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Abstract7

Obesity is growing riskily in developed and developing countries. This should pose major con-
cerns for the countries, not only from the health point, but also from the economic perspective.
Our case study relies on the excess weight dynamics in Spain. The Spanish National Health Sur-
vey (ENSE) 2017 collects the percentage of overweight and obese adults in Spain from the year
1987 to 2017. A recent contribution proposed a nonautonomous compartmental system of ordi-
nary differential equations to calibrate the incidence of excess weight in the Spanish adulthood
population. Essentially, three principles were followed: the total adulthood population is time-
dependent, the subpopulations interact homogeneously along the country, and excess weight
plays the role of an infectious disease that is transmitted through contact by social pressure.
Accounting for both data and model errors, frequentist nonlinear regression and Bayesian infer-
ence were conducted. The methods agreed well in terms of fit, prediction, bands and sensitivity
analysis. In the present paper, the deterministic compartmental system of ordinary differen-
tial equations is randomized in a different manner, by employing Itô-type stochastic differential
equations. The derivatives of the compartments are perturbed by Gaussian white noise-type pure
errors that have a rough and unpredictable structure. From the Euler-Maruyama discretization,
several strategies are utilized for estimating the parameters, based on the moments method and
maximum likelihood estimation. Comparison is performed numerically by assessing the fit to
the data.
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1. Introduction11

Overweight and obesity are defined as an excessive fat accumulation. For adults, the clas-12

sification into overweight or obese depends on the Body Mass Index (BMI = weight/height2),13

where the weight is measured in kilograms and the height in meters. Overweight individuals14
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have a BMI in the range [25, 30) and obese individuals have it greater than or equal to 30. Ac-15

cording to the World Health Organization (WHO) [1, 2], obesity is increasing in developed and16

developing countries at alarming rate, paradoxically coexisting with malnutrition. It has nearly17

tripled since 1975. In 2016, the prevalence of overweight and obesity among adults aged 1818

or more years old were 39% and 13%, respectively. Yet most neglected, obesity entails serious19

health consequences and poses major risk for noncommunicable diseases such as diabetes, car-20

diovascular diseases, hypertension, musculoskeletal disorders and certain forms of cancer. This21

affects life quality and decreases life expectancy, augmenting the probability of premature death.22

Today excess weight causes more than 2.8 million deaths each year [3]. It has been formally23

considered a global pandemic [4].24

The economic burden of obesity is significant. There are at least four major categories of25

economic impact [5]: direct medical costs, productivity costs, transportation costs, and human26

capital costs. In the United States, each obese adult raises the medical care costs by an average27

of 3429 dollars (year 2013) [6]. In Spain, it was estimated by an average of 7610 euro [7] (year28

1999).29

The magnitude of the health and economic impact of obesity, and its likely higher impact in30

the future [8, 9], highlight the importance of addressing the obesity epidemic by public authori-31

ties. In this regard, the use of mathematical models is an effective tool to describe, explain and32

predict the evolution of the epidemic and propose targeted measures [10].33

A lot of approaches in mathematical modeling rely on the use of compartmental models of34

coupled differential equations [11, 12, 13, 14, 15]. The population is divided into distinct groups35

(compartments) according to the disease state. These models have been employed to analyze the36

incidence of obesity in the region of Valencia, Spain, [16] (for children) and [17] (for adults).37

Our focus is put on the recent study [18]. It used data on adulthood excess weight along thirty38

years, collected by the Spanish National Health Survey (ENSE). The ENSE is a periodic study39

conducted by the Spanish Ministry of Health, Consumption and Social Welfare, with the col-40

laboration of the National Statistics Institute of Spain (INE), since 1987. It gathers transversal41

data on the health of the resident population in Spain. The last survey considered data from42

2017 and was published in mid-2018 [19]. To design the compartmental model, paper [18] fol-43

lowed the following principles: the population is divided into normal weight, overweight and44

obese individuals according to BMI, the total adulthood population is time-dependent (INE data45

from [20]) and tends to a constant value asymptotically, the subpopulations interact homoge-46

neously along the country [11], and excess weight plays the role of an infectious disease that is47

transmitted through contact by social influence and imitation. With regard to the first principle,48

the ENSE data is focused on excess weight and there is no information concerning underweight49

individuals (too low BMI); all persons with BMI less than 25 are joined in a single group. With50

regard to the last principle, human-to-human transmission of obesity is justified by medical and51

sociological studies [21, 22]. In the seminal contribution [21], the authors evaluated a densely52

interconnected social network and explicitly concluded that obesity appears to spread through53

social ties. For instance, a person’s probability of becoming obese increased by 57% if he or54

she had a friend who became obese in a given interval; among pairs of adult siblings, if one55

sibling became obese, the chance that the other would become obese increased by 40%; if one56

spouse became obese, the likelihood that the other spouse would become obese augmented by57

37%. Paper [22] and its references from the introduction defend that gains in weight are spread58

through the population by social influence, in a way reminiscent of a contagious disease of social59

transmission. Obviously, excess weight is not an infectious disease. But sociologically, taking60

into account human behavior, overweight and obese persons may be considered as some sort of61
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“infectives”, who transmit excess weight to healthy individuals through contact (social pressure62

for taking unhealthy habits). The importance of contacts in non-infectious phenomena, where63

the bad-habit group is a “transmitter”, has also been revealed within alcohol and tobacco con-64

sumption, for example [15, 23]. For phenomena not related to health, for example the mobile65

telecommunications market share [24], contacts and imitation are key too.66

The formulation of the compartmental model in [18] was, firstly, deterministic. The param-67

eters were estimated by minimizing an objective function defined by the mean square error of68

the response (optimization). But excess weight dynamics, as most of the phenomena, inher-69

ently involves a vast set of complexities and uncertainties. Thus, due to both data and model70

errors, the incorporation of some sort of randomness into the model becomes indispensable.71

