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Abstract

The subject of calculating the topological charge (TC) or vortex strength of
optical vortices has generated divided opinions among scientists. This is due to
the fact that proper analytical results are hard to support from the experimental
point of view, leading to different results and conclusions. In this work we will
present numerical data that shows the limits of TC measurements for practical
fractional vortices and the possible challenges that high order measurements
may pose. By analyzing the far field phase and the behavior of the transitions
we have shown that they follow specific curves that depend not only on the TC
but also on the beam waist. This leads us to present a new “strength staircase”
for practical vortices. Our aim is to give some insight in practical scenarios that
have not been taken into account in previous results.

Keywords: Singular optics; Optical vortices; Spatial light modulators.

1. Introduction

Singular beams have been studied thoroughly since the first works of Allen et
al. back in 1992 [1]. After that, there has been a lot of research and applications
in this area. A particular kind of singular beams are the so called Fractional
Vortex Beams, (FVBs) first observed experimentally by Beijersbergen et al. [2].
FVBs, or more correctly called non-integer beams, are a type of singular beams
that possess a non-integer singularity in opposition to the regular Laguerre-
Gaussian beams. FVBs have some quaint characteristics that lead to debate
and some disagreements among researchers. One of the most interesting feature
is its topological charge or beam strength1 and how to measure it, in the near
and far field. According to references [3, 4] the fractional topological charge
evolves from fractional (in the near field) to an integer (in the far field). In the

1Note that we will use interchangeably the terms “topological charge” and “vortex
strength” both of them are widely used as equivalent in literature
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work of Leach [5], they analyze the FVB phase in the near field and measure
its topological charge. Then Lee et al. [6] study FVBs using an interferometric
technique and discover that there is a dynamic in the transition from one integer
vortex to another. This transition, that was often called “birth of a vortex”
has led to the discussion of the actual value of the TC between two integer
states. As well as the regular singular beams, the applications of FVBs are
diverse. Most of them are similar to those of regular singular beams. They
include particle trapping [7], perfect FVBs [8], analysis of optical forces [9],
and electromagnetic vortex beams for imaging [10]. For the particular case
of communications, vortices have been used as symbols [11] or in multiplexing
scenarios [12] [13]. Specifically in communications, the ability of detecting the
vortex strength is a key factor. For that reason and for scientific purposes, great
effort has been dedicated to measuring the fractional TC. Moreover, in references
[3], [14], [15] and more recently in [16] the authors thoroughly analyze the phase
structure of FBVs and the transition from near to far field. In spite of this
effort, some discrepancies among scientists arise related to the determination of
the vortex strength in the near and far field

In this work we show by numerical simulations the limits of TC measure-
ments for realistic fractional vortices and some possible problems arising when
higher-order measurements are performed. We prove that the behavior of the
vortices during the continuous transition between two integer values of the TC
follow specific curves that depend not only on the value of the TC but also on
the beam waist of the light beam. Our study may help to give some insight in
the results obtained in practical situations.

Figure 1: Representation of the strength staircase according to (a) Jesus-Silva et al. [22] and
(b) Wen et al. [21].

2. The strength staircase

As mentioned previously, the fractional TC evolves from fractional in the
near field to an integer in the far field. When the TC changes continuously from
one integer value to the next one, taking decimal values, the vortex strength
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should be an integer value. In principle, the curve representing the vortex
strength as a function of the TC should be a staircase, as shown in Figure
1. Nevertheless, the form of the staircase is the key of the discrepancy. For
example, when studying near field measurements, as performed in [14, 17], they
show what can be called a “soft staircase” when passing from one integer to
another, in opposition with the numerical predictions of Berry [3]. It is also
important to mention other works that measure vortex strength in far field
and report a linear dependence [18, 19]. This clearly is a controversial issue
because the reported TC depends on the measurement technique and whether
the vortex is observed in the near or far field. It is known that the dynamics of
the fractional vortex beams from near to far field present a string of alternating
vortices [3, 4, 14, 15] that disappear as the vortex reaches the far field, but this
is not the whole picture. Some explanation of this dichotomy regarding whether
the FVB evolves to an integer strength in far field or not is provided by Alperin
and Siemens [20] but the evidence is not conclusive.

The dynamics of FVBs passing from one integer to another was thoroughly
investigated recently by Wen [21] using numerical results validated by experi-
ments. Nevertheless, some aspects of this vortex transition are not well under-
stood yet. Wen et al. have discovered that the “staircase” of vortex strength
vs initial topological charge α is always an odd integer in the far field. Their
results pose a discrepancy with previous works like [3, 15, 22] that obtain the
“TC staircase” but with different values. Recently, this debate led to further
study by Kotlyar et al.. [23, 24] who developed an analytical model for vortex
propagation and they also supported their discoveries with numerical simula-
tions and experiments. In their analysis they obtained a similar curve for one
of the vortices involved in the non-integer transition, but they never studied the
complete behavior as it is presented here.

