = 1:(b*(i-1));

I2 = (b*(i-1)+1):size(A,1);

J2 = (b*(i-1)+1):size(A,2);

if (length(J2) > b)

[UU,TT,VV] = stepUTV(T(I2,J2),b,q);

else

[UU,TT,VV] = svd(T(I2,J2));

end

U(:,I2) = U(:,I2)*UU;

V(:,J2) = V(:,J2)*VV;

T(I2,J2) = TT;

T(I1,J2) = T(I1,J2)*VV;

end

return

function [U,T,V] = stepUTV(A,b,q)

G = randn(size(A,1),b);

Y = A’*G;

for i = 1:q

Y = A’*(A*Y);

end

[V,~] = qr(Y);

[U,D,W] = svd(A*V(:,1:b));

T = [D,U’*A*...

V(:,(b+1):end)];

V(:,1:b) = V(:,1:b)*W;

return

Figure 2: Matlab code for the algorithm randUTV that given an m × n matrix A computes its UTV
factorization A = UTV ∗. The input parameters b and q reflect the block size and the number of steps
of power iteration, respectively. This code is simplistic in that products of Householder reflectors are
stored simply as dense matrices, making the overall complexity O(n4). (Adapted from Figure 3 of
[21].)

In Section 4.1, we discuss a scheme called algorithms-by-blocks for designing highly efficient algo-
rithms on architectures with multiple/many cores. Section 4.2 explores the application of algorithms-
by-blocks to randUTV. Finally, Sections 4.3 and 4.4 familiarize the reader with software used to imple-
ment algorithms-by-blocks and a runtime system to schedule the various matrix operations, respec-
tively.

4.1 Algorithms-by-blocks: an overview.

randUTV is efficient in parallel computing environments mainly because it can be blocked easily. That
is, it drives multiple columns of the input matrix A to upper triangular form in each iteration of its main
loop. The design allows most of the operations to be cast in terms of the Level 3 BLAS (matrix-matrix
operations), and more specifically in xgemm operations (matrix-matrix products). As vendor-provided
and open-source multithreaded implementations of the Level 3 BLAS are highly efficient and close
to the peak speed, randUTV renders high performances. Thus, a blocked implementation of randUTV

relying largely on standard calls to parallel LAPACK and parallel BLAS was found to be faster than
the highly optimized MKL CPQR implementation for a shared memory system, despite randUTV

having a much higher flop count than the CPQR algorithm [21].
However, the benefits of pushing all parallelism into multithreaded implementations of the BLAS

library are limited. Most high-performance blocked algorithms for computing factorizations (such as
Cholesky, QR, LU, etc.) involve at least one task in each iteration that works on very few data,
and therefore its parallelization does not render high performances. These tasks usually involve the
processing of blocks with at least one small dimension b, where b is typically chosen to be 32 or 64,
usually much smaller than the matrix dimensions. For instance, in the blocked Cholesky factorization
this performance-limited task is the computation of the Cholesky factorization of the diagonal block,
whereas in the blocked QR and LU factorizations this performance-limited part is the computation of
the factorization of the current column block. Thus, since these tasks form a synchronization point,
all but one core are left idle during these computations. For only four or five total cores, time lost is
minimal. As the number of available cores increases, though, a significant waste in efficiency builds
up. The randUTV factorization is also affected by this problem, since each iteration contains three

8

tasks of this type: the QR factorization of matrix Y , the QR factorization of the current column block
of T , and the SVD of the diagonal block of T .

We are therefore led to seek a technique other than blocking to obtain higher performances,
although we will not abandon the strategy of casting most operations in terms of the Level 3 BLAS. The
key lies in changing the method with which we aggregate multiple lower level BLAS flops into a single
Level 3 BLAS operation. Blocked algorithms do this by raising the granularity of the algorithm’s main
loop. In randUTV, for instance, multiple columns of the input are typically processed in one iteration
of the main loop. Processing one column at a time would require matrix-vector operations (Level 2
BLAS) in each iteration, but processing multiple columns at a time aggregates these into much more
efficient matrix-matrix operations (Level 3 BLAS).

The alternative approach, called algorithms-by-blocks, is to instead raise the granularity of the
data. With this method, the algorithm may be designed as if only scalar elements of the input are
dealt with at one time. Then, the algorithm is transformed into Level 3 BLAS by conceiving of each
scalar as a submatrix or block of size b×b. Each scalar operation turns into a matrix-matrix operation,
and operations in the algorithm will, at the finest level of detail, operate on usually a few (between one
and four, but usually two or three) b× b blocks. Each operation on a few blocks is called a task. This
arrangement allows more flexibility than blocking in ordering the operations, eliminating the bottleneck
caused by the synchronization points in the blocking method. The performance benefits obtained by
the algorithm-by-blocks approach with respect to the approach based on blocked algorithms for linear
algebra problems on shared-memory architectures are usually significant [28, 6].

An algorithm-by-blocks for computing the randUTV requires that the QR factorization performed
inside it works also on b × b blocks. In order to design this internal QR factorization process such
that each unit of work requires only b× b submatrices, the algoritm-by-blocks for computing the QR
factorization must employ an algorithm based on updating an existing QR factorization. We shall refer
to this algorithm as QR AB. We consider only the part of QR AB that makes the first column of blocks
upper triangular, since that is all that is required for randUTV AB. This work can be conceptualized
as occurring in an iteration with a fixed number of steps or tasks.

Figure 3 shows this process for a 9 × 9 matrix with block size 3. In this figure, the continuous
lines show the 3 × 3 blocks involved in the current task, ‘•’ represents a non-modified element by
the current task, ‘?’ represents a modified element by the current task, and ‘·’ represents a nullified
element by the current task. The nullified elements are shown because, as usual, they store information
about the Householder transformations that will be later used to apply these transformations. The
first task, called Compute QR, computes the QR factorization of the leading dense block A00. The
second task, called Apply left Qt of dense QR, applies the Householder transformations obtained in
the previous task (and stored in A00) to block A01. The third task performs the same operation onto
A02. The fourth task is the annhiliation of block A10, which is called Compute td QR (where ‘td‘
means triangular-dense). The fifth task, called Apply left Qt of td QR, apply the transformations of
the previous task to blocks A01 and A11. The sixth task performs the same operation onto A02 and
A12. Analogously, the seventh, eighth, and ninth tasks perform the same as tasks fourth, fifth, and
sixth to the first and third row of blocks. By taking advantage of the zeros present in the factorizations
for each iteration, a well-implemented QR AB cost essentially no more flops than the traditional blocked
unpivoted QR. The algorithm is described in greater detail in [28, 27, 6].

4.2 Algorithms-by-blocks for randUTV

An algorithm-by-blocks for randUTV, which we will call randUTV AB, performs mostly the same op-
erations as the original. The key difference is that the operations’ new representations allow greater
flexibility in the order of completion. We will discuss in some detail how this plays out in the first step
of the algorithm. First, choose a block size b (in practice, b = 128 or 256 works well). For simplicity,
assume b divides both m and n evenly. Recall that at the beginning of randUTV, T is initialized with

9

? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(1) After Compute QR(A00)

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(2) After Apply left Qt of Dense QR(
A00, A01)

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(3) After Apply left Qt of Dense QR(
A00, A02)

? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(4) After Compute td QR(A00, A10)

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(5) After Apply left Qt of td QR(
A00, A10, A01, A11)

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(6) After Apply left Qt of td QR(
A00, A10, A02, A12)

? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •

(7) After Compute td QR(A00, A20)

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •

(8) After Apply left Qt of td QR(
A00, A20, A01, A21)

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?