Frequentist nonlinear regression and Bayesian inference (brute-force and Adaptive Metropolis72

algorithms) [25, 26] were conducted. These methods agreed well in terms of fit, prediction,73

bands and sensitivity analysis. They suggested that prevention strategies should take priority74

over treatment strategies to manage adulthood obesity. Specially, the treatment of the transition75

from the obese to the overweight states is the least recommendable for mitigating the obesity76

epidemic.77

Frequentist nonlinear regression and Bayesian inference present some drawbacks. The for-78

mer applies linearization through a Jacobian, which entails errors, clearly observable when ex-79

trapolation for future years is carried out. The latter, although based on exact formulas, resorts80

to algorithms on Markov Chains for sampling, which may be a complex and time-consuming81

procedure. See [18, 25]. In this paper, the deterministic compartmental model from [18] is ran-82

domized in a different manner, via noise. The derivatives of the compartments are perturbed by83

Gaussian white noise-type pure errors that have a rough and unpredictable structure. The model84

becomes a stochastic differential equation of Itô-type driven by a standard Brownian motion85

(Wiener process), whose mathematical formalization in terms of integrals is due to to the devel-86

opment of a new operational calculus by Kiyoshi Itô [27, 28, 29]. The number of individuals at87

each compartment is thus a nowhere differentiable, continuous stochastic process. Existence and88

uniqueness of mean square solution relies on a local Lipschitz and a monotone condition due89

to nonlinearities, instead of the usual global Lipschitz and linear growth conditions [27, Ch. 2].90

The stochastic differential equations are discretized by the Euler-Maruyama scheme. From the91

stochastic difference equations and the ENSE data, the parameters are estimated by means of92

different techniques, based on the moments method and maximum likelihood estimation [28,93

pp. 118–122]. For the implementation of the stochastic model, the code available in [30] for the94

software MathematicaR© [31] can be used. Forward uncertainty quantification is carried out via95

Monte Carlo simulation. A detailed comparison between the parameter estimations is performed96

numerically by assessing the fit to the data.97

The organization of this paper is the following. In Section 2, the main content from [18] is98

exposed. Specifically, the formulations of the deterministic, frequentist and Bayesian models,99

and their results. In Section 3, the deterministic model from [18] is randomized by adding white100

noise perturbations. Existence and uniqueness of mean square solution are proved and the dif-101

ferent methods for parameter estimation are detailed. In Section 4, the parameters are estimated102

numerically and the correspondence of the models to the data is assessed. Finally, Section 5103

discusses the results obtained.104
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2. Previous mathematical model105

In this section, the main content from [18] is exposed, and the reader is referred to that paper106

for further details. The formulation of the deterministic model is shown, since it is the basis107

for the Itô-type stochastic differential equations model that will be proposed later in Section 3.108

The randomization, based on frequentist and Bayesian approaches, is briefly explained, for later109

comparison with the Itô approach.110

2.1. Excess weight model111

The adulthood population is divided into normal weight, overweight and obese subpopula-112

tions, according to BMI. By adults, individuals aged 18 or more years old are considered. Let113

S (t) and O(t) denote the number of overweight and obese adults at time (year) t ≥ 0. The ini-114

tial time t = 0 corresponds to the year 1987. The ENSE has collected data from 1987 to 2017,115

at 11 periods: 1987, 1993, 1995, 1997, 2001, 2003, 2006, 2009, 2011, 2014 and 2017. These116

years correspond to times t equal to 0, 6, 8, 10, 14, 16, 19, 22, 24, 27, 30, which are denoted by117

t1, . . . , t11. The recorded observations on total adulthood population (by INE), overweight and118

obese individuals, scaled by ten million by dividing by 107, are119

(2.82, 3.04, 3.12, 3.2, 3.34, 3.47, 3.66, 3.82, 3.84, 3.82, 3.82),

(s1, . . . , s11) = (0.9024, 1.09136, 1.10916, 1.1248, 1.23413, 1.27522, 1.37982, 1.41913,
1.40928, 1.36756, 1.42104),

(o1, . . . , o11) = (0.20868, 0.27816, 0.34008, 0.3968, 0.44255, 0.47192, 0.56181, 0.61884,
0.6528, 0.64558, 0.66659).

As can be seen, excess weight has been worryingly rising in the last thirty years. The prevalence120

of obesity has been multiplied by 2.4 (in 1987, the prevalence was 0.20868/2.82 = 0.074%; in121

2017, it was 0.66659/3.82 = 0.1745%; and 0.1745/0.074 ≈ 2.4). Up to the year 2014, it seemed122

that the rate of increase was slowing down at last. However, the year 2017 did not confirm that123

expected deceleration.124

The adulthood population in Spain since 1987, scaled by ten million, was modeled as125

T ′(t) = µT (t)
(
1 −

T (t)
K

)
, t ≥ 0, (1)

where µ,K > 0. By using data from the INE, these parameters were estimated as126

µ̂ = 0.0491843, K̂ = 4.47700. (2)

Model (1) became127

T (t) =
12.3654

2.76197 + 1.71503 e−0.0491843t , t ≥ 0. (3)

To construct the compartmental model, homogeneous mixing was assumed [11], i.e. the128

subpopulations interact along the country with equal probability. Contagion of obesity by so-129

cial pressure and imitation was considered [21, 22], where excess weight individuals transmit130
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fatness to normal weight peers by contact (see the Introduction Section for further justification).131

Accounting on these suppositions, the following nonautonomous model for excess weight was132

defined:133 
S ′(t) = µS (t)

(
1 − T (t)

K

)
+ β T (t)−S (t)−O(t)

T (t) [S (t) + O(t)] − (ρ + γ)S (t) + εO(t), t ≥ 0,
O′(t) = µO(t)

(
1 − T (t)

K

)
+ γS (t) − εO(t), t ≥ 0,

S (0) = S 0,

O(0) = O0.