One way to evaluate the vortex strength, Sα, for different values of the
predetermined TC, α, is by using the following equation [3]:

Sα = lim
R→∞

1

2π

∫ 2π

0

dφ
∂

∂φ
arg U(r) (1)

where U (r) = A(r)eiψ(r) denotes the light field, and R is the radius of a curve
surrounding the optical axis. From a numerical point of view, it is possible
to calculate S for the transition from one integer to another with arbitrary
precision. The result coincides with the number of integer vortices present in
the beam. Nevertheless, from a practical point of view this vortex strength
equation suffers from the physical limitations of the waist of the Gaussian beam
that creates it.

Lets see the form of the intensity and phase of FVBs to understand the
dynamics of the transition; Figure 2(a) shows the particular case α = 2.3 from
the transition 2 → 3. The distribution of three unit vortices (+1) in the far field
can be observed in the phase ψα (Fig. 2(a.2)). Figure 2(a.3) shows the intensity
Iα in the far field revealing the lack of circular symmetry in comparison with
non fractional (integer α) vortex beams. The logarithm of the intensity allows
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to identify the local minima to relate them to the position of the unit vortices.
When observing Figure 2(b) one can notice that in general there are two

singularity zones in an even to odd transition while in an odd to even transition
there are three. In the first one (Fig.2(b)) the nucleus has the greater TC (except
for transition 0 → 1) while the other region is conformed by a unitary vortex
that we call the resident. This is because this vortex appears from infinity and
enters the nucleus. Similarly in the second type (Fig.2(c)) there is one resident
vortex and another vortex of opposite charge that we call the tourist. This last
one reaches certain minimum point near the nucleus and then leaves. For this
reason the TC measurement for the second type transitons always remain odd in
the far field independent from the values of α involved. This is well documented
in [21].

The strength of practical FBVs (optical beams with finite width) depends
not only on the initial charge α, but also on the incident light source, therefore
considering a Gaussian beam instead of an ideal plane wave produces a different
output. This is of utmost importance because in many practical applications a
Gaussian beam is incident upon a spatial light modulator (SLM) to generate an
optical vortex.

Fist of all we will focus our attention in the previous “staircases” encountered
in literature. According to Berry 2004 [3] the vortex strength in the near field
make a unitary jump at half the way between two integers. For example when
changing from α = 1 to 2 the TC is 1 up to 1.5, then it turns to 2 and it jumps
to 3 only when α reaches the value 2.5. This result is also presented in [15].
A very similar result is obtained by Jesus-Silva et al. [22] where the α value
of the jumps move towards the lower integer (See Figure 1(a)). That is, from
α = 2 to 3 the TC jumps from 2 to 3 at approximately α = 2.1. And they
verify it by counting the amount of unitary vortices within a fixed radius in the
Fraunhoffer zone. According to [21] there are more unitary vortices involved
than the previously reported by Jesus-Silva. Considering this, the staircase now
makes two TC jumps at even values of α and remains odd around odd values
of α as can be seen in Figure 1(b).

3. Analysis of practical FBVs

In order to analyze rigorously the behaviour of the vortices and the vor-
tex strength as a function of α for practical vortex beams, we will generate
diverse FVBs focused on the Fraunhoffer region. For this task, we utilize a
monochromatic Gaussian beam impinging normally onto an SLM with trans-
mission function exp(iαθ) in the initial transverse plane r = (r, θ). Then the
initial field is Uα(r, θ) = exp(−r2/ω2

0) exp(iαθ), where ω0 is the beam waist
radius and α is the topological charge TC. Using the paraxial approximation,
the field in the Fraunhofer diffraction zone —aside from multiplicative phase
factors— is the two-dimensional Fourier transform of the initial field, evaluated
at frequency ρ/λz, i.e. Uα(ρ, φ) ∝ F [Uα(r, θ)] [22]. Then, if a non-integer α
is introduced in the original field, within the propagation it produces a step
discontinuity in addition to the central singularity [3].
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Figure 2: (a) Fractional vortex beam α = 2.3. (a.1) Initial phase profile ψα(r, z0). (a.2)
Far-field phase profile ψα(r, zf ). (a.3) Normalized far-field intensity profile Iα(r, zf ). (a.4)
Far-field intensity profile (logarithmic scale) log[Iα(r, zf )]. (b) Far-field phase profiles samples
for transition α, 4 → 5. (b.1) Vortex dynamics for α = 4.1. Top zoom: +1 vortex moving
towards the nucleus. Bottom zoom: nucleus +4. (b.2) Vortex dynamics for (b.2) α = 4.5 and
(b.3) α = 4.9. (c) Far-field phase profiles samples for transition α, 5 → 6. Vortex dynamics
for (c.1) α = 5.1, (c.2) α = 5.5 and (c.3) α = 5.9. All simulations were obtained by fourier
transform according to the formulas presented in Section 3

