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ABSTRACT Recent studies in the light field imaging have shown the potential and advantages of different
light field information processes. In most of the existing techniques, the processing pipeline of light field
has been treated in a step-by-step manner, and each step is considered to be independent from the others.
For example, in light field color demosaicing, inferring the scene geometry is treated as an irrelevant
and negligible task, and vice versa. Such processing techniques may fail due to the inherent connection
among different steps, and result in both corrupted post-processing and defective pre-processing results.
In this paper, we address the interaction between color interpolation and depth estimation in light field, and
propose a probabilistic approach to handle these two processing steps jointly. This probabilistic framework
is based on a Markov Random Fields —Collaborative Graph Model for simultaneous Demosaicing and
Depth Estimation (CGMDD)—to explore the color-depth interdependence from general light field sampling.
Experimental results show that both image interpolation quality and depth estimation can benefit from their
interaction, mainly for processes such as image demosaicing which are shown to be sensitive to depth
information, especially for light field sampling with large baselines.

INDEX TERMS Light field, demosaicing, depth estimation, Markov random field, graph model.

I. INTRODUCTION
With the proliferation of 3D imaging applications in the
consumer markets, the processing of light field (LF) data has
attracted significant interest from both academia and industry.
Despite the maturity in conventional image processing
techniques, the unique 4D structure of the light field proposes
singular challenges, such as light field demosaicing, all-in-
focus image reconstruction and depth estimation. However,
the error propagation and dependency of different steps
within the processing pipeline (Fig. 1) are barely discussed,
and open up for several processing improvements.

Most of the previous works on demosaicing suggest
interpolating missing colors from the local neighborhood on
the sensor plane [1]–[4]. Such schemes are rooted from the
fact that the surroundings of the scene are stored in adjacent
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pixels in conventional cameras. However, this adjacency
condition is suboptimal to raw images captured by plenoptic
cameras or multi-camera setups, as shown in Fig. 2.
Another fundamental problem in light field processing is

to estimate the depth map, and it serves as a prerequisite
for a variety of applications, ranging from virtual reality
[5]–[7] to microscopy imaging [8], [9]. Though numerous
depth estimation approaches have been proposed over the
last decade, for example, stereo matching [10]–[13] and
shape from focus [8], [14], [15], it is worth noting that
the photo-consistency condition holds for all of them.
Unfortunately, the photo-consistency criterion could be
corrupted and no longer apply once demosaicing is ill-posed.
Such data interpolation induces artifacts which will make the
cross-view matching intractable, especially for pixel-based
depth estimation such as [16].

Clearly, the classical sequential pipeline in Fig. 1 for light
field capturing and processing is an ill-posed solution to
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FIGURE 1. Classical light field capturing and processing pipeline.
Post-processing steps are performed after the raw data captured on the
sensor is pre-processed, CFA and ADC refer to color filter
array (downsampling) and analog-to-digital converter (quantization)
respectively.

both demosaicing and depth estimation in which inherent
ambiguities are omitted. Additionally, the classical algo-
rithms which are merely based on vision cues also suffer
from noise in image formation, textureless and homogeneous
regions, depth discontinuities and occlusions, which can only
be handled by compromising computational complexity [3],
[4], [15]. One potential solution to these challenges is
to formulate correlated processes in a cascade approach
[17], [18]. As opposed to the sequential pipeline, such
cascade approach benefits from other correlated processes,
regardless of their sequential order in traditional pipeline,
so that the overall performance of different tasks can be
improved in a recursive manner until desired result is
attained. However, the cascade approach does not prevent
error propagation among processes and inconsistent results.

In this work, we consider the interaction between the
demosaicing and depth estimation problems from raw data
of color light fields. Towards this end, we propose a
Collaborative Graph Model for Demosaicing and Depth
Estimation (CGMDD). We formulate the inter-dependence
between color and depth during the interpolation and
estimation process as data terms in an Markov Random
Field (MRF) framework. It has been reported in [12], [16]
that the image noise, depth discontinuities and occlusion can
be naturally incorporated in the MRF framework because of
its outstanding adaptability. Therefore, themain contributions
of the work are:
(1) A probabilistic model CGMDD to address the corre-

lation between color intensities and pixel-wise dense
depth map of light field data.

(2) A joint solution for color demosaicing and depth
estimation of light field data based on the proposed
MRF probabilistic model.