(9) After Apply left Qt of td QR(
A00, A20, A02, A22)

Figure 3: An illustration of the first tasks peformed by an algorithm-by-blocks for computing the QR
factorization. The ‘•’ symbol represents a non-modified element by the current task, ‘?’ represents a
modified element by the current task, and ‘·’ represents a nullified element by the current task (they
are shown because they store information about the Householder transformations that will be later
used to apply them). The continuous lines surround the blocks involved in the current task.

10

T := A. Consider a partitioning of the matrix T

T →

T11 T12 · · · T1N
T21 T22 · · · T2N

...
...

. . .
...

TM1 TM2 · · · TMN

 ,

where each submatrix or block Tij is b × b, N = n/b, and M = m/b. Note that the rest of matrices
(G, Y , U , and V) must also be accordingly partitioned. The submatrices Tij (and those of the rest
of matrices) are treated as the fundamental unit of data in the algorithm, so that each operation is
expressed only in these terms. For the first step of the algorithm, for instance:

1. Constructing V (0): The first step, Y (0) = (T ∗T)qT ∗G(0), is broken into several tasks that each
calculate the product of two blocks. In the simplified case where q = 0, we have M×N products
of two blocks. The second step, the QR factorization of Y (0), uses an algorithm based on the
idea of updating a QR factorization when more rows are added to the input matrix. Thus, the

decomposition of each Y
(0)
i is computed separately, and the resulting upper triangular factor R(0)

is updated after each step. See, e.g. [17, 27, 28] for details on this approach to QR factorization.

2. Constructing U (0): This step requires an unpivoted QR factorization of the same size as Y (0),
so same update-based algorithm used for Y (0) is used again here.

3. Computing SVD of T11: This step is the same in randUTV and randUTV AB. In both cases,
T11 is interacted with as a single unit.

4. Updating T : The rest of randUTV AB involves the updating of T , i.e. the computations T ←
TV (0) and T ← (U (0))∗T . The computations are broken down into separate stages such that
the updating of each Tij is a different task.

4.3 The FLAME abstraction for implementing algorithm-by-blocks.

A nontrivial obstacle to implementing an algorithm-by-blocks is the issue of programmability. Using
the traditional approach of calls to a LAPACK implementation for the computational steps, keeping
track of indexing quickly becomes complicated and error-prone.

The FLAME (Formal Linear Algebra Methods Environment) project [16, 19] is one solution to
this issue. FLAME is a framework for designing linear algebraic algorithms that departs from the
traditional index-based-loop methodology. Instead, the input matrix is interacted with as a collection
of submatrices, basing its loops on re-partitionings of the input.

The FLAME API [4] for the C language codifies these ideas, enabling a user of the API to code
high performance implementations of linear algebra algorithms at a high level of abstraction. Further-
more, the methodology of the FLAME framework, and its implementation in terms of the libflame

library[35] makes it a natural fit for use with an algorithm-by-blocks. Thus, the actual code for the
implementation of randUTV AB looks very similar to the written version of the algorithm given in
Figure 4.

4.4 Scheduling the operations for an algorithm-by-blocks.

The runtime system called SuperMatrix [6] is an integral part of the libflame distribution, and has
been leveraged to expose and exploit task-level parallelism in in randUTV AB. To understand how
SuperMatrix schedules and executes suboperations, consider the problem of factorizing a matrix of
2× 2 blocks

A←
(
A00 A01

A10 A11

)
,

where each block is of size b× b. We will consider the case where the power iteration parameter q = 0
for simplicity.

11

Algorithm: [U, T, V] := randUTV AB(A, q, nb)

V := eye(n(A), n(A))
U := eye(m(A),m(A))

Partition A→
(
ATL ATR
ABL ABR

)
, V →

(
VL VR

)
, U →

(
UL UR

)
where ATL is 0× 0, VL has 0 columns, UL has 0 columns

while m(ATL) < m(A) do

Determine block size b = min(nb, n(ABR))
Repartition(

ATL ATR
ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
VL VR

)
→
(
V0 V1 V2

)
,
(
UL UR

)
→
(
U0 U1 U2

)
where A11 is b× b, V1 has b rows, U1 has b rows

% Right transform V
G := generate iid stdnorm matrix(m(A)−m(A00), nb)

Y :=

((
A11 A12

A21 A22

)∗(
A11 A12

A21 A22

))q (
A11 A12

A21 A22

)∗
G

[Y, TV] := unpivoted QR(Y)(
A11 A12

A21 A22

)
:=

(
A11 A12

A21 A22

)
−
(
A11 A12

A21 A22

)
WV TVW

∗
V(

V1 V2
)

:=
(
V1 V2

)
−
(
V1 V2

)
WV TVW

∗
V

% Left transform U

[

(
A11

A21

)
, TU] := unpivoted QR

((
A11

A21

))
(
A12

A22

)
:=

(
A12

A22

)
−W ∗

UT
∗
UWU

(
A12

A22

)
(
U1 U2

)
:=
(
U1 U2

)
−
(
U1 U2

)
WUTUW

∗
U

% small SVD
[A11, USV D, VSV D] := SVD(A11)
A01 := A01VSV D
A12 := U∗

SV DA12

V1 := V1VSV D
U1 := U1USV D

Continue with(
ATL ATR
ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
VL VR

)
←
(
V0 V1 V2

)
,
(
UL UR

)
←
(
U0 U1 U2

)
endwhile

Figure 4: The randUTV algorithm adapted for algorithms-by-blocks written with the FLAME method-
ology/notation. In this algorithm, WV and WU are the unit lower trapezoidal matrices stored below

the diagonal of Y and

(
A11

A21

)
, respectively.

12

Operation Operands
In In/Out

Generate normal random G0

Generate normal random G1

Gemm tn oz: C = A∗B A00 G0 Y0

Gemm tn oz: C = A∗B A01 G0 Y1

Gemm tn oo: C = C + A∗B A10 G1 Y0

Gemm tn oo: C = C + A∗B A11 G1 Y1

Comp dense QR Y0, S0

Copy Y0 E0

Comp td QR Y0, Y1, S1

Apply right Q of dense QR E0 S0 A00

Apply right Q of dense QR E0 S0 A10

Apply right Q td QR Y1 S1 A00, A01

Apply right Q td QR Y1 S1 A10, A11

Comp dense QR A00, X0

Copy A00 D0

Comp td QR A00, A10, X1

Apply left Qt of dense QR D0 X0 A01

Apply left Qt of td QR A10 X1 A01, A11

Keep upper triang A00

Set to zero A10

Svd of block A00, P0, Q0

Gemm abta: A = B∗A P0 A01

Svd of block A11, P0, Q0

Gemm aabt: A = AB∗ Q0 A01

Figure 5: A list of the operations queued up by the runtime during the analyzer stage in the simplified
case that the block size is b = n/2. The “In” column specifies pieces of required input data. The
“In/Out” column specifies required pieces of data that will be altered upon completion of the operation.
At run time, the operations may be completed in any order that does not violate the data dependencies
encoded in the table.

Execution of the program proceeds in two phases: the analysis stage and the execution stage. In
the first stage, instead of executing the code sequentially, the runtime builds a list of tasks recording
the dependency information associated with each operation and placing it in a queue. An example of
the queue built up by the runtime for randUTV AB for the case that A ∈ Rn×n and the block size is
b = n/2 is given in Figure 5.