For practical FVBs we will take the vortex strength as the signed sum of the
vortices within a closed loop C including the z axis as presented by Gbur [15],
and can be determined by

S =
1

2π

∮
C
∇ψ(r) · dr, (2)

where ψ(r) is the wavefield phase and C has to be a simple contour in the
mathematical sense. Both equations 1 and 2 are equivalent if the phase is only
dependent of φ. However, equation 2 is more convenient in calculating TC for
practical FVBs, as it allows to take into account the radius of C, that cannot
have a limit to infinity for realistic situations. For most experimental cases the
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calculations are made by counting the singularities around the center [22, 21].
This poses a problem in defining a radius for the contour. For singular vortex
beams with integer topological charge α, the vortex strength is independent of
the contour due to the circular symmetry. However, if the topological charge
is fractional the circular symmetry is broken due to edge dislocation and the
vortex strength will no longer be independent of the chosen path.

Considering an integer jump directly from α = n to α = n + 1, there is
circular symmetry, and the vortices are all in located in the center (nucleus)
forming a single vortex with integer charge. For the case of a fractional transition
there are two or three zones of singularities as mentioned earlier. We will define
the value δ as the normalized distance2 of the unit vortices from the center of the
beam to their actual positions. Those distances can be obtained by detecting
the vortices (see Fig.2(a.4)) present over the intensity or phase distributions.
Figure 3 shows the distance δ as a function of the fractional topological charge,
α. All transitions have resident type vortices, as can be seen in Fig. 3(a). We
will define δ+ and δ− as the distances from the center to the resident and tourist
vortex respectively. The tourist vortices only appear in odd to even transitions,
as shown in 3(b), represented by δ− for positive α. This behavior is related to
the parity of the integer topological charges at the borders of a transition. In
this case, the tourist vortex reaches a minimum distance δ0 and returns.

Figure 3: Normalized distance δ = δ(α) measured from the position of the unit vortices to
the center. (a) Distance δ+ for the resident vortices in transitions from 1 → 2 to 7 → 8.
(b) Distance δ− for the tourist vortices, present only in transitions starting with odd n, from
1 → 2 to 7 → 8.

Lets return briefly to the example shown in Figure 2(c) where we can con-
sider two contours, namely C1 and C2, where —depending on α— C1 can count

2The normalization is obtained by dividing the real distance d by the maximum possible
distance for a fixed resolution
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Figure 4: (a) Normalized minimum distance δ0 as function of odd transitions ∆α for different
beam waist radius ω0. (b) Normalized distance δ− for the tourist vortex in transition 5 → 6,
for different beam waist radius ω0.

both vortices and C2 never encloses the tourist vortex. The blue disk of ra-
dius δ0 represents the zone where this tourist vortex never enters. Following
Fig.2(c.1)(α = 5.1), S = +6 for C1 and +5 for C2. In Fig.2(c.2)(α = 5.5),
S = +5 for C1 and +6 for C2. Finally, in Fig.2(c.3)(α = 5.9), S = +6 for C1 and
C2.

For the odd to even FVBs transitions the dynamics includes both the resident
and tourist vortices. It is important to mention two aspects of this: First, the
tourist vortex turns around farther from the origin while the TC of the nucleus
rises. We show this in Figure 4(a), and for that reason the distance δ0 increases.
Once this tourist vortex is no longer visible it will not contribute to the beam
strength posing a limit to the TC measurement. This limit depends on the
simulation parameters or actual experimental setup, specifically on the beam
waist w0. The second thing to notice is that the tourist vortex never gets
closer to the center than the resident vortex. Then, even though the numerical
staircases [21] have uniform steps, in practical scenarios they will be modified
beyond certain value of α. Moreover, as can be seen in Figure 4, when the
beam waist of the original Gaussian beam is modified, the slope of the δ0 curve
changes, and with it, the behavior of the tourist.