The rest of paper is organized as follows: After reviewing
related work in Section II, we propose in Section III an
MRF framework CGMDD to explicitly model the correlation
between color and depth, and data terms are then devised
according to light field properties. In Section IV, the revised
pipeline is introduced based on the general light field
sampling pattern. Extensive experimental results with both
synthetic and real light field datasets are shown in Section V,

comparing with state-of-the-art approaches for demosaic-
ing and depth estimation, respectively. In Section VI,
we discuss the limitation of CGMDD and its adaptability
based on different needs and assumptions. Finally, we con-
clude our work and describe future research directions in
Section VII.

II. RELATED WORK
In this section, we briefly review the related research on light
field demosaicing, depth estimation, and the application of
MRF models in this context.

A. LIGHT FIELD DEMOSAICING
The physical property of CCD sensor allows each pixel
to record only one intensity value out of three color
channels. The upsampling process from raw sensor data of
a single channel to full resolution color images is referred
to as demosaicing. A comprehensive survey on classical
demosaicing approaches can be found in [1].

Unlike classical demosaicing which has been studied
since the emergence of color digital cameras [1], light
field demosaicing has been overlooked for years. A widely
used pipeline bluntly interpolates the missing color channels
from neighboring pixels [3]. The work in [4] considers the
vignetting problem in the microlenses by incorporating a
white image to assign appropriate weights to pixels. Such
white-image-based demosaicing method is further improved
in [19] by incorporating a LFBM5D filter for plenoptic
data. Besides, the authors in [20] include a learning process,
in which a dictionary is trained beforehand to learn spatial
and angular correlations. All of the aforementioned methods
decoupled the demosaicing process with respect to depth
information. The only exceptions are [17], [21], and [18].
In [17], the disparity is estimated to enable cross-view
demosaicing, whereas in [21] depth-dependent blur are
taken into account by employing Fourier Disparity Layer
representation of the light field so that depth does not need
to be explicitly estimated.

In our previous work [18] the raw pixel values are
projected into a layered object space and then demosaicked
on different depth planes in order to achieve a desired
demosaicing result. However, the performance of such
depth-based methods heavily rely on the accuracy of the
estimated depths even if depth layers are used to compensate
for such erroneous depths. In the worst case scenario, the
quality of depth estimation conditions the accuracy of the
subsequent processes, including further optimization and
refinement of both color and depth results.

B. DEPTH RECONSTRUCTION OF LIGHT FIELD
Stereomatching algorithms generate sparse and feature-based
depth maps, searching for one corresponding patch for
each region of interest (ROI) [22]. Although more and
more research focuses on generating dense depth maps [8],
[9], [13], [15], the feature-based methods have gained its
attention thanks to machine learning and mobile applications.
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In [23], features and their descriptors are extracted from
cross-hair views by training a lightweight convolutional
neural network (CNN).

The dense stereo matching algorithms use a finite sliding
window with various likelihood functions to determine
how likely a pair of pixels correspond to each other. The
most common functions include sum of absolute difference
(SAD) [24], sum of squared difference (SSD) [25], normal-
ized cross-correlation (NCC) [8], and rank transform [26].
The basic problem of local methods is to provide sufficient
variation within the window while localizing accurate
disparity. A large window has a higher probability of
providing such information, whereas a small window locates
correspondences more accurately.

Additionally, the abundant angular information of light
field also gives rise to the epipolar plane image (EPI)
and the focal stack. There are mainly two challenges for
EPI-based methods: occlusion handling and line ambiguity.
Huang et al. [27] proposed to remove the influence of the
noise by employing a weighting mean filter which is guided
by the color image. Zhang et al. [28] developed the robust
depth estimation via spinning parallelogram operator (SPO)
which uses a parallelogram operator to determine the local
direction of epipolar line and it is less sensitive to occlusion
compared with stereo matching. In [29], EPIs are shifted
in order to retain the receptive field so that small-baseline
trained networks can be adapted to estimate depths for large-
baseline applications.

By integrating angular samples at different depths, focal
stack enables depth from focus (DfF) approach for estimating
depth [8], [30]. Central to the DfF approach is the use of
photo-consistency constraint. It is often assumed the metric
for focus/defocus cues will attain the extremum when the
image is sharp [8]. Otherwise, constraints and assumptions
such as single occluder and partial photo-consistency are
often made, as in the occlusion-aware depth estimation
(OCC) [15]. Other approaches are based on CNNs, as in [31],
where three CNNs are combined to first generate all-in-focus
image from the focal stack, followed by depth estimation and
optimization steps.