(4)

The parameters, measured in year−1 [11, p. 27], were the following: β > 0 is the force of “in-134

fection” (transmission rate because of social pressure), ρ > 0 is the rate at which an overweight135

individual becomes normal weight, γ > 0 is the rate at which an overweight person moves to136

the obese compartment, and ε > 0 is the rate at which an obese adult becomes overweight.137

These coefficients are the most important of the model, since variations of them determine the138

flow between compartments and the future evolution of the disease. The initial conditions S 0139

and O0 were the scaled number of overweight and obese adults in 1987, s1 = 0.902400 and140

o1 = 0.208680, respectively. The function T (t) was given by (3).141

Model (4) is well-posed. Given the data by ENSE, the minimization of the mean square error,142

143
11∑
i=1

(S (ti|β, γ, ε, ρ) − si)2 +

11∑
i=1

(O(ti|β, γ, ε, ρ) − oi)2 , (5)

gave the following parameter estimates:144

β̂ = 0.368989, γ̂ = 0.0222886, ε̂ = 0.0344076, ρ̂ = 0.240838. (6)

The MAPE (mean absolute percentage error),145

100
22

 11∑
i=1

|S (ti|β̂, γ̂, ε̂, ρ̂) − si|

si
+

11∑
i=1

|O(ti|β̂, γ̂, ε̂, ρ̂) − oi|

oi

 , (7)

was 3.17. This MAPE is considered low by Lewis’ scale and the forecast accuracy is high [32,146

p. 40].147

According to this model, 36.65% and 23.74% of Spanish adults will be overweight and obese148

in the long run, respectively, assuming that the parameters values keep time-invariant. Sensitivity149

analyses, based on MAPE comparisons and differentiation, indicated that prevention strategies150

are more important than treatment strategies to control adulthood obesity.151

In MathematicaR©, the numerical solution to (4) was obtained by using the standard Para-152

metricNDSolveValue built-in function, with no specified options. The execution lasted at most153

milliseconds. The minimization of (5) was performed by means of the standard NMinimize built-154

in routine, with no options. The region of minimization was (0, 1)4.155

2.2. Nonlinear regression156

The nonlinear regression model [25, Ch. 7] was the following:157

S i = S (ti|β, γ, ε, ρ) + ES
i , (8)
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158

Oi = O(ti|β, γ, ε, ρ) + EO
i , (9)

for i = 1, . . . , 11. The responses S i and Oi were the random variables corresponding to the over-159

weight and obese adults (scaled by ten million). The terms ES
i and EO

i were random errors with160

zero expectation and constant variance σ2, all of them identically distributed and independent.161

The parameters β, γ, ε and ρ were constant.162

From the ENSE data, the estimation of the parameters was (2) and (6). The variance σ2 was163

estimated as the mean square error (5) divided by 22− 4, where 22 is the number of observations164

(11 periods for overweight and obesity) and 4 is the number of parameters that control the flow165

between compartments:166

σ̂ = 0.0321734. (10)

Confidence-based prediction intervals were constructed through these estimates and the Jaco-167

bian matrix of the response with respect to the parameters. These intervals are useful to locate168

measures from 1987 to 2017 and to predict beyond 2017. Extrapolation in the long run gave169

the intervals [1.532, 1.750] and [0.6126, 1.513] for the number of overweight and obese adults,170

respectively. The conclusions on sensitivity analyses, based on MAPE comparisons and t-values,171

coincided with the deterministic model.172

2.3. Bayesian inference173

Bayesian inference [25, Ch. 8] [26], in contrast to frequentist nonlinear regression, considers174

the parameters as random quantities. The coefficients β, γ, ε and ρ were random variables,175

with a certain probability distribution called prior distribution. They were given uniform laws176

on (0, 1). The error variance σ2 may also have a prior probability distribution. The two cases,177

constant and random error variance, were tackled. In the former case, the prior of σ2 was a178

Dirac delta function centered at (10) squared. In the latter situation, a conditional distribution of179

σ2 followed an inverse gamma distribution. The joint response, conditioned to the parameters180

(i.e. the likelihood), followed a product of independent Gaussian distributions centered at the181

deterministic solution and error variance σ2:182

S i|β, γ, ε, ρ, σ
2 ∼ Normal

(
S (ti|β, γ, ε, ρ), σ2

)
,

183

Oi|β, γ, ε, ρ, σ
2 ∼ Normal

(
O(ti|β, γ, ε, ρ), σ2

)
.