In the second stage, the scheduling/dispatching stage, the tasks in the queue are dynamically
scheduled and executed. Each task is executed as soon as its input data becomes available and a core
is free to complete the work. Figure 6 illustrates the execution of the first half of randUTV AB for a
matrix A ∈ Rn×n with block size b = n/2. Figure 7 shows an actual DAG that illustrate the data
dependences between tasks for the complete execution. From the code perspective, the main FLAME
formulation (see Figure 4) remains unchanged, replacing the actual calls to BLAS/LAPACK codes by
task definition –including input/output per-task data– and addition to the DAG. From that point on,
the scheduling/dispatching stage is transparent for the developer.

5 Efficient distributed memory randUTV implementation.

Distributed memory computing architectures are commonly used for solving large problems as they
extend both memory and processing power over single systems. In this section, we discuss an effi-
cient implementation of randUTV for distributed memory. In Section 5.1, we discuss the algorithmic
overview and present the software used in the implementation. Section 5.2 familiarizes the reader
with ScaLAPACK’s structure and software dependencies. In Section 5.3 we review ScaLAPACK’s
data distribution scheme, and in Section 5.4 we describe how the building blocks of randUTV operate
in the distributed memory environment.

13

Operation Operands
In In/Out

Generate normal random G0 X
Generate normal random G1 X
Gemm tn oz: C = A∗B A00 X G0 Y0 X
Gemm tn oz: C = A∗B A01 X G0 Y1 X
Gemm tn oo: C = C + A∗B A10 X G1 Y0

Gemm tn oo: C = C + A∗B A11 X G1 Y1

Comp dense QR Y0, S0 X
Copy Y0 E0 X
Comp td QR Y0, Y1, S1 X
Apply right Q of dense QR E0 S0 A00 X
Apply right Q of dense QR E0 S0 A10 X
Apply right Q td QR Y1 S1 A00, A01 X
Apply right Q td QR Y1 S1 A10, A11 X

(a) First half of the original table

Operands
In In/Out

A00 X G0 X Y0 X
A01 X G0 X Y1 X
A10 X G1 X Y0

A11 X G1 X Y1

Y0, S0 X
Y0 E0 X

Y0, Y1, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(b) After second operation

Operands
In In/Out

A10 X G1 X Y0 X
A11 X G1 X Y1 X

Y0, S0 X
Y0 E0 X

Y0, Y1, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(c) After fourth operation

Operands
In In/Out

Y0 X, S0 X
Y0 E0 X

Y0, Y1 X, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(d) After sixth operation

Operands
In In/Out

Y0 X E0 X
Y0, Y1 X, S1 X

E0 S0 X A00 X
E0 S0 X A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(e) After seventh operation

Operands
In In/Out

Y0 X, Y1 X, S1 X
E0 X S0 X A00 X
E0 X S0 X A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(f) After eighth operation

Operands
In In/Out

Y1 X S1 X A00X, A01 X
Y1 X S1 X A10X, A11 X

(g) After eleventh operation

Figure 6: An illustration of the execution order of the first half of randUTV AB for an n × n matrix
using the SuperMatrix runtime system when the block size is n/2. A check mark ‘X’ indicates the
value is available. The execution order may change depending on the number of available cores in the
system.

14

0

2

3

6

4

25

5

27

10

8

1

7

26

9

11

28

33

38

14

12

13

15

35

39

18

16

17

19
20

21

22

24

23

29
30

31

32

48

54

49

55

34

40
41

36
42

43

44

45

50

37

46

52

47

53

51

Figure 7: Complete Directed Acyclic Graph exposed to the runtime task scheduler during the dis-
patching stage in the simplified case that the block size is b = n/2.

5.1 Implementation overview.

The distributed memory implementation of randUTV uses the standard blocked algorithm of [21] rather
than the algorithm-by-blocks (as discussed in Section 4.2) since this methodology usually does not
render high performances on distributed memory machines. Like in some other factorizations (QR,
SVD, etc.), when applying randUTV to a matrix with m � n, it is best to perform an unpivoted
QR factorization first and then perform the randUTV factorization on the resulting square triangular
factor. This method is usually applied in other architectures such as shared memory.

The ScaLAPACK software library [5, 8, 10] was used in the presented implementation. This library
provides much of the functionality of LAPACK for distributed memory environments. It hides most of
the communication details from the developer with an object-based API, where each matrix’s object
information is passed to library routines. This design choice enhances the programmability of the
library, enabling codes to be written similarly to a standard LAPACK implementation. However, as
it is implemented in Fortran-77, its object orientation is not perfect and the programming effort is
larger.

5.2 Software dependencies.

ScaLAPACK (scalable LAPACK) was designed to be portable to a variety of computing distributed
memory architectures and relies on only two external libraries (since PBLAS is considered an internal
module). The first one is the sequential BLAS (Basic Linear Algebra Subroutines) [20, 12, 11],
providing specifications for the most common operations involving vectors and matrices. The second
one is the BLACS (Basic Linear Algebra Communication Subroutines), which, as the name suggests,
is a specification for common matrix and vector communication tasks [1].

The PBLAS library is a key module inside ScaLAPACK. It comprises most of BLAS routines
re-written for use in distributed memory environments. This library is written using a combination of
the sequential BLAS library and the BLACS library. Just as the BLAS library contains the primary
building blocks for LAPACK routines, the PBLAS library contains the foundation for the routines
in ScaLAPACK. The diagram in Figure 8 illustrates the dependencies of the ScaLAPACK modules.
The PBLAS library serves a dual purpose in the library. First, because the PBLAS library mirrors
the sequential BLAS in function, the top level of code in main ScaLAPACK routines look largely the
same as the corresponding LAPACK routines. Second, the PBLAS library adds a layer of flexibility
to the code regarding the mapping of operations. Traditionally, one process is assigned to each core
during execution, but with a parallel BLAS implementation, a combination of processes and threads
may be used. This adjustability gives more options when mapping processes onto cores just before
the program execution starts.

15

Figure 8: The dependencies of the modules of ScaLAPACK. A solid line means the dependence occurs
in the main routines (drivers), and a dashed line means the dependence only occurs in auxiliary
routines.

5.3 ScaLAPACK data distribution scheme.

The strategy for storing data in a distributed memory computation has a significant impact on the
communication cost and load balance during computation. All ScaLAPACK routines assume the
so-called “block-cyclic distribution” scheme [9]. Since it involves several user-defined parameters,
understanding this method is vital to building an efficient implementation.

The block-cyclic distribution scheme involves four parameters. The first two, mb and nb, define
the block size, i.e. the dimensions of the submatrices used as the fundamental unit for communication
among processes. Despite this flexibility, nearly all the main routines usually employ mb = nb for the
purpose of simplicity. The last two parameters, typically called P and Q, determine the shape of the
logical process grid.

To understand which elements of the input matrix A are stored in which process, we may visualize
the matrix as being partitioned into “tiles.” In the simple case where mBP and nbQ divide m and n,
respectively, every tile is of uniform size. Each tile is composed of P ×Q blocks, each of size mb× nb.
Finally, every process is assigned a position on the tile grid. The block in that position on every tile
is stored in the corresponding process. For example, the block in the (0, 0) spot in each tile belongs
with the first process P0, the block in the (0, 1) spot in each tile belongs to the second process P1, and
so on. An example is given in Figure 9 to demonstrate this.

5.4 Building blocks of randUTV

In this section we examine further the randUTV algorithm in order to understand which portions of
the computation are most expensive (when no orthonormal matrices are built) and how these portions
perform in the distributed memory environment. Judging by numbers of flops required, the three
portions of the computation that take the most time are the following:

1. applying V (i), stage α to A,

2. applying U (i), stage α to A,

3. building Y .