On one hand, the local depth estimation methods suffer
severely from occlusions, noise, depth discontinuity and
light field sparsity. On the other hand, learning-based
methods require massive data and are time consuming for
the training stage. Such problems can be jointly addressed
as a global optimization problem using Markov Random
Field (MRF) [32]. Compared with the local methods, the
global methods make explicit assumptions of the smoothness
constraint instead of local aggregation, trying to find a
global minimum for the cost function, i.e. the image energy
function [12], [16]. The formulation of the cost function
is thus the key of global methods. Kolmogorov encoded
photo-consistency, smoothness constraint and visibility into
the cost function [33]. In addition, Wang et al. incorporated
vision cues in a separate occlusion predictor to deal with
occlusions [15] in plenoptic cameras. Sheng et al. combine

the priors of depth cue and scene geometry under the
assumption of local depth consistency [34].

In this paper, we focus on the problem of inferring depth
in light field imaging from a collaborative viewpoint with
respect to the demosaicing process using anMRF framework.
As already mentioned, demosaicing can benefit from depth
information and both processes can be addressed in a mutual
way in light field processing. Experimental results show that
demosaicing is severely influenced by the preprocessing of
depth estimation, and the desired performance is attained by
modeling a joint probability framework combining both color
and depth in light field processing.

III. INITIALIZATION OF THE MULTIVIEW SYSTEM
In this section, we perform the initial depth estimation and
demosaicing based on DfF and refocusing respectively. The
initial color and depth are then used for MRF optimization.
First, we directly demosaic the raw light field data to refocus
at different depths. Then, we use the generated full color
focal stack to estimate the initial depth for each pixel, while
a blurring cost based on photo-consistency is calculated for
further optimization. Finally, the preprocessed light field is
propagated to the joint MRF optimization block, as shown in
Fig. 3.

A. INITIAL COLOR DEMOSAICING
For a given captured light field, the raw data are often
organized in different manners, as shown in Fig. 2. However,
it is feasible and natural to represent light field data in the
form of different views. Let L = (u, v, x, y) be the two-plane
parameterization of a light field, where (u, v) and (x, y) are
the camera plane and focal plane respectively. Thus, the raw
pixel (x, y) of view I (u, v) can be calculated as a sheared
perspective projection of (x, y). The light field L can be used
to compute and reconstruct images at any sensor depth Z =
αf :

Iα(u, v, x, y) = L(u, v, x + u(1−
1
α
), y+ v(1−

1
α
). (1)

If the focal length f is given, and we define the central view as
I (u0, v0), we can find the corresponding pixels (x +1x, y+
1y) in other views I (u, v) from calculating disparity 1x,1y
with respect to the scene depth Z as:

1x(u, v,Z ) =
f · Bu · (u− u0)

Z
,

1y(u, v,Z ) =
f · Bv · (v− v0)

Z
, (2)

where B is the baseline distance between adjacent views in u
or v direction.

Consider an object on the sampling plane, as shown in
Fig. 2; there exists a set of pixel correspondences that capture
the angular information of the same scene. Although each
pixel captures only one color channel of the scene at depth
Z , the color information can be recovered by (1) importing
the other two channels from its correspondences, or (2) inter-
polating from the nearest samples on the sampling plane.
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FIGURE 2. Sampling models for different light field acquisition setups, (a) conventional plenoptic camera, and (b) spatial/temporal
multi-camera system. For simplicity, only principal rays are considered and note that the light field is organized in different manners for
each setup, where red and blue lines represent the ray propagation of two microlenses in (a) and two different camera lenses in (b).

Therefore, RGB triplets of a pixel (x, y) are noted
as C(x, y). By traversing the depth range, we perform
demosaicing based on each refocus plane Z to retrieve the
initial color CZ (x, y) for view I (u, v), the demosaicing and
refocusing process is summarized in Algorithm 1. Note
that the proposed demosaicing in Algorithm 1 is done by
interpolating the colors from the different views I (u, v) at
the refocused Z plane, not as in the traditional demosaicing
approaches where color is interpolated on either the image
plane or the sensor plane. By repeating Algorithm 1 for
each depth Z in the depth range, a color focal stack CZ (x, y)
of the demosaiced view I (u, v) can be generated. Note that
the proposed demosaicing in Algorithm 1 is not based on
the sensor structure, but the sampling adjacency at different
depths Z .