From the data and Bayes’ formula, the parameters, conditioned to data, followed posterior distri-184

butions. Forward uncertainty quantification (mean values and probabilistic prediction intervals)185

was performed through the posterior predictive distribution (S i and Oi conditioned to data). The186

MAPE (7), calculated from mean values, was 3.23. Asymptotic extrapolation gave the pointwise187

expected values 1.64 and 1.07 and the intervals [1.57, 1.70] and [0.97, 1.19] for the number of188

overweight and obese adults, respectively. The conclusions on sensitivity analyses, based on189

Bayes’ factors and the Savage-Dickey density ratio, agreed with the deterministic model.190

The Metropolis algorithm was implemented in MathematicaR©. It generates a Markov chain191

whose stationary distribution is the desired posterior distribution of the parameters. The standard192

and the Adaptive versions were considered, the latter providing a substantial reduction in com-193

putational time. It was checked that the use of generalized polynomial chaos expansions did not194

yield computational improvements.195
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3. New stochastic model196

In this section, we present the Itô-type stochastic differential equation model. It is proved that197

the stochastic system is well-posed. Different methods for parameter estimation are suggested.198

3.1. Formulation199

Let us start from the deterministic formulation (4). The frequentist approach considered200

the parameters as constants and added a random error to the response. The Bayesian approach201

considered the parameters as random quantities, together with a Gaussian random error for the202

response. The approach based on Itô stochastic differential equations [27, 28] is different. The203

parameters are regarded as constants. The random error is not introduced into the response, but204

into the derivative of the response instead. The derivative of the response is perturbed by an205

idealized stochastic process called white noise, which is Gaussian, has zero mean, independent206

components, and infinite dispersion. This process is viewed as the formal derivative of a stan-207

dard Brownian motion (Wiener process). Hence the response derivative has an unpredictable and208

rough behavior. Fixed a realizable path of the response, it is continuous and nowhere differen-209

tiable.210

From (4), the following stochastic model is proposed:211 
S ′(t) = µS (t)

(
1 − T (t)

K

)
+ β T (t)−S (t)−O(t)

T (t) [S (t) + O(t)] − (ρ + γ)S (t) + εO(t) + σ1ξ1(t),
O′(t) = µO(t)

(
1 − T (t)

K

)
+ γS (t) − εO(t) + σ2ξ2(t),

S (0) = S 0,

O(0) = O0.

(11)

Here σ1 and σ2 are the positive diffusion coefficients. The terms ξ1(t) and ξ2(t) represent in-212

dependent white noise stochastic processes, defined on a complete probability space (Ω,F ,P).213

They may be written as dB1(t) = ξ1(t)dt and dB2(t) = ξ2(t)dt, where B1(t) and B2(t) are indepen-214

dent standard Brownian motions. By standard, we refer to the Gaussian distribution centered at215

zero with variance equal to t. Model (11) may be rewritten in differential form:216 
dS (t) =

[
µS (t)

(
1 − T (t)

K

)
+ β T (t)−S (t)−O(t)

T (t) [S (t) + O(t)] − (ρ + γ)S (t) + εO(t)
]

dt + σ1dB1(t),
dO(t) =

[
µO(t)

(
1 − T (t)

K

)
+ γS (t) − εO(t)

]
dt + σ2dB2(t),

S (0) = S 0,

O(0) = O0.
(12)

These equations should be interpreted by integration. The solutions S (t) and O(t) to (12) are217

stochastic processes, whose trajectories are continuous and nowhere differentiable. They should218

be measurable, adapted with respect to the natural filtration of the Brownian motion B = (B1, B2),219

and mean square integrable.220

Notice that this new model uses two different infinitesimal standard deviations σ1 and σ2 for221

the overweight and the obese classes. It is reasonable that the overweight and the obese subpop-222

ulations, being different groups, may have different dispersion. This is different to the nonlinear223

regression and the Bayesian models from [18], which considered the same error variance for224

facility.225
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3.2. Existence and uniqueness of solution226

For notational convenience, the previous stochastic model (12) is rewritten in generic form.227

Let228

X(t) =

(
S (t)
O(t)

)
, X0 =

(
S 0
O0

)
, B(t) =

(
B1(t)
B2(t)

)
,

229

b1(X(t), t) = µS (t)
(
1 −

T (t)
K

)
+ β

T (t) − S (t) − O(t)
T (t)

[S (t) + O(t)] − (ρ + γ)S (t) + εO(t),

230

b2(X(t), t) = µO(t)
(
1 −

T (t)
K

)
+ γS (t) − εO(t),

231

b(X(t), t) =

(
b1(X(t), t)
b2(X(t), t)

)
, σ(X(t), t) =

(
σ1 0
0 σ2

)
.

Then (12) is232

dX(t) = b(X(t), t)dt + σ(X(t), t)dB(t), t ≥ 0, X(0) = X0. (13)

Let ‖ · ‖ denote the Euclidean vector norm and the Fröbenius (or trace) matrix norm. It is233

said that X(t) solves (13) if, for all time horizon τ > 0, X is jointly measurable on ([0, τ] ×234

Ω,B[0, τ] ⊗ F ), it is adapted with respect to the natural filtration of B, and
∫ τ

0 E[‖X(t)‖2]dt =235

E[
∫ τ

0 ‖X(t)‖2dt] < ∞ (E is the expectation). There is uniqueness if P[X(t) = Y(t), ∀t ≥ 0] = 1236

for any two solutions X and Y .237

In [27, Th. 3.6], two conditions are provided for the existence and uniqueness of solution on238

[0,∞) (we restrict to our two-dimensional situation):239

H1: For every real number τ > 0 and integer n ≥ 1, there exists a positive constant Cτ,n such240

that, for all t ∈ [0, τ] and all X,Y ∈ R2 with ‖X‖ ≤ n and ‖Y‖ ≤ n,241

‖b(X, t) − b(Y, t)‖2 + ‖σ(X, t) − σ(Y, t)‖2 ≤ Cτ,n‖X − Y‖2.