To determine the fundamental operations involved in items 1 and 2, first recall that V (i) and U (i)

are both formed from a Householder reduction on matrices with b columns to upper trapezoidal form.
As such, we may express them in the so-called compact WY form (see Section 2.3) as

V (i) = I −W (i)
V T

(i)
V (W

(i)
V)∗,

U (i) = I −W (i)
U T

(i)
U (W

(i)
U)∗,

16

Partition A into blocks; each
small square is a 4×4 submatrix

Group blocks into tiles

P0 P0

P0 P0

Assign blocks in every (0, 0)
tile position to processor P0

P0

P0 P0

P0P1

P1 P1

P1P2

P2 P2

P2

P3

P3 P3

P3P4

P4 P4

P4P5

P5 P5

P5

Assign remaining tile positions
(i, j) to remaining processors

Figure 9: A depiction of the block-cyclic data distribution method for a matrix A with m = 16, n = 24.
The parameters for this distribution are mb = 4, nb = 4, P = 2, Q = 3. Each tile is a grid of P × Q
blocks.

where T
(i)
V , T

(i)
U ∈ Rb×b are upper triangular, and W

(i)
V ∈ Rn×b and W

(i)
U ∈ Rm×b are lower trapezoidal.

Thus the computations AV (i) and (U (i))∗A each require three matrix-matrix multiplications where
one dimension of the multiplication is small (recall b� n). Note that the first computation (AV (i)) is
more expensive than the second one ((U (i))∗A) because the first one processes all the rows of A (the
right part of A), whereas the second one only processes some rows of A (the bottom right part of A).

It is now evident that items 1 and 2 use primarily xgemm and xtrmm from the BLAS. Furthermore,
item 3 is strictly a series of xgemm operations, so we see that matrix-matrix multiplications form the
dominant cost within randUTV.

xgemm for distributed memory, which in the PBLAS library is titled pxgemm, is well-suited for
efficiency in this environment. In the reference implementation of PBLAS, pxgemm may execute one
of three different algorithms for matrix multiplication:

1. pxgemmAB: The outer-product algorithm is used; matrix C remains in place.

2. pxgemmBC: The inner-product algorithm is used; matrix A remains in place.

3. pxgemmAC: The inner-product algorithm is used; matrix B remains in place.

xgemm chooses among the algorithms by estimating the communication cost for each, depending on
matrix dimensions and parameters of the storage scheme. The inherent flexibility of the matrix-matrix
multiply enables good pxgemm implementations to overlap the communication with the processing of
flops. Thus, randUTV for distributed memory obtains better speedups when more cores are added
than competing implementations of SVD and CPQR algorithms for distributed memory.

6 Performance analysis

In this section, we investigate the speed of our new implementations of the algorithm for computing
the randUTV factorization, and compare it to the speeds of highly optimized methods for computing

17

the SVD and the column pivoted QR (CPQR) factorization. In all the experiments double-precision
real matrices were processed.

To fairly compare the different implementations being assessed, the flop count or the usual flop rate
could not be employed since the computation of the SVD, the CPQR, and the randUTV factorizations
require a very different number of flops (the dominant n3-term in the asymptotic flop count is very
different). Absolute computational times are not shown either since they vary greatly because of the
large range of matrix dimensions employed in the experiments. Therefore, scaled computational times
(absolute computational times divided by n3) are employed. Hence, the lower the scaled computational
times, the better the performances are. Since all the implementations being assessed have asymptotic
complexity O(n3) when applied to an n × n matrix, these graphs better reveal the computational
efficiency. Those scaled times are multiplied by a constant (usually 1010) to make the figures in the
vertical axis more readable.

Although most of the plots show scaled computational times, a few plots show speedups. The
speedup is usually computed as the quotient of the time obtained by the serial implementation (on
one core) and the time obtained by the parallel implementation (on many cores). Thus, this concept
communicates how many times faster the parallel implementation is compared to the serial one. Hence,
the higher the speedups, the better the performances of the parallel implementation are. This measure
is usually very useful in checking the scalability of an implementation. Note that in this type of plots
every implementation compares against itself on one core.

6.1 Computational speed on shared-memory architectures

We employed the following two computers in the experiments with shared-memory architectures:

• marbore: It featured two Intel Xeonr CPUs E5-2695 v3 (2.30 GHz), with 28 cores and 128 GiB
of RAM in total. In this computer the so-called Turbo Boost mode of the two CPUs was turned
off in our experiments.

Its OS was GNU/Linux (Kernel Version 2.6.32-504.el6.x86 64). GCC compiler (version 6.3.0
20170516) was used. Intel(R) Math Kernel Library (MKL) Version 2018.0.1 Product Build
20171007 for Intel(R) 64 architecture was employed since LAPACK routines from this library
usually deliver much higher performances than LAPACK routines from the Netlib repository.

Unless explicitly stated otherwise, experiments have been run in this machine since it was not
so busy.

• mimir: It featured two Intel Xeonr CPUs Gold 6254 (3.10 GHz), with 36 cores and 791 GB of
RAM in total. The Max Turbo Frequency of the CPUs was 4.00 GHz.

Its OS was GNU/Linux (Kernel Version 5.0.0-32-generic). Intel C compiler (version 19.0.5.281
20190815) was used. Intel(R) Math Kernel Library (MKL) Version 2019.0.5 Product Build
20190808 for Intel(R) 64 architecture was employed because of the same reason as above.

When using routines of MKL’s LAPACK, optimal block sizes determined by that software were
employed. In a few experiments, in addition to MKL’s LAPACK routines, we also assessed Netlib’s
LAPACK 3.4.0 routines. In this case, the Netlib term is used. When using routines of Netlib’s
LAPACK, several block sizes were employed and best results were reported. For the purpose of a fair
comparison, these routines from Netlib were linked to the BLAS library from MKL.

All the matrices used in the experiments were randomly generated. Similar results for randUTV
were obtained on other types of matrices, since one of the main advantages of the randTUV algorithm
is that its performances do not depend on the matrix being factorized.

Unless explicitely stated otherwise, all the experiments employed the 28 cores in the computer.
The following implementations were assessed in the experiments of this subsection:

• MKL SVD: The routine called dgesvd from MKL’s LAPACK was used to compute the Singular
Value Decomposition.

18

• Netlib SVD: Same as the previous one, but the code for computing the SVD from Netlib’s
LAPACK was employed, instead of MKL’s.

• MKL SDD: The routine called dgesdd from MKL’s LAPACK was used to compute the Singular
Value Decomposition. Unlike the previous SVD, this one uses the divide-and-conquer approach.
This code is usually faster, but it requires a much larger auxiliary workspace when the orthonor-
mal matrices are built (about four additional matrices of the same dimension as the matrix being
factorized).

• Netlib SDD: Same as the previous one, but the code for computing the SVD with the divide-
and-conquer approach from Netlib’s LAPACK was employed, instead of MKL’s.

• MKL CPQR: The routine called dgeqp3 from MKL’s LAPACK was used to compute the
column-pivoting QR factorization.

• randUTV PBLAS (randUTV with parallel BLAS): This is the traditional implementation
for computing the randUTV factorization that relies on the parallel BLAS to take advantage of
all the cores in the system. The parallel BLAS library from MKL was employed with these codes
for the purpose of a fair comparison. Our implementations were coded with libflame [36, 35]
(Release 11104).

• randUTV AB (randUTV with Algorithm-by-Blocks): This is the new implementation for
computing the randUTV factorization by scheduling all the tasks to be computed in parallel,
and then executing them with serial BLAS. The serial BLAS library from MKL was employed
with these new codes for the purpose of a fair comparison. Our implementations were coded
with libflame [36, 35] (Release 11104).