B. INITIAL DEPTH ESTIMATION
A simple and efficient DfF approach is used after the
full-resolution color focal stack CZ (x, y) of the light field
L for a given view (u, v) is generated from Algorithm 1.
A photo-consistency based criterion is used to check where
the scene is in focus among the focal stack. In order to
minimize the effect of sensor noise in the photo-consistency
metric, we take as the photo-consistency measure the median
of absolute difference in each color channel of the color
captured from the different views (u, v) with respect to the
color at pixel (x, y) on the refocused plane CZ (x, y) at a given
depth Z . By summing up the median of absolute differences
in each channel, a photo-consistency measure ε(x, y,Z ) can
be calculated at depth Z :

ε(x, y,Z ) =
∑

{R,G,B}∈C
median
C∈(u,v)

|C(x −1x(u, v,Z ),

y−1y(u, v,Z ))− CZ (x, y)|. (3)

Algorithm 1 The Initial Demosaicing Algorithm
Input: Raw view I (u, v), LF views I (u′, v′), depth Z
Output: estimated color image Î (u, v) at depth Z

1: update disparity 1x,1y for LF views I (u′, v′);
2: for color channels c ∈ C do
3: if I (u, v, x, y) captures color c then
4: Î (u, v, x, y)← I (u, v, x, y)
5: else
6: if I (u′, v′, x +1x, y+1y) captures color c then

7: Î (u, v, x, y)← 1
N

N∑
i=1

I (ui′, vi′, x+1x, y+1y)

8: else
9: back-project views to sensor depth αF
10: Î (u, v, x, y)← bilinear interp. of Iα
11: end if
12: end if
13: update color channel c of Î (u, v, x, y)
14: end for
15: update color pixel Î (u, v, x, y)
16: return Î (u, v)

Thus, the corresponding depth Z0 is assigned when the
minimum ε is found, that is,

Z0(x, y) = argmin
Z

ε(x, y,Z ). (4)

In other words, ε indicates how reliable the estimated depth
is, the lower an ε value, the more confidence we have in the
initial estimated depth. This information is further used the
regularization process in the proposed framework.

IV. COLLABORATIVE MODEL FOR DEMOSAICING AND
DEPTH ESTIMATION
It is proven in our previous work [18] that color recovery
and depth estimation are implicitly correlated for two
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FIGURE 3. The processing flow chart of the proposed CGMDD framework, which is based on two sequential steps: the initial depth estimation and
demosaicing pre-processing block (Section III) together with the joint MRF optimization block (Section IV).

reasons: 1) an ill-posed demosaicing approach for light
field data has a negative impact on photo-consistency check
or finding the correct stereo correspondences, and 2) the
demosaicing based on estimated depth outperforms blind
color interpolation based on sensor adjacency but influenced
by the accuracy of estimated depths. Therefore, in order to
address this interaction problem of color demosaicing and
depth estimation, we propose a joint probability model based
on a MRF model.

MRF is an undirected probabilistic graphical model, which
consists a set of nodes i = 1, . . .N (pixels located at (xi, yi)
in an image model), and each node corresponds to a set of
random variables, that is, interdependent color intensities and
depths (ci,Zi) in the proposed model. In such a model, any
pair of nodes i, j are independent if they are not directly
connected through an edge. In other words, a MRF is a
countable set of random variables X = (c1,Z1), . . . (cN ,ZN )
with local interactions, and each variable (ci,Zi) interacts
only with other nodes j in the local neighborhood, according
to the graph topology defined by the so-called Markov
blanket.

According to the Hammersley-Clifford theorem, the MRF
defines a joint probability distribution P(X ) of the form

P(X ) =
1
Z
exp−(E(X )/T ), (5)

being Z the partition function, T the temperature and E(X )
the energy of the random field. The solution of the problem is
then cast into an energy minimization process, since the most
probable value of the field X∗ = argmaxX P(X ) is the one
that minimizes the energy X∗ = argminX E(X ). The energy
of the MRF is defined as

E(X ) =
∑
i

Edata(i)+ λ
∑

i,j∈N (i,j)

Esmoothness(i, j), (6)

The Edata term of the energy accounts for the unary terms or
single node cliques in the MRF graph, while the Esmoothness,

also called binary term, represents the interaction between all
neighbour pairs N (i, j) in the image assuming a 4-connected
neighbour image topology, that is, the two-nodes cliques in
the MRF graph. Although other higher order connectivity
schemes could be explored, the proposed approach develops
a first order MRF graph for the sake of efficiency.