H2: For every τ > 0, there exists a positive constant Cτ such that, for all (X, t) ∈ R2 × [0, τ],242

X>b(X, t) +
1
2
‖σ(X, t)‖2 ≤ Cτ(1 + ‖X‖2).

Let us check these two conditions for our particular model (12). The part concerning the243

diffusion σ is trivial. We focus on the drift part. The local Lipschitz condition from H1 for b is244

clear, because b has continuous partial derivatives of first order with respect to X. The monotone245

condition H2 needs some work. We have246

X>b(X, t) = S b1(S ,O, t) + Ob2(S ,O, t).

We first focus on the number of contacts (T (t)− S −O)/T (t)× (S + O). If 0 ≤ S + O ≤ T (t), then
(T (t) − S − O)/T (t) × (S + O) ≤ S + O ≤ ‖(S ,O)‖2/2. Otherwise, it is negative. Hence

S b1(S ,O, t) = µS 2
(
1 −

T (t)
K

)
+ βS

T (t) − S − O
T (t)

[S + O] − (ρ + γ)S 2 + εS O

≤ µS 2 + βS
‖(S ,O)‖2

2
+ ε
‖(S ,O)‖2

2
. ‖(S ,O)‖2
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and

Ob2(S ,O, t) = µO
(
1 −

T (t)
K

)
+ γS − εO

≤ µO + γS . ‖(S ,O)‖2,

where . denotes less than or equal to except a positive constant. As a consequence, H2 holds. It247

is concluded that (12), (13), possesses a unique solution on [0,∞).248

It is to be noted that H1 and H2 are not the typical conditions for existence and uniqueness of249

solution, since the assumptions usually rely on a global Lipschitz and a linear growth condition250

(i.e. n = ∞ in H1, and ‖b(X, t)‖2 +‖σ(X, t)‖2 ≤ Cτ(1+‖X‖2) in H2) [27, Ch. 2]. The nonlinearities251

that are present in (12) do not allow for those assumptions.252

From [27, Th. 4.1, Cor. 4.5], the processes S (t) and O(t) have statistical moments of any253

order p > 0:254

E[‖(S (t),O(t))‖p] ≤ 2
p−2

2 (1 + ‖(S 0,O0)‖p)epατt, ∀t ∈ [0, τ], ∀p ≥ 2,
255

E[‖(S (t),O(t))‖p] ≤ (1 + ‖(S 0,O0)‖2)
p
2 epατt, ∀t ∈ [0, τ], ∀ 0 < p < 2,

where ατ is a positive constant related to H2.256

Strictly speaking, the response processes may take negative values, which does not make257

sense. Nonetheless, the probability of such occurrence is, for the typical values of the parameters,258

negligible.259

3.3. Estimation of parameters: Method of moments260

In statistical inference, the method of moments consists in estimating population parameters261

by equating the population statistics to the sample statistics. This is based on the law of large262

numbers. Such philosophy is applied for stochastic differential equations.263

The stochastic model (12) is discretized by the Euler-Maruyama scheme. Given a time t and264

a step size ∆t > 0, the scheme reads as follows:265

S (t + ∆t) = S (t) + b1(S (t),O(t), t)∆t + σ1(B1(t + ∆t) − B1(t)), (14)

266

O(t + ∆t) = O(t) + b2(S (t),O(t), t)∆t + σ2(B2(t + ∆t) − B2(t)). (15)

Taking into account that Bi(t + ∆t) − Bi(t) is Gaussian, centered at zero with standard deviation267

given by σi
√

∆t, it is obtained268

S (t + ∆t) − S (t)
√

∆t
− b1(S (t),O(t), t)

√
∆t ∼ Normal(0, σ2

1), (16)

269

O(t + ∆t) − O(t)
√

∆t
− b2(S (t),O(t), t)

√
∆t ∼ Normal(0, σ2

2) (17)

Convergence of the Euler-Maruyama scheme under assumptions H1 and H2, in the sense of270

lim
∆t→0

E
[

sup
0≤t≤T

‖(S̃ (t), Õ(t)) − (S (t),O(t))‖2
]

= 0,
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where (S̃ (t), Õ(t)) is the approximate solution by Euler-Maruyama, is studied in [33]. Notice271

that, since the diffusion coefficients do not depend on S and O, Milstein scheme reduces to272

Euler-Maruyama1.273

Let274

ui =
si+1 − si
√

ti+1 − ti
− b1(si, oi, ti)

√
ti+1 − ti,

275

vi =
oi+1 − oi
√

ti+1 − ti
− b2(si, oi, ti)

√
ti+1 − ti,

for i = 1, . . . , 10. These realizations are independent, because the increments of Brownian motion276

are independent. If µ and K are given by (2) and the flow parameters β, γ, ε and ρ are assumed to277

be already fixed, then the instantaneous standard deviations σ1 and σ2 may be estimated by the278

standard deviations of the samples {u1, . . . , u10} and {v1, . . . , v10}, respectively, by (16) and (17).279

Let σ̂1 and σ̂2 be such estimates.280

The parameters β, γ, ε and ρ may have different sources of estimation:281

M1: One may simply consider the deterministic fit (6).282

M2: From (16) and (17), one may impose
∑10

i=1 ui = 0 and
∑10

i=1 vi = 0. But this approach283

has two problems: the estimation is overdetermined (two equations for four unknowns),284

and the realizations may not fluctuate around zero randomly (it might be possible that285

u1, . . . , u5 are positive and u6, . . . , u10 are negative, for instance). Hence one may add other286

equations such as
∑5

i=1 ui = 0,
∑10

i=6 ui = 0,
∑5

i=1 vi = 0 and
∑10

i=6 vi = 0. In general, one287

solves288

min
β,γ,ε,ρ

 10∑
i=1

ui


2

+

 10∑
i=1

vi


2

+

 5∑
i=1

ui


2

+

 10∑
i=6

ui


2

+

 5∑
i=1

vi


2

+

 10∑
i=6

vi


2

.

