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Biexcitons in CdSe Nanoplatelets: Geometry, Binding
Energy and Radiative Rate†

David F. Macias-Pinilla,a,b Josep Planelles,b and Juan I. Climente ∗b

Biexciton properties in semiconductor nanostructures are highly sensitive to quantum confinement,
relative electron-hole masses, dielectric environment and Coulomb correlations. Here we present
a variational Quantum Monte Carlo model which, coupled to effective mass Hamiltonians, takes
into account all of the above effects. The model is used to provide theoretical assessment on the
biexciton ground state properties in colloidal CdSe nanoplatelets. A number of characteristic features
is observed: (i) the finite thickness of these systems makes the biexciton geometry depart from the
planar square expected in the two-dimensional (2D) limit, and form a distorted tetrahedron instead;
(ii) the strong dielectric confinement enhances not only Coulomb attractions but also repulsions,
which lowers the ratio of biexciton-to-exciton binding energy down to EXX

b /EX
b = 0.07. (iii) EXX

b
is less sensitive than EX

b to lateral confinement, and yet it can reach values above 30 meV, thus
granting room temperature stability; (iv) the ratio of biexciton-to-exciton radiative rates, krad

XX /krad
X ,

decreases from 3.5 to ∼1 as the platelet area increases. These results pave the way for rational
design of biexciton properties in metal chalcogenide nanoplatelets.

1 Introduction
The control achieved in the last years concerning composition,
size and shape over colloidal semiconductor nanocrystals offers a
wide range of possibilities to tune and improve their optoelec-
tronic properties.1 In particular, the development of quasi-2D
nanoplatelets (NPLs) has gathered much interest because of their
outstanding photophysical properties, which make them promis-
ing building blocks for optical applications.2–5 Among other as-
pects, intensive research is currently focused on the nature of
biexciton (XX) states in NPLs. The weak lateral confinement in
these structures make Auger processes slower than in quantum
dots,6–9 while the strong confinement in the out-of-plane direc-
tion provides strong excitonic binding energies.10–13 Altogether,
this is expected to lead to room temperature stable, highly emis-
sive XX states,14,15 which are of interest for low threshold and
continuous wave lasing10,16 energy harvesting13,17 and source
of entangled photon pairs.18

Understanding the electronic structure of XX in NPLs is of clear
interest for further progress. Several theoretical studies have
dealt with XX in semiconductors in the past. Because the proper-
ties of single excitons (X) are better understood, the ratio EXX

b /EX
b

–with EX
b the single exciton binding energy– is often taken as

a referent value to visualize how different the XX behavior is.
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Obviously, because X-X (electron-hole) interactions are of dipole-
dipole (monopole-monopole) kind, EXX

b /EX
b < 1. Also, in gen-

eral, variational models show that EXX
b /EX

b is dependent on the
fraction between electron and hole masses, σ = me/mh. In bulk,
EXX

b /EX
b was estimated to be 0.3 when one carrier is much heav-

ier than the other (σ = 0, hydrogen molecule limit) and decrease
to 0.03 when both carriers have the same mass (σ = 1, positron-
ium molecule limit).19,20 The same trend was observed later on
in calculations for 2D systems, except that here quantum confine-
ment boosted XX binding energy, such that EXX

b /EX
b ranged from

0.56 to 0.14.21

Systematic experiments in epitaxial GaAs quantum wells with
varying thickness reported a roughly constant value EXX

b /EX
b ≈

0.2.22 This was about twice the value in bulk (the so-called
Haynes rule in 3D23), thus confirming the enhancement of EXX

b
in quasi-2D systems. A simple and elegant rationalization of this
result was given by Singh and co-workers.24 They considered a
biexciton geometry in which electrons and holes form a perfect
square, with carriers of the same sign in opposite corners. Using
effective mass Hamiltonians, they showed in a strictly 2D system,
this geometry leads to EXX

b /EX
b = 0.23, regardless of the masses.