A. DATA ENERGY TERM
In this context, let us define the corresponding data and
smoothness energy terms in the proposed CGMDD model.
Therefore, as a photo-consistency criterion, we introduce the
following data energy term that models the joint relationship
between color intensities and depth as

Edata(i) = − log pi(c,Z ), (7)

where pi(c,Z ) is the joint probability that a pixel i is assigned
color intensity c and depth Z . Furthermore, applying the chain
rule, pi(c,Z ) can be expressed as

pi(c,Z ) = p(c,Z |(xi, yi)) = p(c|Z , (xi, yi))p(Z |(xi, yi)) (8)

where (xi, yi) is the image location of pixel i, p(c|Z , (xi, yi))
is the probability of assigning a color intensity to a pixel
(xi, yi) at a given depth Z and p(Z |(xi, yi)) the probability of
assigning a depth Z to the pixel.
Image refocusing to a given depth Z provides information

to estimate the conditional p(c|Z , (xi, yi)) as

p(c|Z , (xi, yi)) =
1
N

N∑
u=1

δ(ci(u), c) (9)

being ci(u) is the color intensity of the projected refocused
point (xi, yi,Z ) in image view u, and N the number of views
in the LF. That is, this conditional expresses the frequency
that a color intensity c appears in the refocused point from
the LF values.
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Besides, we propose that photo-consistency criterion to
be based on the measure ε calculated in equation (3).
This photo-consistency criterion is then defined through the
conditional p(Z |(xi, yi)), as it indicates the color consistency
of the refocused image views intensities at each depth layer
Z . Formally, the probability of a pixel (xi, yi) to be sampled
at depth Z is defined as:

p(Z |(xi, yi)) = 1−
ε(xi, yi,Z )w(xi, yi,Z )∑
Z ′ ε(xi, yi,Z ′)w(xi, yi,Z ′)

, (10)

where ε represents the inversely proportional confidence ratio
as defined in Equation (4) and w(xi, yi,Z ) is the absolute
difference between ground truth color C(xi, yi) in any channel
of the raw sensor image and the estimated color intensity
CZ (xi, yi) at depth Z (see Algorithm 1):

w(xi, yi,Z ) = |C(xi, yi)− CZ (xi, yi)| . (11)

Given the raw data and the pixel location (xi, yi), only one
color channel is valid for comparison. The denominator in
equation (10) normalizes the probability to the range [0, 1].
In essence, the introduced data term describes how reliable
an estimated depth is, based on the prior knowledge of
observation of the raw color information and the estimated
color for a refocused image plane depth, as the proposed
interpretation of the photo-consistency criterion in this
framework.

B. SMOOTHNESS ENERGY TERM
The pairwise term describes the interactions between random
variables (nodes directly connected in the MRF graph), and
it provides the smoothness constraint to the regularization
process. It is intuitive that one must avoid edges when
interpolating color. Thus, we propose the use of the refocused
image gradient as smoothness constraint in the pairwise
term, rather than the gradient of the different perspective
images (views) in the LF. The refocused image can be
generated by using Eq. (3), as rendering the mean intensity
values at the estimated initial depth Z0:

I(x, y) =
1

M · N

M∑
u=1

N∑
v=1

C(x −1x(u,Z0), y−1y(v,Z0)),

(12)

where M and N are the numbers of view samples of u and v
respectively.

The gradient of the refocused image encodes the edge
information in the reconstructed view. Therefore, the larger
the gradient is between two neighbouring pixels, the less
correlated the corresponding nodes pair is. That is, let us
define the weight of every node pair in the graph as:

w(i, j) = exp
(
−0.5 ·

|∇x,yI|
max |∇x,yI|

)
, (13)

where ∇ is the gradient operator in either x or y direction.
Gradient in x direction is used between node pairs (i, j) in x
direction and analogously between neighbouring nodes in y

direction. This weight tends to be 0 when gradient between
neighbouring pixels is high and it tends to be 1 when gradient
is low.

As smoothness criterion, the differences in the color
intensity (ci−cj) and depth (Zi−Zj) assigned to neighbouring
pixels are used. Thus, let us define the similarity S(i, j)
between neighbouring pixels as

S(i, j) = 1− exp {−
|ci − cj||Zi − Zj|

σ 2
s

}, (14)

where σs is the allowed deviation in the color intensities and
depth differences. This similarity S(i, j) tends to be 0 when
neighbouring pixels have the same color intensity and the
same depth, and it tends to be 1 otherwise. Thus, the final
smoothness energy term Esmoothness(i, j) between any two
neighbouring nodes (i, j) is then defined as

Esmoothness(i, j) = w(i, j)S(i, j), (15)

This smoothness energy term try to force similar values of
color intensities and depths between neighbouring pixels but
limiting the smoothness between nodes that exhibit a signifi-
cant gradient magnitude in the corresponding direction.