We do not recommend to use sums with less than five terms, because being normally289

distributed does not mean to alternate positive and negative values for each realization.290

Notice that the probability that a zero-mean normal random variable has constant sign for291

five consecutive realizations is 0.55 = 0.03125, which is less than the possible threshold292

0.05. That is why we partitioned at five terms. Let β̂, γ̂, ε̂ and ρ̂ be the estimates.293

M3: From (16) and (17), one may impose
∑10

i=1 ui = 0 and
∑10

i=1 vi = 0. But one also may use294

the fact that the moments of third order of a zero-mean Gaussian law are zero. Therefore,295 ∑10
i=1 u3

i = 0 and
∑10

i=1 v3
i = 0. The four equalities may have no suitable solution due to296

nonlinearities. In general, one solves297

min
β,γ,ε,ρ

 10∑
i=1

ui


2

+

 10∑
i=1

vi


2

+

 10∑
i=1

u3
i


2

+

 10∑
i=1

v3
i


2

.

1Given a general stochastic differential equation problem (13), the Euler-Maruyama scheme is

Xn+1 = Xn + b(Xn, tn)(tn+1 − tn) + σ(Xn, tn)(B(tn+1) − B(tn)),

and Milstein scheme is

Xn+1 = Xn + b(Xn, tn)(tn+1 − tn) + σ(Xn, tn)(B(tn+1) − B(tn)) +
1
2
σ(Xn, tn)

∂σ

∂X
(Xn, tn)

[
(B(tn+1) − B(tn))2 − (tn+1 − tn)

]
.

Milstein discretization presents higher order of convergence, in general. Precisely whenσ does not depend on X, Milstein
scheme reduces to Euler-Maruyama.
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M4: From (16) and (17), one may impose
∑10

i=1 ui = 0 and
∑10

i=1 vi = 0. On the other hand, let298

{Ft}t≥0 be the natural filtration of Brownian motion. As B(t + ∆t) − B(t) is independent of299

Ft, it holds E[B(t + ∆t) − B(t)|Ft] = E[B(t + ∆t) − B(t)] = 0. As a consequence,300

E
[

S (t + ∆t) − S (t)
√

∆t
− b1(S (t),O(t), t)

√
∆t

∣∣∣∣∣∣Ft

]
= 0

(analogously for O(t)). Since S (t) is Ft-measurable,

0 = S (t)E
[

S (t + ∆t) − S (t)
√

∆t
− b1(S (t),O(t), t)

√
∆t

∣∣∣∣∣∣Ft

]
= E

[
S (t)(S (t + ∆t) − S (t))

√
∆t

− S (t)b1(S (t),O(t), t)
√

∆t

∣∣∣∣∣∣Ft

]
.

By applying expectation,301

E
[
S (t)(S (t + ∆t) − S (t))

√
∆t

− S (t)b1(S (t),O(t), t)
√

∆t
]

= 0.

For t1, . . . , t10, the random variables within the last expectation are uncorrelated, therefore302

two new equations are derived:
∑10

i=1 siui = 0 and
∑10

i=1 oivi = 0.303

It is by no means clear which of the four approaches gives rise to more satisfactory results.304

Especially in our case study, in which only a small amount of data is available at spaced times.305

The performance of the different estimators must be studied through Monte Carlo experiments.306

3.4. Estimation of parameters: Maximum likelihood method307

The maximum likelihood estimation chooses the parameters that are most likely to have308

generated the sample. Let309

L(β, γ, ε, ρ, σ1, σ2|s1, . . . , o11) = π(S 1,...,O11)(s1, . . . , o11|β, γ, ε, ρ, σ1, σ2)

be the likelihood, where π is the probability density function. By maximizing it, it is maximized310

P[S 1 ∈ [s1, s1 + ds1], . . . ,O11 ∈ [o11, o11 + do11]] = L ds1 · · · do11.

From the law of total probability and the Markovian nature of (S (t),O(t)), the likelihood is fac-311

torized as312

L = π(S 1,O1)(s1, o1) ×
10∏
i=1

π(S i+1,Oi+1)|(S i,Oi)(si+1, oi+1|si, oi).

The main difficulty here is the computation of these transition densities, which satisfy the Fokker-313

Planck (or forward Kolmogorov) partial differential equation.314

We base on a different approach [28, pp. 118–121], [34]. The Euler-Maruyama scheme (14)
and (15) is used, which gives rise to simple Gaussian transition densities, obviously at the ex-
pense of an error:

π(S i+1,Oi+1)|(S i,Oi)(si+1, oi+1|si, oi)
= πNormal(si+b1(si,oi,ti)(ti+1−ti),σ2

1(ti−1−ti))(si+1)πNormal(oi+b2(si,oi,ti)(ti+1−ti),σ2
2(ti−1−ti))(oi+1)