This ratio has been sometimes taken as a rule in studies of XX
in colloidal NPLs.10,12 However, NPLs present some distinct fea-
tures which demand revisiting this assumption. First, NPLs have
a finite thickness (few atomic layers), hence departing from the
strict 2D limit. Singh and co-workers recognized a few years later
this could compromise the ideal square geometry.25 Second, NPLs
have finite lateral confinement. In epitaxial26 and colloidal27
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quantum dots, this has been shown to affect X and XX differently.
Third, NPLs experience a strong dielectric mismatch, which was
absent in epitaxial quantum wells. This may also affect X and XX
differently, as noted in transition metal dichalcogenides.28,29

In this work we aim at describing XX states in colloidal NPLs
and study the role of the aforementioned effects. We focus
on CdSe NPLs, where highly emissive XX states have been re-
ported.10,13,14,30 An accurate description of XX states is challeng-
ing because it depends on the fine balance between attractions
and repulsions, which is only achieved when Coulomb correla-
tions are well captured.31 Because NPLs are in an intermediate
confinement regime, with strong Coulomb correlations,32,33 the
configuration interaction methods often used for quantum dots
may fall short to this end. As an alternative, in the last years
the authors have developed variational Quantum Monte Carlo
(VQMC) methods, coupled to effective mass Hamiltonians, which
have successfully described the ground state of single excitons34

and trions in CdSe NPLs.35 Here, we extend such models to the
case of biexcitons, since the use of VQMC methods has proved
useful in the study of XX in low-dimensional structures in the
past.36 We find that finite thickness, dielectric mismatch and lat-
eral confinement are all relevant factors in determining the op-
toelectronical properties of XX, including its binding energy and
radiative rate.

2 Theoretical Framework
We calculate the XX ground state energies and wave functions by
extending the method proposed for excitons and trions in Refs.
34,35. Thus, a k · p Hamiltonian for two uncoupled (conduction
and valence) bands is used:

HXX = ∑
i=e1,e2,ha,hb

( p̂2
⊥

2m⊥,i
+

p̂2
z

2mz,i
+Vi

)
+Vc(re1 ,re2)

+Vc(rha ,rhb)+ ∑
i=e1,e2

∑
j=ha,hb

Vc(ri,r j)+2Egap, (1)

where m⊥ and p̂⊥ are the in-plane effective mass and momen-
tum operator, while mz and p̂z are the corresponding out-of-plane
counterparts. The single particle potential is Vi = V con f

i +V sel f
i .

Here, V con f
i is the confining potential, which is zero inside the

cuboidal NPL with dimensions Lx ×Ly ×Lz (see Fig. 1a), and infi-
nite outside. This (hard wall) confinement description is techni-
cally convenient and provides a reasonable approximation to the
problem. The actual band-offset between the NPL and its sur-
roundings is of few eV.37 The resulting wave function penetra-
tion outside the NPL is then small, and its influence on the bind-
ing energies we study is scarce, since these are mostly in-plane
Coulomb interactions. V sel f

i is the self-energy potential that re-
sults from the interaction of the carriers with their image charges
because of the dielectric mismatch between the NPL and the sur-
rounding environment (commonly organic ligands).38 Vc(ri,r j)

terms represent the Coulomb interaction between carriers. These
take into account the polarization coming from the dielectric mis-
match, again through the image charge method.38 Egap is the
bulk band gap of CdSe.

Hamiltonian (1) is solved with a four-parameter variational
wave function for the biexciton ground state:

ΨXX (re1 ,re2 ,rha ,rhb) = NXX Φe(re1)Φe(re2)Φh(rha)Φh(rhb)

×F(r1a,r1b,r2a,r2b,r12,rab), (2)

where spin degrees of freedom are omitted. Here, NXX is the
normalization factor, Φe and Φh are the non-interacting electron
and hole envelope functions, Φi = ∏α=x,y,z cos(πα/Lα ). F is the
correlation factor, described by:

F(r1a,r1b,r2a,r2b,r12,rab) = e−Z (s1+s2)
2 cosh

(
ZQ

t1 − t2
2

)
×eZ β r12

1+Zαr12 eZ β rab
1+Zαrab , (3)

where r12,rab,r1a,r1b,r2a,r2b are in-plane interparticle distances,
s1 = r1a + r1b, s2 = r2a + r2b, t1 = r1a − r1b and t2 = r2a − r2b. The
variational parameters to optimize are Z, Q, β and α.