C. ENERGY MINIMIZATION
Once the MRF energy of the proposed CGMDD has been
defined, in order to solve the energy minimization and find
a solution, that is, the image view color intensities and depth,
optimization methods such as simulated annealing (SA) [35],
graph cut [15], and max-flow min-cut algorithms [36] can
be used. Note that the final result is influenced by the
relative weight between the data and smoothness energy
terms we choose, that is, the trade-off parameter λ, but not
by the optimization approach as long as it manages to find a
satisfactory energy minimum.

In the case of color LFs, for the sake of simplifying com-
putational complexity, the above described MRF framework
is applied to one of the color channels c for each view I (u, v),
in this case the G channel. Once the joint estimation of
color intensity and depth is solved for the G channel, depths
obtained are used to reconstruct the demosaiced R and B
channels of each view using the Algorithm 1.

V. EXPERIMENTS
A. DATASETS
Extensive experiments of various datasets have been con-
ducted to validate the effectiveness of the proposed CGMDD
for joint image demosaicing and depth estimation. Generally
speaking, LF datasets can be classified in terms of the
generation method. Synthetic LF provides a reliable ground
truth while the real LF reflects more on the practical
application. For a comprehensive comparison, three publicly
available datasets are used in this work ([37]–[39]), ranging
from sparse synthetic light field to densely sampled Lytro
captures. Table 1 summarizes the characteristics of example
scenes from the chosen datasets.
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TABLE 1. Light fields for experimental results from different datasets.

The raw data from different datasets are of different param-
eterizations, for example, scene bathroom ([37]) generated
from 3DS max and Chess/Truck ([39]) captured by camera
gantry encoded the LF in the form of horizontal and vertical
views, whereas scene Pillars/Bikes ([38]) captured by Lytro
Illum was organized as a sequence of raw 2D lenslet images.
Therefore, for consistency of the representation and without
losing generality, we simulate the raw sensor image capture
using an imaginary plenoptic camera: we parameterize each
LF as a 2D representation such that U ×V angular views (of
size X×Y pixels) are concatenated into a simulated plenoptic
sensor pixel grid. The filtering behavior of a Bayer pattern
CFA is then simulated by applying a color masking on the
original color LF to obtain a mosaiced LF, as shown in the
preprocessing block of Fig. 3.

B. DEMOSAICING
The conventional image processing pipeline, as shown in
Fig. 1, takes raw data on the sensor for color interpolation
based on the pixel grid. In the synthetic dataset ([38]), the
ground truth color is available since no CFA is directly
applied. One should be aware that in other two datasets
([37] and [39]), the full-resolution color images are in fact
processed by camera built-in functions. In such cases, we can
take the original color images as our baseline to evaluate the
information loss and visual artifacts after applying different
demosaicing schemes.

To validate the effectiveness of the CGMDD, we compare
the demosaicing result with the original data, a widely used
LF toolbox [3], and two different state-of-art methods: the
residual interpolation for color demosaicing (RID) [40] and
the white lenslet image guided demosaicing (WLIG) [4].
Each of the aforementioned demosaicing schemes takes the
simulated mosaicked sensor image as the input, and try to
predict the missing color channels at each pixel location. For
all the compared methods, the structural similarity SSIM [41]
between the original data and the restored color images
is introduced as the objective evaluation metric, as SSIM
is currently considered to be a standard measurement for
the perceived quality assessment which considers image
degradation. We use the mean SSIM (MSSIM) for each scene
as an overall performance score of demosaicing methods.
Additionally, under the assumption that SSIM distribution
follows a normal distribution, an inferential conclusion of
99% confidence interval (CI) is then calculated to report the
statistical significance between the investigated demosaicing
methods, as shown in Table 2.

It can be seen from Table 2 that in case of small baseline
(e.g. plenoptic camera) and densely sampled LF, all different
LF demosaicing methods perform quite well. However, as the
sampling frequency decreases, there shows a significant
pitfall for LF toolbox, RID and WLIG. This is due to the
fact that the reference algorithms bluntly demosaic the LF
based on the pixel grid on the sensor, without considering
the sampling adjacency in the scene. Such brutal-force
demosaicing methods are severely affected by planar edges
and varying depth as it essentially interpolates in the angular
domain. When the baseline is large, meaning that the angular
resolution is low, some properties such as non-lambertian
scene can be mis-recognized as planar edges, and the
occlusion problem can be treated as varying depth bymistake.
On the contrary, our proposed CGMDD employs both depth
variance and edge map to assist the partitioning of the scene,
resulting in a significant improvement in the demosaicing
task.