• MKL QR: The routine called dgeqrf from MKL’s LAPACK was used to compute the QR
factorization. Although this routine does not reveal the rank, it was included in some experiments
as a performance reference for the others.

For every experiment, two plots are shown. The left plot shows the performances when no or-
thonormal matrices are computed. In this case, just the singular values are computed for the SVD,
just the upper triangular factor R is computed for the CPQR and the QR, and just the upper triangu-
lar factor T is computed for the randUTV. In contrast, the right plot shows the performances when
all orthonormal matrices are explicitly formed in addition to the singular values (SVD), the upper
triangular matrix R (CPQR), or the upper triangular matrix T (randUTV). In this case, matrices U
and V are computed for the SVD and the randUTV, and matrix Q is computed for the CPQR and
the QR. The right plot slightly favors CPQR and QR since only one orthonormal matrix is formed.

0 128 256 384 512 640
Block size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs block size in marbore without ON matrices
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

0 128 256 384 512 640
Block size

0.0

0.2

0.4

0.6

0.8

1.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs block size in marbore with ON matrices
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

Figure 10: Performances of randUTV implementations versus block size on matrices of dimension
14000× 14000.

19

Figure 10 shows the scaled computational times obtained by both implementations for computing
the randUTV factorization (randUTV PBLAS and randUTV AB) on several block sizes when
processing matrices of dimension 14000 × 14000. The aim of these two plots is to determine the
optimal block sizes. The other factorizations (SVD and CPQR) are not shown since in those cases we
used the optimal block sizes determined by Intel’s software. Optimal block sizes were around 128 for
randUTV PBLAS; on the other hand, optimal block sizes were around 384 for randUTV AB.

0 4000 8000 12000
Matrix dimensions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore without ON matrices

Netlib SVD
MKL SVD
Netlib SDD
MKL SDD

0 4000 8000 12000
Matrix dimensions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore with ON matrices

Netlib SVD
MKL SVD
Netlib SDD
MKL SDD

Figure 11: Performances versus matrix dimensions for SVD implementations for both Netlib and MKL
libraries.

Figure 11 compares the performances of four implementations for computing the SVD factorization:
MKL SVD (usual SVD from the MKL library), MKL SDD (divide-and-conquer SVD from the MKL
library), Netlib SVD (usual SVD from the Netlib library), and Netlib SDD (divide-and-conquer
SVD from the Netlib library). Performances are shown with respect to matrix dimensions. Block
sizes similar to those in the previous figure were used for Netlib’s routines and the best results were
reported. When no orthonormal matrices are computed, both the traditional SVD and the divide-
and-conquer SVD render similar performances for this matrix type. In this case, MKL routines are up
to 14.1 times as fast as Netlib’s routines. When orthonormal matrices are computed, the traditional
SVD is much slower than the divide-and-conquer SVD. In this case, the MKL SVD routine is up to
24.4 times as fast as the Netlib SVD, and the MKL SDD routine is up to 3.4 times as fast as the
Netlib SDD. As can be seen, MKL’s codes for computing the SVD are up to more than one order
of magnitude faster than Netlib’s codes, thus showing the great performances achieved by Intel. This
is a remarkable achievement for so complex codes. Outperforming these highly optimized codes can
be really a difficult task.

0 4000 8000 12000
Matrix dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore without ON matrices
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

0 4000 8000 12000
Matrix dimensions

0.0

0.2

0.4

0.6

0.8

1.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore with ON matrices
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

Figure 12: Performances versus matrix dimensions for randUTV implementations.

Figure 12 compares the performances of both implementations of randUTV (randUTV PBLAS

20

and randUTV AB) as a function of matrix dimensions. In both implementations, several block sizes
were tested (see above), and best results were reported. When no orthonormal matrices are built,
randUTV AB is between 1.80 (q = 0) and 2.54 (q = 2) times as fast as randUTV PBLAS for the
largest matrix size. When orthonormal matrices are built, randUTV AB is between 1.73 (q = 0)
and 1.80 (q = 2) times as fast as randUTV PBLAS for the largest matrix size.

0 4000 8000 12000
Matrix dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore without ON matrices
MKL SVD
MKL SDD
MKL CPQR
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

0 4000 8000 12000
Matrix dimensions

0.0

0.5

1.0

1.5

2.0

2.5

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in marbore with ON matrices
MKL SVD
MKL SDD
MKL CPQR
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

0 4000 8000 12000 16000
Matrix dimensions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in mimir without ON matrices
MKL SVD
MKL SDD
MKL CPQR
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

0 4000 8000 12000 16000
Matrix dimensions

0.0

0.2

0.4

0.6

0.8

1.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Perf. vs mat. dims. in mimir with ON matrices
MKL SVD
MKL SDD
MKL CPQR
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2

Figure 13: Performances versus matrix dimensions for the best implementations. The top row shows
results for marbore with 28 cores; the bottom row shows results for mimir with 36 cores.

Figure 13 shows the performances of the best implementations as a function of the matrix dimen-
sions. The top row shows results for marbore with 28 cores, whereas the bottom row shows results
for mimir with 36 cores. When no orthonormal matrices are built on marbore, randUTV AB is
between 1.54 (q = 0) and 0.97 (q = 2) times as fast as MKL SVD for the largest matrix size. When
no orthonormal matrices are built on mimir, randUTV AB is between 1.77 (q = 0) and 1.15 (q = 2)
times as fast as MKL SVD for the largest matrix size. When orthonormal matrices are built on
marbore, randUTV AB is between 3.65 (q = 0) and 2.79 (q = 2) times as fast as MKL SVD for the
largest matrix size. When orthonormal matrices are built on mimir, randUTV AB is between 5.65
(q = 0) and 4.39 (q = 2) times as fast as MKL SVD for the largest matrix size. The previous compar-
isons have been done against MKL SVD since MKL SDD could not be executed on 20, 000× 20, 000
because of its larger memory requirements for workspace. Recall that this driver requires a much
larger auxiliary workspace than randUTV AB (about four times as large as the original matrix).
The speeds of randUTV AB, MKL SVD and MKL SDD are so remarkable that they are similar
or even much faster than MKL CPQR, a factorization that requires much fewer flops.

Figure 14 shows the speedups obtained by the best implementations on both machines. The top
row shows results of marbore on matrices of dimension 14000× 14000, whereas the bottom row shows
results of mimir on matrices of dimension 18000× 18000 (the largest dimension in which all the best
implementations could be run). Recall that in this plot every implementation compares against itself
on one core.

We see that the scalability of randUTV AB is always similar or even better than the scalability

21

1 7 14 28
Cores

0

5

10

15

20

25

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores in marbore without ON matrices
MKL SVD
MKL SDD
MKL CPQR
MKL QR
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2
Perfect Speedup

1 7 14 28
Cores

0

5

10

15

20

25

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores in marbore with ON matrices
MKL SVD
MKL SDD
MKL CPQR
MKL QR
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2
Perfect Speedup

1 9 18 36
Cores

0

5

10

15

20

25

30

35

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores in mimir without ON matrices
MKL SVD
MKL SDD
MKL CPQR
MKL QR
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2
Perfect Speedup

1 9 18 36
Cores

0

5

10

15

20

25

30

35

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores in mimir with ON matrices
MKL SVD
MKL SDD
MKL CPQR
MKL QR
randUTV PBLAS q=0
randUTV PBLAS q=1
randUTV PBLAS q=2
randUTV AB q=0
randUTV AB q=1
randUTV AB q=2
Perfect Speedup

Figure 14: Speedups versus number of cores for the best implementations. The top row shows results
for marbore with 28 cores and m = n = 14000; the bottom row shows results for mimir with 36 cores
and m = n = 18000.

of the highly efficient unpivoted QR factorization, and it does not depend on whether the orthonormal
matrices are built. Note that it always grows whenever more cores are employed. In contrast, the
SVD factorizations perform very well in one case (even with a slight superspeedup): when orthonormal
matrices are built using 18 cores or fewer in mimir. In all the other cases, the speedups are not so good,
and the scalability even drops (the speedups do not grow much) when going from half the number of
cores to the full number of cores.