One can note ΨXX is reminiscent of the trial wave function used
by Kleinman for quantum wells.21 Thus, the first term in Eq. (3)
describes Slater correlation factors, analogous to those used to
account for carrier attraction of individual excitons.32 Z can be
seen as a scaling factor reflecting the strength of electron-hole at-
traction (its inverse can be related to an effective XX Bohr radius).
In the second term, Q allows for a non-symmetric interaction in
the biexciton, which makes the wave function flexible enough as
to describe the limits of biexciton and of two weakly interacting
excitons. The last two exponentials in Eq. (3), involving α and
β parameters, are missing in Kleinman’s wave function. They are
Padé-Jastrow factors representing the carrier repulsion correla-
tion. While they generally involve minor energetic corrections,
they allow us to compare on equal footing with the variational
function we have developed to study trions.34,35

For the sake of comparison, we also calculate the single X
ground state. The Hamiltonian reads:

HX = ∑
i=e,h

( p̂2
⊥

2m⊥,i
+

p̂2
z

2mz,i
+Vi

)
+Vc(re,rh)+Egap, (4)

and the excitonic wave function we use is:

ΨX (re,rh) = NX Φe(re)Φh(rh)e
−Zx reh , (5)

with reh being the electron-hole in-plane separation and Zx (the
inverse of the exciton Bohr radius) the only variational parameter.

A straight variational solution of ΨXX and ΨX is not viable be-
cause of the large number of dimensions and parameters, par-
ticularly in the XX case. We then resort to VQMC methods, as
described in Ref. 34. A few considerations are worth for the XX
case. In order to obtain a satisfactory importance sampling, it is
convenient to initialize random walks by distributing the carriers
in a square geometry in the center of the NPL –as assumed by
Singh and co-workers24– with the square sides being close to the
effective Bohr radius in 2D (see sketch in Fig. 1a). It is reason-
able from an electrostatic point of view for this to be close to the
optimal biexciton geometry. The Metropolis algorithm will then
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determine any possible deviation from this initial guess. Random
walks are taken in the space (re1 ,re2 ,rha ,rhb). The step length in
the walk should be such as to provide 50% of accepted points.
For this to happen, a few recursive thermalizations must be car-
ried out before starting the sampling. Also, the use of Newton-
Raphson methods for a rapid determination of the optimal varia-
tional parameters, which we have used for excitons and trions,34

is found to be inefficient for XX. We suspect this is connected to
the different sensitivity of the wavefunction to the four variational
parameters, (Z,Q,α,β ). In particular, the sensitivity to α and β

is much smaller than that to Z. The small gradients in these di-
rections likely lead to unreliable estimates of the steps needed
for the optimization. As an alternative, a sequential optimization
can be employed. First, we scan Z (the most influential param-
eter) for fixed, arbitrary values of Q, β and α. Next, we set Z
to the value providing the lowest energy and scan over Q, β and
α successively. This procedure is repeated with ever finer scan
meshes, until sub-meV convergence of the ground state energy is
achieved.

Once ΨXX and ΨX are optimized, the corresponding radiative
recombination rates can be calculated within the dipole approxi-
mation.39 The X rate is then given by:32

krad
X = θ

1
2
|⟨0|δre,rh |X⟩|2 = θ

1
2

N2
X ∏

α=x,y,z

(
Lα

2

)2
. (6)

where θ is a constant of proportionality and the 1/2 factor ac-
counts for the spin selection rule (only half of the four-fold de-
generate levels forming the exciton ground state are bright). In
turn, the XX rate is given by:

krad
XX = θ 2

∣∣∣⟨ΨX |δre2 ,rhb
|ΨXX ⟩

∣∣∣2 = θ 2(NX NXX I )2, (7)

where the 2 factor accounts for the number of spin-allowed tran-
sitions (two for the singlet ground state), and:

I =
∫

Φe(re1)
2

Φe(re2)
2

Φh(rha)
2 e−( Z

2 +Zx)r1a e−
Z
2 r12 e−

Z
2 r2a

×cosh
(ZQ

2
(r1a − r12 − r2a)

)
eZ β r12

1+Zαr12 eZ β r2a
1+Zαr2a dre1 dre2 drha , (8)

is an integral that we calculate numerically using Monte Carlo
routines.

A suite of Fortran codes implementing the methods described in
this section and used for the calculations XX states in this work are
provided in the Supplementary Information for free use. Those
used to compute X and X− (trion) states can be found in Ref. 34.