We further show the visual comparison of the demosaicked
images of different demosaicing methods in Fig. 4. It empha-
sizes the blurring effects introduced by LF toolbox, RID and
WLIG with both demosaicked images and the error image.
Whereas no obvious color difference can be found between
the color image demosaicked by CGMDD and the ground
truth. Instead of the absolute color error, we show the color
image details when ground truth color is not available in
Fig. 5. Note that in the scene Pillars, we do not outperform
the other demosaicing methods in objective test. This is due
to the intractable depth estimation when the image is exposed
to lighting and homogeneity problem, and such depth error
can have a negative impact on the demosaicing result as
discussed above. A similar effect can also be slightly seen
in Pillars. However, CGMDD still removes visual noise in
the zoom-in box in the demosaicked image. Additionally,
in test scene Bikes, the color tone is not consistent with the
original image in LF toolbox, RID and WLIG, while the
proposed CGMDD keeps faithful color. In Chess, noticeable
blur appear in LF toolbox and WLIG while the proposed
CGMDD and particularly RID preserve the edges. In Truck,
visual artifacts, such as zipper effect, can be observed in
images demosaicked by LF toolbox, RID and WLIG, while
such artifact is eliminated in the proposed CGMDD.

C. DEPTH ESTIMATION
Although the original aim of this work was to design a
demosaicing algorithm which could benefit from the joint
estimation of depth, along with the demosaicing comparison
and for the sake of completeness, we conduct depth
estimation experiments by comparing to several unsupervised
depth estimation methods which use depth from defocus [15]
and EPI [27], [28] in light field imaging. Additionally,
we include in this comparison a recent deep learning
model for light field depth estimation, i.e. the multi-scale
aggregated network (MANet) [43], with the objective of
contrasting the qualitative performance of the proposed
approach with respect to this state-of-the-art CNN-based
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TABLE 2. Quantitative demosaicing results in terms of average MSSIM and 99% confidence interval (CI) obtained from all light field views.

FIGURE 4. Left: the ground truth color image for the central view of Bathroom. Right: the top row shows the different demosaicing artifacts using LF
toolbox [3], WLIG [4], RID [42] and the proposed CGMDD, and the bottom row are the corresponding color difference maps.

model. It is important to note that the proposed approach
in an unsupervised method (it does not require any training
data) whereas MANet is a supervised model that requires a
training stage. Hence, we make use of the pre-trained weights
provided by MANet authors,1 which have been learnt over
the CVIA-HCI collection [44]. Since this collection is made
of 9 × 9 light fields, we only consider the 9 × 9 central
views of Pillars, Bikes Chess and Truck to make these
experiments possible. The input to all the depth estimation
algorithms are color images demosaicked with LF toolbox.
In addition to the visually oriented metric MSSIM used in
demosaicing comparison, we also employ root-mean-square
error (RMSE) [45] to indicate the information loss and depth
fidelity. Note that such comparison is limited to the synthetic
dataset (Bathroom) where ground truth depth is available.
Besides, only unsupervised depth estimation methods are
involved since the synthetic dataset (with 7× 7 views) is not
compatible with considered pre-trained model. As we can see
from Table 3, our method outperforms the others in RMSE
and MSSIM, indicating that it gives a more visually similar
and accurate depth map to the ground truth depth.

Supplementary results are shown in Fig. 7 for subjective
evaluation. It can be seen that the performance of state-of-
art methods deteriorate heavily when the LF is demosaicked
based on the sensor plane structure. This is because