As can be seen, randUTV AB is the only factorization that achieves an efficiency similar or higher
than 50 % (the speedups are higher than half the number of cores) when employing the maximum
number of cores in both architectures, whereas the efficiency of all the other factorizations are usually
always lower. To conclude this analysis, the scalability of randUTV AB is similar (or even better)
to that of the QR factorization, and much higher than the rest of the implementations.

Figure 15 reports an actual execution trace for an experiment on marbore for n = 1920 and b = 384
running on 28 cores, for a factorization that does not compute orthonormal matrices (left part of the
trace) and computing orthonormal matrices (right part of the trace). Each row in the trace correspond
to a worker thread; colors match those depicted in Table 5.

In conclusion, randUTV AB is the clear winner over competing factorization methods in terms
of raw speed when orthonormal matrices are required and the matrix is not too small (n & 4000).
In terms of scalability, randUTV AB outperforms the competition as well. Also, the algorithm-by-
blocks implementation gives noticeable speedup over the blocked PBLAS version. That randUTV
AB can compete with MKL SVD at all in terms of speed is remarkable, given the large effort usually
invested by Intel on its sofware. This is evidenced by the fact that the MKL CPQR is left in the dust
by both MKL SVD and randUTV AB, each of which costs far more flops than MKL CPQR. The
scalability results of randUTV AB and its excellent timings evince its potential as a high performance
tool in shared memory computing.

22

Figure 15: Execution traces for the algorithm-by-block of randUTV with n = 1920 and b = 384 in
marbore (28 threads), without and with computation of orthonormal matrices (left and right parts of
the trace, respectively).

6.2 Computational speed on distributed-memory architectures

The experiments on distributed-memory architectures reported in this subsection were performed on a
cluster of HP computers. Each node of the cluster contained two Intel Xeonr CPU X5560 processors
at 2.8 GHz, with 12 cores and 48 GiB of RAM in total. The nodes were connected with an Infiniband
4X QDR network. This network is capable of supporting 40 Gb/s signaling rate, with a peak data
rate of 32 Gb/s in each direction.

Its OS was GNU/Linux (Version 3.10.0-514.21.1.el7.x86 64). Intel’s ifort compiler (Version 12.0.0
20101006) was employed. LAPACK and ScaLAPACK routines were taken from the Intel(R) Math
Kernel Library (MKL) Version 10.3.0 Product Build 20100927 for Intel(R) 64 architecture, since this
library usually delivers much higher performances than LAPACK and ScaLAPACK codes from the
Netlib repository.

All the matrices used in these experiments were randomly generated since they are much faster to
be generated, and the cluster was being heavily loaded by other users.

The following implementations were assessed in the experiments of this subsection:

• ScaLAPACK SVD: The routine called pdgesvd from MKL’s ScaLAPACK is used to compute
the Singular Value Decomposition (SVD).

• ScaLAPACK CPQR: The routine called pdgeqpf from MKL’s ScaLAPACK is used to compute
the column-pivoted QR factorization.

• PLiC CPQR: The routine called pdgeqp3 from the PLiC library (Parallel Library for Con-
trol) [3] is used to compute the column-pivoted QR factorization by using BLAS-3. This source
code was linked to the ScaLAPACK library from MKL for the purpose of a fair comparison.

• randUTV: A new implementation for computing the randUTV factorization based on the
ScaLAPACK infrastructure and library. This source code was linked to the ScaLAPACK library
from MKL for the purpose of a fair comparison.

• ScaLAPACK QR: The routine called dgeqrf from MKL’s ScaLAPACK is used to compute
the QR factorization. Although this routine does not reveal the rank, it was included in some
experiments as a reference for the others.

Like in the previous subsection on shared-memory architectures, for every experiment two plots
are shown. The left plot shows the performances when no orthonormal matrices are computed (the
codes compute just the singular values for the SVD, the upper triangular matrix R for the CPQR

23

and the QR factorizations, and the upper triangular matrix T for the randUTV factorization). The
right plot shows the performances when, in addition to those, all orthonormal matrices are explicitly
formed (matrices U and V for SVD and randUTV, and matrix Q for QR and CPQR). Recall that
the right plot slightly favors CPQR and QR since only one orthonormal matrix is built.

0 32 64 96 128 160 192
Block size

0.0

0.1

0.2

0.3

0.4

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Performances vs block size without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

0 32 64 96 128 160 192
Block size

0.0

0.2

0.4

0.6

0.8

1.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Performances vs block size with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

Figure 16: Performances versus block size on 96 cores arranged as a 6× 16 mesh.

Figure 16 shows the performances of all the implementations described above on several block sizes
when using 96 cores arranged as a 6 × 16 mesh on matrices of dimension 25600 × 25600. As can be
seen, most implementations perform slightly better on small block sizes, such as 32 and 64, the only
exception being PLiC CPQR, which performs a bit better on large block sizes when no orthonormal
matrices are built.

Figure 17 shows the performances of all the implementations for many topologies on matrices of
dimension 20480×20480. The top row shows the results on one node (12 cores), the second row shows
the results on two nodes (24 cores), the third row shows the results on four nodes (48 cores), and the
fourth row shows the results on eight nodes (96 cores). As can be seen, best topologies are usually
p× q with p slightly smaller than q.

Figure 18 shows the performances versus matrix dimensions on two different number of cores: 48
cores arranged as 4×12 (top row) and 96 cores arranged as 6×16 (bottom row). On the largest matrix
dimension on 48 cores, when no orthonormal matrices are built, randUTV is between 5.4 (q = 0)
and 2.8 (q = 2) times as fast as the SVD, whereas when orthonormal matrices are built, randUTV
is between 6.6 (q = 0) and 4.3 (q = 2) times as fast as the SVD. On the largest matrix dimension on
96 cores, when no orthonormal matrices are built, randUTV is between 3.4 (q = 0) and 1.8 (q = 2)
times as fast as the SVD, whereas when orthonormal matrices are built, randUTV is between 6.7
(q = 0) and 4.5 (q = 2) times as fast as the SVD. On medium and large matrices, performances of
ScaLAPACK CPQR are much lower than those of randUTV, whereas performances of PLiC CPQR
are more similar to those of randUTV. Nevertheless, recall that the precision of CPQR is usually
much smaller than that of randUTV.

In distributed-memory applications the traditional approach creates one process per core. How-
ever, creating fewer processes and then a corresponding number of threads per process can improve
performances in some cases. Obviously, the product of the number of processes and the number of
threads per process must be equal to the total number of cores. The advantage of this approach
is that the creation of fewer processes reduces the communication cost, which is usually the main
bottleneck in distributed-memory applications. In the case of linear algebra applications, creating
and using several threads per process can be easily achieved by employing shared-memory parallel
LAPACK and BLAS libraries. Nevertheless, great care must be taken to ensure a proper pinning of
processes to cores, since otherwise performances drop markedly. This was achieved by using the -genv
I MPI PIN DOMAIN socket flag when executing the mpirun/mpiexec command in the machine used
in the experiments.