3 Results and Discussion

The target of our study is to describe the biexciton ground state
in CdSe NPLs. We use the same material parameters as in earlier
works dealing with excitons and trions, which provided reason-
able agreement with experiments,32,35,40 see Table 1. Because
electron-hole correlations take place in the NPL plane, the rel-
evant mass ratio is σ = m⊥,e/m⊥,h = 0.54, such that excitonic
interactions are half way between hydrogen and positronium

molecules.

Table 1 Parameters used in the calculations. Here, a0 represents the
lattice constant, ε0 is the vacuum permittivity and m0 is the free electron
mass.

Parameter CdSe Units
εNPL 1041 ε0
m⊥,e 0.2242 m0
m⊥,h 0.4142 m0
mz,e 0.432 m0
mz,h 0.932 m0
Egap 1.6741 eV
a0 6.0841 Å

3.1 Effect of dielectric confinement
The weak dielectric screening set by the ligands around the NPL
results is an increase of the strength of Coulomb interactions
within the NPLs, and therefore of the binding energies as com-
pared to all-solid systems.28,29,32,42,43 To our knowledge, there
are no previous studies on how this affects XX in colloidal NPLs.
To shed light on this point, we consider a prototypical CdSe NPL,
with 4.5 monolayers (ML) thickness (Lz = 1.37 nm) and weak lat-
eral confinement (Lx= 20 nm and Ly = 2Lx, see Fig.1a), and vary
the dielectric constant of the outer medium, εout .

Figures 1(b) and (c) show the dependence of the binding ener-
gies of X and XX on εout . For X, the binding energy is defined as
EX

b = Ee +Eh −EX , where Ee/h is the energy of independent elec-
tron/hole and EX the total exciton energy. For XX, the binding
energy is EXX

b = 2EX −EXX , with EXX the total biexciton energy.
In the absence of dielectric mismatch (εout = εNPL = 10), we ob-
tain EXX

b = 8.8 meV. This energy is greater than that in usual epi-
taxial quantum wells (EXX

b ≈ 1 meV)22, which is consistent with
the fact that quantum confinement is stronger in NPLs (Lz = 1.37
nm vs. Lz = 8−16 nm in the wells). The value is however smaller
than those measured for actual (dielectrically mismatched) CdSe-
based NPLs: EXX

b = 10−28 meV in CdSe/CdS NPLs (mean value
16.5 meV)13 or EXX

b = 30± 5 meV in core-only NPLs.10 This dis-
crepancy narrows down once dielectric confinement is taken into
account. Fig. 1(c) shows that EXX

b increases as εout is reduced. For
typical organic ligands used in NPLs, εout ≈ 2.44–46 The calculated
value of EXX

b is then doubled, reaching EXX
b = 18− 21 meV. This

energy is in closer agreement with the experiments, although the
exact value may be underestimated in our simulations because
the precise value of εNPL to be used in CdSe NPLs is uncertain.
We use εNPL = 10, close to the static dielectric constant of bulk
CdSe, but other works find good fits to experimental exciton and
trion binding energies using the high frequency constant instead
(εNPL = 7.9)46 and even lower values, εNPL = 6 in Ref. 47. Re-
gardless of the exact numbers, it is concluded from Fig. 1(b), (c)
that dielectric confinement enhances not only EX

b but also EXX
b ,

leading to values comparable to experimental measurements.
Fig. 1(d) compares the emission energy of X, X− and XX as

a function of εout . It follows from the figure that the emission
energy increases as εout departs from εNPL. This is in spite of
EX

b and EXX
b becoming larger. The reason is that the (repulsive)
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Fig. 1 (a) Sketch of the NPL under study. (b-e): effect of the dielectric mismatch on the energies of X and XX. (b) X binding energy. (c) XX binding
energy. (d) X, X− and XX emission energy, insets represent the transition probability with εout = 2. (e) Expectation values of Coulomb interactions in
X and XX. (f) Schematic of the most likely XX geometry for εout = 10 and εout = 2. In (b,c,d and e), symbols are calculated values and lines are fits
used to remove the scattering of the statistical estimates.

self-energy interaction, V sel f
i in Eq. (1), is also stimulated by the

dielectric confinement, and in practice it overcomes the enhance-
ment of the (attractive) Coulomb interactions. The same behavior
has been reported before in trions35 and neutral excitons.32,42

The figure also reveals that the XX binding energy is comparable
to that of the trion, but it becomes slightly lower for small εout

values. As a consequence, the calculated emission spectrum for
εout = 2, plotted in the inset of Fig. 1(d), shows the XX peak in
between those of X and X−.