=
1

σ1
√

2π(ti+1 − ti)
e
−

(si+1−si−b1(si ,oi ,ti )(ti+1−ti ))2

2σ2
1(ti+1−ti ) ×

1
σ2
√

2π(ti+1 − ti)
e
−

(oi+1−oi−b2(si ,oi ,ti)(ti+1−ti))2

2σ2
2(ti+1−ti ) .
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The first density, π(S 1,O1)(s1, o1), is the density of the two initial conditions S 0 and O0. Since315

these conditions are constant, their density function is a Dirac delta function. As there is no316

dependence on the flow parameters, these delta functions are typically disregarded.317

As a consequence, the log-likelihood is

logL ∝ − 10(logσ1 + logσ2) −
1

2σ2
1

10∑
i=1

(si+1 − si − b1(si, oi, ti)(ti+1 − ti))2

ti+1 − ti

−
1

2σ2
2

10∑
i=1

(oi+1 − oi − b2(si, oi, ti)(ti+1 − ti))2

ti+1 − ti
,

where ∝ denotes proportional, by omitting terms that do not depend on the flow parameters. By318

maximizing the log-likelihood (equivalently minimizing − logL) with respect to β, γ, ε, ρ, σ1319

and σ2, with µ and K given by (2), the maximum likelihood estimates β̂, γ̂, ε̂, ρ̂, σ̂1 and σ̂2 are320

obtained. This approach is called MLE2. There is also the possibility of using the deterministic321

estimates (6), so that the log-likelihood is only maximized with respect to σ1 and σ2. This322

strategy is referred to as MLE1.323

4. Numerical analysis324

In this section, we deal with the stochastic model (12) computationally. After reviewing the325

main commands for working with stochastic differential equations in MathematicaR©, the param-326

eters are estimated by employing the methods described in the previous section. A comparison327

between the methods is performed by evaluating the correspondence between the real system and328

the mathematical model. A sensitivity analysis is also conducted.329

For computational details, the reader is referred to [30]. The function ItoProcess defines a330

stochastic process that satisfies a stochastic differential equation. The standard Brownian motion331

is defined through WienerProcess. The instruction RandomFunction defines a realizable path,332

where the discretization of the time domain is specified. This RandomFunction can be evaluated333

at a particular time by using “SliceData”. When several paths are required to calculate statistics,334

the number of Monte Carlo simulations can be specified within RandomFunction. The statistics335

Mean and StandardDeviation are applied to RandomFunction. Minimization of a real function336

is conducted by NMinimize.337

Apart from providing code, [30] also estimates parameters for the FitzHugh-Nagumo model338

(two drift and one diffusion parameters), by minimizing the mean square error with respect to339

the deterministic fit. We checked that such approach does not give good results in our case study,340

since the deterministic fit does not seem to be significantly improvable in terms of mean square341

error and MAPE. Further, it is our opinion that the incorporation of diffusion terms does not342

necessarily seek pointwise improvements, but the inclusion of prediction intervals that capture343

the uncertainty and variability of data.344

Methods M1–M4 (moments) and MLE1, MLE2 (maximum likelihood), are applied. Recall345

that M1–M4 have the same formulas for the diffusion coefficients, but the differences arise from346

the flow parameters. Method M1 uses the deterministic estimates. Method M2 uses a zero mean347

value and a grouping of times. Method M3 uses third-order moments. Procedure M4 employs348

another statistic. On the other hand, MLE1 uses the deterministic fit and estimates only the349

diffusion coefficients by maximum likelihood. Strategy MLE2 estimates all of the parameters350

(drift and diffusion) by maximum likelihood.351
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For forward uncertainty quantification, 1000 realizations are used for the Monte Carlo simu-352

lation. In Table 1, the results are reported. The estimates of the flow parameters and the diffusion353

coefficients are tabulated. Also shown is the MAPE with respect to the mean value. Asymp-354

totic values are reported (PI stands for prediction interval), by keeping the parameters time-355

independent. To analyze whether the prediction intervals capture the eleven measurements, the356

probability of obtaining each measurement or beyond is determined, and the number (#) of those357

probabilities that are less than 0.05 is shown.358

M1 M2 M3 M4 MLE1 MLE2
β̂ 0.369 0.282 0.0591 0.427 0.369 0.345
γ̂ 0.0223 0.0259 0.0588 0.0329 0.0223 0.0261
ε̂ 0.0344 0.0451 0.133 0.0638 0.0344 0.0469
ρ̂ 0.241 0.184 0.0302 0.283 0.241 0.227
σ̂1 0.0202 0.0209 0.0392 0.0218 0.0196 0.0196
σ̂2 0.0157 0.0151 0.0190 0.0147 0.0149 0.0142
MAPE 3.2 3.3 7.2 3.6 3.2 3.2
E[S (∞)] 1.64 1.67 2.00 1.66 1.64 1.66
E[O(∞)] 1.06 0.96 0.881 0.86 1.07 0.84
PIS (∞) [1.59, 1.69] [1.61, 1.73] [1.78, 2.22] [1.61, 1.71] [1.59, 1.69] [1.57, 1.76]
PIO(∞) [0.95, 1.18] [0.86, 1.06] [0.76, 0.99] [0.77, 0.94] [0.96, 1.18] [0.68, 1.00]
#P[si] < 0.05 3 2 0 3 3 3
#P[oi] < 0.05 0 0 1 0 0 0

Table 1: Results of the different methods.