Now taking into account that the curve C can be modified and that the
beam waist ω0 is fixed, we can argue that the limit of the vortex extension is
the radius of the curve. In this fashion, we can obtain the values in alpha at
which the resident curve cuts the edge of the beam, ε, and the values at which
the tourist cuts the same edge, η and ζ. Next, we analyze the values of ε, η and
ζ for different cases. Figure 5 (a) and (b) shows the graphical interpretation of
the new parameters. We have estimated them for three different beam waists
ω0 and transitions from 1 to 10. These estimations can be observed in Figure
5 (c) and (d) where we have separated transitions of the first kind (even to
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Figure 5: (a)-(b) Normalized distance δ = δ(α, ω0 = 0.3 mm). (a) Resident vortex for
transitions 4 → 5 (circle) and 8 → 9 (asterisk). (b) Tourist vortex for transitions 3 → 4
(circle) and 9 → 10 (asterisk). (c)-(d) Parameters ϵ and η for step ∆α = 0.01. (c) Parameter
ϵ for even transitions with different beam waist ω0. (d) Parameters ϵ and η for odd transitions
with different beam waist ω0.

odd) from the second kind (odd to even). This is because the existence of the
tourist affect the behavior or the resident, as can be seen in Figure 5(d). We
have omitted the parameter ζ since its behavior is similar to η. The evolution
of the parameter ϵ was briefly mentioned in [22] but never explained in detail.
When comparing the values of η and ϵ seems that the first is bigger than the
second. This means that the resident enters in the beam extension before the
tourist does. This is true at least for smaller beam waists or curves C with
short radius. In a numerical scenario using equation 1 in the limit of infinite R,
both curves converge. Now this can be problematic in real experiments since
ω0 is finite, and can be different depending on the experimental setup. It also
limits the properties of the beam that the scientist want to observe. That is,
if ω0 is small, the extension of the beam in the far field is reduced but the
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resolution near the center is higher. On the contrary, if ω0 is large more of the
external parts of the beam can be seen but paying the price of getting a lower
resolution in the center. Continuing with this line of thought and considering
the variation of δ0 as shown in Figure 4, it is clear that the tourist vortex will
not be seen if the beam waist is small and the TC is high. Taking this into
account and applying the technique of counting vortices surrounded by C the
“strength staircase” it is not going to be uniform for practical vortices and it
is going to change from lower to higher transitions of TC. Figure 6 shows the
“staircase” for three different values of ω0. This can also be read as changing
the radius of a curve C where 0.3 → 0.9 could represent a change from shorter
radius to a longer one. The problem in practical scenarios is that since the
resident enters before the tourist there is a moment where the TC jumps to a
higher value and then when the tourist arrives (with unitary opposite charge)
the TC returns to its previous value. This effect create the spikes that can be
seen in every transition from odd to even. The form of the “staircase” differs
from that of a regular one, that is one step per topological charge. Instead of
that, with a higher value of the beam waist there is a tendency to odd values of
TC with two fold jumps at even numbers of α.

Figure 6: The strength staircase for different beam waists based on the values of ϵ, η and ζ

On the contrary, for lower values of ω0 the spikes widen themselves and the
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jumps at even numbers turn to a new step. In this case what would happen is
that the stair will be regular but the jumps will occur at a non integer value.
To explore this further, we show in Figure 7 the comparison of the odd to even
transitions for the different beam waist scenarios. In general the width of the
spike is not regular, but there is a clear movement towards the center for lower
values of ω0. Also, the step that is produced at the even values of α moves
away form the integer value. Those values are equivalent to the steepest curve
of Figure 4 (a). And then for a transition with higher α when the tourist curve
doesn’t exist the valley between the spike and the step will vanish. For higher
values of ω0 the spike will be thinner and below the margin of error. This will
lead to previous results seen in [21].

Figure 7: Detail of the odd to even transitions comparing the different beam waists scenarios.
This shows the tendency to shorten the gap for higher values of TC and also for smaller values
of the beam waist.

4. Conclusions

In this work we have shown that the behavior of the vortices during the con-
tinuous transition between two integer values of the TC follow specific curves.
Those curves depend not only on the TC but also on the beam waist. This poses

10



the problem of estimating the vortex strength using either equation 1 or 2 arriv-
ing to different results than the stated previously in literature. This discrepancy
is only explained from the point of view of the real extension of the vortex beams
and thus the use of the term practical vortex. We have proved that even though
the phase remains non integer at far field, the “counting” technique gives just
integer results only dependent on the extension of the beam or equivalently the
radius of the curve C. Our analysis gives additional insight regarding the results
obtained in practical situations and may be useful in applications such as optical
communications, where the proper calculus of vortex strength is a key point.
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