We have shown in Fig. 1(b), (c) that the dielectric confine-
ment enhances the binding energies of both X and XX. It is worth
noting, however, that the relative effect is smaller for XX. When
εout = 10, the ratio of binding energies is EXX

b /EX
b = 0.13, and it

decreases down to EXX
b /EX

b = 0.07 when εout = 2. These values
are well below the EXX

b /EX
b = 0.23 ratio expected for a planar

square in a 2D, dielectrically homogeneous system.24 To explain
this observation, we set the optimized variational parameters
(Z,Q,α,β )opt in ΨXX and carry out random walks with our VQMC
codes. For each step in the walk, the values of (re1 ,re2 ,rha ,rhb) are
stored. Because the Metropolis algorithm favors exploring the re-
gions where the density probability is highest, the mean value of
such coordinates is a direct probe of the equilibrium position for
the XX particles. Figure 1(f) illustrates the resulting geometry cal-
culated for two εout values. One can see that electrons and holes
in XX form a nearly flat distorted tetrahedron, which is in between
the expected distribution for a strict 2D system (planar square or
tetragon)24,25 and a fully 3D one (regular tetrahedron).48 This is
a consequence of the finite but small thickness of colloidal NPLs.

It is worth noting that the strong Coulomb interactions lift the xy-
plane symmetry of the NPL potential. Permutation symmetries,
e1 ↔ e2, ha ↔ hb, (e1,e2) ↔ (ha,hb) are however preserved. It
should be also noted that the precise geometry is dependent on
the strength of dielectric confinement. As compared to the case
without dielectric mismatch, εout = 10, the εout = 2 case implies
not only shorter bond lengths, but also a greater departure from
the planar square geometry (see angles in Fig. 1(f)).

Further insight into the small EXX
b /EX

b ratio is obtained by an-
alyzing the Coulomb interaction energies for X and XX. The vari-
ational energy of X can be decomposed as:

EX = ⟨EX
e ⟩+ ⟨EX

h ⟩+ ⟨V X
eh⟩+Egap. (9)

Here ⟨EX
j ⟩, with j = e,h, is the expectation value of the elec-

tron/hole single-particle terms in Hamiltonian (4), and ⟨V X
eh⟩ that

of the Coulomb attraction term. In turn, the variational energy of
XX is:

EXX = 2⟨EXX
e ⟩+2⟨EXX

h ⟩+4⟨V XX
eh ⟩+⟨V XX

ee ⟩+⟨V XX
hh ⟩+2Egap, (10)

where the expectation values are now taken from Hamiltonian
(1). We may approximate ⟨EX

j ⟩ ≈ ⟨EXX
j ⟩ ≈ ⟨E j⟩, where E j is the

single-particle energy of carrier j in the absence of any Coulomb
potentials. Then, from Eqs. (9) and (10), the binding energies
can be expressed as:

EX
b =−⟨V X

eh⟩, (11)
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Fig. 2 Effect of the spatial confinement on the energies and recombination rates of X and XX. (a) Binding energy of X, for different thicknesses and
lateral dimensions. (b) Same but for XX. (c) Radiative rates for a 4.5 ML NPL, as a function of the NPL area. Symbols are calculated values and
lines are fits used to remove the scattering of the statistical estimates.

and

EXX
b = 2

[
⟨V X

eh⟩−

(
2⟨V XX

eh ⟩+
⟨V XX

ee ⟩+ ⟨V XX
hh ⟩

2

)]
. (12)

These expressions evidence that EX
b depends solely on the

electron-hole attraction within X, while EXX
b depends on the bal-

ance between attractions and repulsions. As observed in early
studies of spherical QDs,49 the self-energy terms (also called di-
electric solvation energy) have no first order effect on EXX

b .
Figure 1(e) shows the effect of the dielectric confinement on

the absolute values of Coulomb expectation values. For X, reduc-
ing εout enhances |⟨V X

eh⟩|, which provides a large increase of EX
b .

For XX, however, reducing εout enhances not only the attraction
terms, |⟨V XX

eh ⟩|, but also the repulsion ones, |⟨V XX
ee +V XX

hh ⟩|/2. The
compensation between attractions and repulsions in Eq. (12) im-
plies that the increase of EXX

b is only moderate.