For M1 and MLE1, the flow parameters coincide with (6) by definition. The rest of strategies359

present different estimates. Method M3 is the one that deviates more from the deterministic fit.360

The flow parameters from MLE2 are the most similar to those from the deterministic fit. All361

methods have small diffusion coefficients, lower than (10). In terms of MAPE, M3 is the worst362

method. Procedures M1, M2, MLE1, MLE2, and those from [18], have comparable MAPEs,363

while the MAPE of M4 is slightly higher. All methods present a similar number of outliers,364

except M3, which precisely was the approach with higher MAPE by far. Ideally, the number of365

outliers for 11 observations should be 0 or 1, which is not the case. Asymptotically, M1, MLE1366

and Bayesian inference obtain close predictions.367

Figure 1 plots the model outputs. The solid line is the expected value. The shaded region is368

the prediction with 0.95 probability. The circles are the real measurements. The upper profile369

corresponds to the overweight class, while the lower profile to the obese group. All of the meth-370

ods render similar performance, except M3. In Figures 2 and 3, the probabilities of obtaining371

each measurement or beyond are determined (P[si] means P[S i > si] if it is less than 0.5 or372

P[S i < si] otherwise). They allow for assessing the suitability of the prediction intervals.373

Model selection should be based on MAPE, quality of the bands, and model simplicity. It374

is clear that method M3 is not the best. M4 exhibits a high MAPE measure as well. Strategies375

M1, M2, MLE1 and MLE2 present comparable fit, also with respect to [18]. But take into376

account that M1 and MLE1 are the simplest, because they employ the deterministic fit for the377

flow parameters and only estimate the diffusion coefficients. In performance, the only significant378

difference between these four methods is the asymptotic behavior. Procedures M1 and MLE1379
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Figure 1: Predictions of the models (left-up panel is M1, right-up panel is M2, left-center panel is M3, right-center panel
is M4, left-down panel is MLE1, right-down panel is MLE2). The solid line is the expected value. The shaded region
is the prediction with 0.95 probability. The circles are the real measurements. The upper profile corresponds to the
overweight class, while the lower profile to the obese group.
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Figure 2: Probabilities of obtaining each measurement or beyond (M1–M4 from top to bottom). The threshold 0.05 is
highlighted.
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Figure 3: Probabilities of obtaining each measurement or beyond (MLE1 at the top and ML2 at the bottom). The
threshold 0.05 is highlighted.

agree with Bayesian inference. Methods M2 and MLE2 are slightly different to them, especially380

regarding the asymptotic obese subpopulation which is rendered lower prevalence. Nonetheless,381

they are limited in the sense that the number of outliers is 2 (for M2) or 3, which might be too382

many for just 11 observations. The prediction intervals should ideally be wider.383

A MAPE-based sensitivity analysis underscores, as in [18], the importance of prevention384

strategies. Each flow parameter is set to 0 and the inverse methods are applied. The higher the385

new MAPE is, the more important the removed parameter is. By order of higher influence, one386

has γ, β, ρ and ε. For example, within the framework of MLE2, the MAPEs are 21.9, 17.4, 7.1387

and 5.8, respectively. The coefficient γ controls the flow from the overweight class to the obese388

class. The parameter β describes the movement from the normal weight group to the overweight389

group. Health-related communication campaigns [35, 36] should be implemented to prevent390

people from becoming unhealthier. This is the best approach to stop or at least alleviating the391

obesity epidemic.392

5. Conclusion393

Mathematical models are a useful tool to describe the evolution of diseases and assess the394

impact of control measures. Our case study has been the excess weight dynamics in the Spanish395

adulthood population. Data from 1987 to 2017, at eleven periods of time, have been available396

thanks to the ENSE and INE.397

A recent contribution, [18], studied these data through a compartmental system of ordinary398

differential equations. The compartments were normal weight, overweight, and obesity. The399
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parameters that control the flow between the subpopulations were estimated by minimizing the400

mean square error. Random versions of the proposed model were studied by means of frequentist401

nonlinear regression and Bayesian inference.402

Frequentist nonlinear regression and Bayesian inference exhibit some drawbacks [18, 25].403

The former entails inaccuracies due to linearization, clearly visible when extrapolation for forth-404

coming years is carried out. The latter, by contrast, is based on exact formulas, but in practice405

it is simulated by Markov Chain Monte Carlo algorithms, which may be complex and time-406

consuming.407

In the present paper, the deterministic formulation of the model from [18] has been modi-408

fied by adding Gaussian white noise random perturbations into the response derivatives. This409

has given rise to Itô stochastic differential equations driven by Brownian motions. The solu-410

tion, which gives the number of overweight and obese adults in Spain at each year, has been a411

stochastic process. Existence and uniqueness of solution has been established, as well as moment412

bounds. From the Euler-Maruyama discretization, different inverse strategies have been applied413

for estimating the parameters: M1–M4, based on the moments method, and MLE1 and MLE2,414

relying on maximum likelihood estimation. The former has been based on obtaining information415

concerning the statistics and equating them to the sample statistics. The latter has been based416

upon Gaussian transition densities and a minimization procedure.417

The numerical experiments have been summarized in Table 1 and Figures 1, 2 and 3. Meth-418

ods M1, M2, MLE1 and MLE2 have presented the best fit, in terms of MAPE and prediction419

intervals. Procedures M1 and MLE1, which employ the deterministic fit for the flow parame-420

ters and only estimate the diffusion coefficients, are the simplest and have provided very similar421

results to the Bayesian inference from [18], avoiding its computational complexity and running422

time. Nonetheless, the four methods are limited in the sense that the number of outliers is 2 (for423

M2) or 3, which might be too many for just 11 observations. The prediction intervals should424

ideally be wider.425

The MAPE-based sensitivity analysis has agreed with [18], which gives priority to prevention426

interventions over treatment strategies.427
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