1https://github.com/YanWQ/MANet

the conventional LF demosaicing process induce artifacts,
especially for peripheral views and large baselines. Such
demosaicing errors do not only break the photo-consistency
constraint, resulting in wrong correspondences for local
methods, but also smear out the edge structure which
causes flattened ambiguous depth for object borders. More
challenges arise with sparse light fields, where EPI-based
method [27], [28] tend to work well with densely sampled
light field rather than in the case of sparsely sampled
ones. A pitfall in performance is also observed with OCC
when the scene is sparse. This is due to the sensitive
trade-off between data term and smoothness term in the
formulated energy function. In the case of MANet, it is
possible to see a qualitative performance very similar to the
proposed approach one. Nonetheless, the pre-trained model
certainly shows a higher output noise level (e.g. Pillars
and Chess) while being constrained to a specific plenoptic
camera configuration. Compared with the abovemethods, the
proposed CGMDD performs robustly with both sparsely and
densely sampled LF. Thanks to the energy terms introduced
in Section IV, based on the proposed interpretation of the
photo-consistency criterion and the combined color-depth
smoothness constraints, CGMDD does not solely depend
on the demosaicked pixel or erroneous depth. The resulting
depthmap is consistent throughout the depth range because of
the regularization process performed during the MRF energy
minimization.
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FIGURE 5. Visual comparison for different demosaicing methods, with magnified region in red box shown to the top right corner for more details. From
left to right: original image, demosaicing methods using LF toolbox ([3]), WLIG ([4]), RID ([40]) and the proposed CGMDD.

FIGURE 6. Left: the ground truth depth information extracted from the synthetic scene. Right: the top row shows the estimated depth map for using
OCC ([15]), EPI ([27]), SPO ([28]), and the proposed CGMDD respectively, and the bottom row are the corresponding depth error images (absolute error
taken here).

VI. DISCUSSION AND LIMITATIONS
The proposed CGMDD model is developed based on the
sampling behavior of the LF capturing devices, which makes
it highly adaptable to different systems and different appli-
cations. In other words, it can be tailored to fit into different
graph models with small effort. In this paper, we propose the

use color gradient, confidence map and the depth difference
as our prior knowledge to formulate the energy function
to explain the inherent interdependence between color and
depth. As already stated, the original objective of this
work was to propose a demosaicing algorithm that could
benefit from the use of depth information. Thus, instead of
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FIGURE 7. From left to right: the estimated depth map by using OCC ([15]), EPI ([27]), SPO ([28]), MANet ([43]), and the proposed CGMDD are shown
respectively. Since the ground truth depth is not available, we subjectively evaluate the visual effects of these depth maps.

TABLE 3. Quantitative depth estimation results for bathroom in terms of
RMSE and MSSIM.

using independent approaches for demosaicing and depth
estimation, in this paper we focus on creating a formalism
which combines demosaicing and depth estimation to solve
their interdependence dilemma. Therefore, we do not apply
sophisticated prior conditions or assumptions to the scene
content in order to make the discussion more general.
However, more constraints and cues can be encoded to further
refine the result once the LF capturing system or application
is chosen.

Like any other framework which uses MRF, weights
between different priors have to be set carefully. In our
experimental setup, the weights are chosen heuristically.
On the one hand, the over-regularization problem that occurs
in some scenes can introduce a loss of high-frequency
information. On the other hand, an under-regularized depth
map can result in depth noise and crispy outliers.

We have explored and discussed the interdependence
between color restoration and depth in Section IV. Clearly,
such coupling problems can be addressed by an iterative
approach alternating demosaicing and depth estimation, i.e.
refine one to enhance the other until certain criteria are met.

However, the benefit of solving such problems independently
is at the risk of mutual deterioration. In extreme cases, e.g.
hot pixels on the sensor, or other errors can propagate in
both ways to affect demosaicing and depth estimation in an
inappropriate manner: (1) undesired demosaicing artifacts
can cause over-smoothed or crispy depth map, (2) erroneous
depth estimation can backfire on the demosaicing results (see
for instance the Pillars case in Fig. 5 and Fig. 7).

VII. CONCLUSION
In this paper, we proposed a novel collaborative graph model
for demosaicing and depth estimation (CGMDD) to jointly
perform demosaicing and depth estimation tasks. The pro-
posed framework considers the overlooked interdependence
of demosaicing and depth estimation in the classic step-by-
step light field processing, and the experimental results show
that CGMDD framework is a general solution for different
kinds of light fields, ranging from large-baseline multiview
system to small-baseline plenoptic cameras. The proposed
approach has shown how demosaicing can benefit from depth
information, and that effective color restoration and depth
estimation results are obtained through this collaborative
approach, even though simple initial demosaicing and depth
estimation are employed and limited prior knowledge of
the scene are used. Experiments showed that the proposed
CGMDD outperforms other methods in both demosaicing
and depth estimation tasks. Furthermore, CGMDD can work
both as an independent demosaicing and depth estimation
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algorithm, or an optimization step on top of state-of-the-
art light field demosaicing and depth estimation solutions.
In the future, more priors and depth cues of the scene can
be formulated into CGMDD in order to further improve its
performance for specific applications.
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