Figure 19 shows the scaled timings of the factorizations of matrices of dimension 25600 × 25600
on 96 cores when using several configurations with different numbers of threads per process. These

24

12x1 6x2 4x3 3x4 2x6
1x12

Meshes with 12 cores

0

1

2

3

4
10

^1
0

* t
 /

n^
3

(lo
we

r i
s b

et
te

r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

12x1 6x2 4x3 3x4 2x6
1x12

Meshes with 12 cores

0

2

4

6

8

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

24x1
12x2 8x3 6x4 4x6 3x8

2x12
1x24

Meshes with 24 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

24x1
12x2 8x3 6x4 4x6 3x8

2x12
1x24

Meshes with 24 cores

0

1

2

3

4

5

6

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 48 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 48 cores

0

1

2

3

4

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores

0.0

0.1

0.2

0.3

0.4

0.5

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

Figure 17: Performances on several topologies on matrices of dimension 20480× 20480.

25

0 5000 10000 15000 20000
Matrix dimensions

0.0

0.2

0.4

0.6

0.8

1.0
10

^1
0

* t
 /

n^
3

(lo
we

r i
s b

et
te

r)
Performances on 4 x 12 without ON matrices

ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

0 5000 10000 15000 20000
Matrix dimensions

0.0

0.5

1.0

1.5

2.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Performances on 4 x 12 with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

0 5000 10000 15000 20000 25000
Matrix dimensions

0.0

0.2

0.4

0.6

0.8

1.0

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Performances on 6 x 16 without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

0 5000 10000 15000 20000 25000
Matrix dimensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Performances on 6 x 16 with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

Figure 18: Performances versus matrix dimensions on two different number of cores. The top row
shows results on 48 cores arranged as 4 × 12; the bottom row shows results on 96 cores arranged as
6× 16.

plots include the results on a complete set of topologies to isolate the effect of the increased number
of threads. As usual, the left three plots show performances when no orthonormal matrices are built,
whereas the right three plots show performances when orthonormal matrices are built. The top
row shows performances when one process per core (96 processes) and then one thread per process
are created (96 × 1 = 96). The second row shows performances when one process per two cores
(48 processes) and then two threads per process are created (48 × 2 = 96). The third row shows
performances when one process per three cores (32 processes) and then three threads per process
are created (32 × 3 = 96). As can be seen, the SVD only increases performances when orthonormal
matrices are created, whereas randUTV increases performances in both cases (both with and without
orthonormal matrices).

No ON matrices ON matrices
Threads per process Threads per process

Factorization 1 2 3 1 2 3

SVD 393.9 644.0 645.3 1494.1 1336.4 1318.0
randUTV q = 0 117.0 102.7 112.2 214.2 192.3 203.7
randUTV q = 1 168.6 142.5 160.1 272.1 232.3 251.4
randUTV q = 2 216.7 180.4 207.8 327.5 271.7 298.7

Table 1: Best timings in seconds of several topologies with 96 cores on matrices of dimension 25600×
25600 considering several number of threads per process.

Table 1 shows the best timings (in seconds) for several topologies with 96 cores so a finer detail

26

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores and 1 thread per process

0.0

0.1

0.2

0.3

0.4

0.5

0.6
10

^1
0

* t
 /

n^
3

(lo
we

r i
s b

et
te

r)
Scaled time vs mesh without ON matrices

ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores and 1 thread per process

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 96 cores and 2 threads per process

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 96 cores and 2 threads per process

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

32x1
16x2 8x4 4x8

2x16
1x32

Meshes with 96 cores and 3 threads per process

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

32x1
16x2 8x4 4x8

2x16
1x32

Meshes with 96 cores and 3 threads per process

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10
^1

0
* t

 /
n^

3
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

Figure 19: Performances on several topologies on matrices of dimension 25600× 25600.

comparison can be achieved. Matrices being factorized are 25600 × 25600. As can be seen, SVD
increases performances 13 % when orthonormal matrices are built, whereas randUTV with q = 2
improves performances 20 % in both cases. Performances usually increase when using two threads per
process, but they remain similar or drop when using more than two threads per process.

Figure 20 shows the speedups obtained by all the implementations on matrices of dimension 20480×
20480. Recall that in this plot every implementation compares against itself on one core. The best
topologies have been selected for the following number of cores: 3×4 for 12 cores, 6×4 for 24 cores, 4×12
for 48 cores, and 6×16 for 96 cores. When no orthonormal matrices are built, speedups of randUTV
on the largest number of cores (96) are between 47.1 (q = 0) and 43.3 (q = 2). When orthonormal
matrices are built, speedups of randUTV on the largest number of cores (96) are between 49.3
(q = 0) and 44.7 (q = 2). In both cases, the efficiency is close to 50 %. When no orthonormal matrices
are built, speedups of randUTV are a bit lower than those of QR factorization; when orthonormal
matrices are built, speedups of randUTV are a bit higher than those of QR factorization. In both

27

1 12 24 48 96
Cores

0

20

40

60

80

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores without ON matrices
ScaLAPACK SVD
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR
Perfect Speedup

1 12 24 48 96
Cores

0

20

40

60

80

Sp
ee

du
p

(h
ig

he
r i

s b
et

te
r)

Speedup vs cores with ON matrices
ScaLAPACK SVD
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR
Perfect Speedup

Figure 20: Speedups versus number of cores for all the implementations on matrices of dimension
20480× 20480.

cases, the speedups of randUTV are much higher than those obtained by the SVD and the CPQR
factorization, thus showing the great scalability potential of this factorization.

In conclusion, randUTV is significantly faster than the available distributed memory implemen-
tations of SVD. It also matches the best CPQR implementation tested. randUTV is known to reveal
rank far better than CPQR [21], and it also furnishes orthonormal bases for the row-space, and for the
(numerical) null-space of the matrix. This means that just matching the speed of CPQR represents
a major gain in information at no additional computational cost. Furthermore, randUTV is faster
than even CPQR in the case that orthonormal matrices are required. We finally observe that the po-
tential for scalability of randUTV is a clear step above competing implementations for rank-revealing
factorizations in distributed memory.

7 Conclusions.

We have described two new implementations of the randUTV algorithm for computing the SVD of a
matrix, targeting shared-memory and distributed-memory architectures, respectively.

Regarding shared memory, the new implementation proposes an algorithm-by-blocks that, built on
top of a runtime task scheduler (libflame’s SuperMatrix) implements a dataflow execution model.
Based on a DAG, this model reduces the amount of synchronization points and hence increases per-
formance on massively parallel architectures. Actually, performance results on a up to 36 cores reveal
excellent performance and scalability results compared with state-of-the-art proprietary libraries.

We have also proposed a distributed-memory algorithm for randUTV. This proposal leverages the
classic blocked algorithm rather than the algorihm-by-blocks, and makes heavy use of ScaLAPACK.
Performance results show competitive performance and excellent scalability compared with alternative
state-of-the-art implementations.

In this article, we focused exclusively on the case of multicore CPUs with shared memory and
homogeneous distributed-memory architectures. We expect that the relative advantages of randUTV
will be even more pronounced in more severely communication- constrained environments, such as
GPU-based architectures (composed by one or many nodes). Work on variations of the method
modied for such environments is proposed as future work.

Acknowledgements

F. D. Igual was supported by the EU (FEDER) and Spanish MINECO (GA No. RTI2018-093684-B-
I00), and by Spanish CM (GA No. S2018/TCS-4423).

G. Quintana-Ort́ı was supported by the Spanish Ministry of Science, Innovation and Universities
under Grant RTI2018-098156-B-C54 co-financed with FEDER funds.

28

P. G. Martinsson was supported by the Office of Naval Research (grant N00014-18-1-2354) and by
the National Science Foundation (grant DMS-1620472).

The authors would also like to thank Javier Navarrete (Universitat d’Alacant) for granting access
to the distributed-memory server.

References

[1] Ed Anderson, A Benzoni, J Dongarra, S Moulton, S Ostrouchov, Bernard Tourancheau, and
Robert van de Geijn, Basic linear algebra comrnunication subprograms, The Sixth Distributed
Memory Computing Conference, 1991. Proceedings, IEEE, 1991, pp. 287–290.

[2] Jesse L Barlow, Modification and maintenance of ulv decompositions, Applied Mathematics and
Scientific Computing, Springer, 2002, pp. 31–62.

[3] Peter Benner, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-Ort́ı, Solving linear-quadratic
optimal control problems on parallel computers, Optimization Methods and Software 23 (2008),
no. 6, 879–909.

[4] Paolo Bientinesi, Enrique S Quintana-Ort́ı, and Robert A Geijn, Representing linear algebra
algorithms in code: the flame application program interfaces, ACM Transactions on Mathematical
Software (TOMS) 31 (2005), no. 1, 27–59.

[5] L Susan Blackford, Jaeyoung Choi, Andy Cleary, Eduardo D’Azevedo, James Demmel, Inderjit
Dhillon, Jack Dongarra, Sven Hammarling, Greg Henry, Antoine Petitet, et al., Scalapack users’
guide, SIAM, 1997.

[6] Ernie Chan, Enrique S Quintana-Orti, Gregorio Quintana-Orti, and Robert Van De Geijn, Su-
permatrix out-of-order scheduling of matrix operations for smp and multi-core architectures, Pro-
ceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures,
ACM, 2007, pp. 116–125.

[7] Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Orti, Gregorio Quintana-
Orti, and Robert van de Geijn, Supermatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks, Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming (New York, NY, USA), PPoPP ’08, ACM, 2008, pp. 123–132.

[8] Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrouchov, Antoine
Petitet, Ken Stanley, David Walker, and R Clinton Whaley, Scalapack: A portable linear alge-
bra library for distributed memory computers?design issues and performance, Computer Physics
Communications 97 (1996), no. 1-2, 1–15.

[9] Jaeyoung Choi, Jack J Dongarra, L Susan Ostrouchov, Antoine P Petitet, David W Walker, and
R Clint Whaley, Design and implementation of the scalapack lu, qr, and cholesky factorization
routines, Scientific Programming 5 (1996), no. 3, 173–184.

[10] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David W Walker, Scalapack: A scalable
linear algebra library for distributed memory concurrent computers, Frontiers of Massively Parallel
Computation, 1992., Fourth Symposium on the, IEEE, 1992, pp. 120–127.

[11] Jack J Dongarra, Jermey Du Cruz, Sven Hammarling, and Iain S Duff, Algorithm 679: A set of
level 3 basic linear algebra subprograms: model implementation and test programs, ACM Trans-
actions on Mathematical Software (TOMS) 16 (1990), no. 1, 18–28.

[12] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J Hanson, Algorithm 656: an
extended set of basic linear algebra subprograms: model implementation and test programs, ACM
Transactions on Mathematical Software (TOMS) 14 (1988), no. 1, 18–32.

29

[13] Carl Eckart and Gale Young, The approximation of one matrix by another of lower rank, Psy-
chometrika 1 (1936), no. 3, 211–218.

[14] Hasan Erbay, Jesse L Barlow, and Zhenyue Zhang, A modified gram–schmidt-based downdat-
ing technique for ulv decompositions with applications to recursive tls problems, Computational
statistics & data analysis 41 (2002), no. 1, 195–209.

[15] Gene H. Golub and Charles F. Van Loan, Matrix computations, third ed., Johns Hopkins Studies
in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996.

[16] John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van De Geijn, Flame: Formal
linear algebra methods environment, ACM Transactions on Mathematical Software (TOMS) 27
(2001), no. 4, 422–455.

[17] Brian C Gunter and Robert A Van De Geijn, Parallel out-of-core computation and updating of the
qr factorization, ACM Transactions on Mathematical Software (TOMS) 31 (2005), no. 1, 60–78.

[18] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp, Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review 53
(2011), no. 2, 217–288.

[19] Francisco D Igual, Ernie Chan, Enrique S Quintana-Ort́ı, Gregorio Quintana-Ort́ı, Robert A Van
De Geijn, and Field G Van Zee, The flame approach: From dense linear algebra algorithms to high-
performance multi-accelerator implementations, Journal of Parallel and Distributed Computing
72 (2012), no. 9, 1134–1143.

[20] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh, Basic linear algebra
subprograms for fortran usage, ACM Transactions on Mathematical Software (TOMS) 5 (1979),
no. 3, 308–323.

[21] P. G. Martinsson, G. Quintana-Ort́ı, and N. Heavner, Randutv: A blocked randomized algorithm
for computing a rank-revealing utv factorization, ACM Trans. Math. Softw. 45 (2019), no. 1.

[22] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert, A randomized algorithm for the
approximation of matrices, Tech. Report Yale CS research report YALEU/DCS/RR-1361, Yale
University, Computer Science Department, 2006.

[23] , A randomized algorithm for the decomposition of matrices, Appl. Comput. Harmon. Anal.
30 (2011), no. 1, 47–68. MR 2737933 (2011i:65066)

[24] Per-Gunnar Martinsson and Joel Tropp, Randomized numerical linear algebra: Foundations &
algorithms, 2020.

[25] Leon Mirsky, Symmetric gauge functions and unitarily invariant norms, The quarterly journal of
mathematics 11 (1960), no. 1, 50–59.

[26] Haesun Park and Lars Eldén, Downdating the rank-revealing urv decomposition, SIAM Journal
on Matrix Analysis and Applications 16 (1995), no. 1, 138–155.

[27] Gregorio Quintana-Ort́ı, Francisco D Igual, Mercedes Marqués, Enrique S Quintana-Ort́ı, and
Robert A Van de Geijn, A runtime system for programming out-of-core matrix algorithms-by-
tiles on multithreaded architectures, ACM Transactions on Mathematical Software (TOMS) 38
(2012), no. 4, 25.

[28] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. Van De Geijn, Field G. Van Zee,
and Ernie Chan, Programming matrix algorithms-by-blocks for thread-level parallelism, ACM
Trans. Math. Softw. 36 (2009), no. 3, 14:1–14:26.

[29] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert, A randomized algorithm for principal compo-
nent analysis, SIAM Journal on Matrix Analysis and Applications 31 (2009), no. 3, 1100–1124.

30

[30] Robert Schreiber and Charles Van Loan, A storage-efficient wy representation for products of
householder transformations, SIAM Journal on Scientific and Statistical Computing 10 (1989),
no. 1, 53–57.

[31] G. W. Stewart, An updating algorithm for subspace tracking, IEEE Transactions on Signal Pro-
cessing 40 (1992), no. 6, 1535–1541.

[32] Gilbert W Stewart, Updating a rank-revealing ulv decomposition, SIAM Journal on Matrix Anal-
ysis and Applications 14 (1993), no. 2, 494–499.

[33] G.W. Stewart, Matrix algorithms volume 1: Basic decompositions, SIAM, 1998.

[34] Lloyd N Trefethen and David Bau III, Numerical linear algebra, vol. 50, Siam, 1997.

[35] Field G. Van Zee, libflame: The Complete Reference, www.lulu.com, 2012,
Download from http://www.cs.utexas.edu/users/flame/web/FLAMEPublications.html.

[36] Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio
Quintana-Ort́ı, The libflame library for dense matrix computations, IEEE Computation in Science
& Engineering 11 (2009), no. 6, 56–62.

31