3.2 Effect of thickness and lateral confinement

Current synthetic procedures for Cd chalcogenide NPLs en-
able controlling the thickness, usually from 3.5 to 8.5 atomic
ML,37,50,51 as well as the lateral dimensions, from tens to few
nm.51–53 Such changes in the strength of the confinement have
been noted to be important in determining the binding en-
ergy32,42,47,54 and radiative lifetimes of X.50,53,55,56 Here we
study how they affect XX.

Figs. 2(a) and (b) show the calculated values of EX
b and EXX

b in
NPLs with different thicknesses and varying lateral confinement,
Lx. As in the previous section, we consider that lateral confine-
ment is anisotropic –which is often the case in experiments52–
and fix Ly = 2Lx. Dielectric confinement is considered by setting
εout = 2. The figures reveal that the binding energies of both X
and XX increase with the confinement strength. By going from
Lx = 20 nm (weakly confined NPL) to Lx = 4 nm (wire-like geom-
etry), EXX

b is almost doubled (from EXX
b = 18 meV to EXX

b = 33.5
meV, in the 4.5 ML NPL). This result indicates that lateral confine-
ment provides a robust means of stabilizing XX, since it ensures
that binding energies exceed thermal energy at room tempera-
ture.

All in all, the absolute change of EXX
b with lateral confinement

is smaller than that of EX
b . This should translate into lesser sensiv-

ity in the emission spectrum energy. However, and contrary to the
case of dielectric confinement (Fig. 1b), the relative increase of
EXX

b is greater than that of EX
b . For example, in the case of 4.5 ML,

a weakly confined NPLs (Lx = 20 nm) has a ratio EXX
b /EX

b = 0.07,
but it increases up to 0.10 when a wire-like NPL is used instead
(Lx = 4 nm). That is, in the same way that EXX

b /EX
b increases

when moving from 3D to 2D,21 it also increases when moving
from 2D to quasi-1D. The influence of the thickness on EXX

b /EX
b ,

within the range under study (4.5-6.5 ML), is however minor. For
weakly confined NPLs (Lx = 20 nm), we obtain EXX

b /EX
b ≈ 0.075.

For narrow ones (Lx = 4 nm), we obtain EXX
b /EX

b ≈ 0.10. The
scarce dependence on the thickness is reminiscent of observations
in epitaxial quantum wells.22

It has been argued that lateral confinement in colloidal NPLs
can have a great impact on the X oscillator strength through the
so-called giant oscillator strength effect (GOST),50,53,55,56 which
was originally proposed for epitaxial quantum wells.57 Accord-
ing to this effect, the oscillator strength (and hence the radiative
rate) of X scales linearly with the NPL area. Robust experimental
verification seems however lacking to date. It has been recently
suggested that accidental localization of the X in CdSe NPLs pre-
vents more clear manifestations.58 At any rate, investigating how
GOST affects the radiative rate of XX in ideal NPLs is of interest
to guide eventual experimental developments in this line.

In Fig. 2c, we compare the radiative rates of X and XX, calcu-
lated in arbitrary units using Eqs. (6) and (7). A nearly linear
increase with the NPL area, A = Lx × Ly = 2L2

x , is observed for
krad

X , consistent with GOST. An increase can be also observed for
krad

XX , but it appears to saturate as the area gets larger. For the
smallest NPLs, Fig. 2c provides a ratio krad

XX /krad
X = 3.5. This is con-

sistent with the expected behavior of strongly confined structures,
where biexcitons have four as many spin-allowed recombinations
channels than excitons. For the large NPLs, however, the ratio is
reduced, reaching krad

XX /krad
X < 1 after 600 nm2. These values are

well below the factor of two expected in bimolecular descriptions
of XX, sometimes assumed in studies of NPLs.9 The quenching of
the krad

XX /krad
X ratio is reminiscent of the trion behavior,35,46 and is
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related to the X-X correlations.
It can be concluded from Fig. 2c that radiative lifetimes of XX in

CdSe NPLs should not be very different from those of X. Because
the latter are usually in the few ns regime,3,9 a similar figure
should be expected for XX. This is consistent with the fact that
XX decay in NPLs is found to be dominated by (non-radiative)
Auger processes, which are often in the regime of hundred pi-
coseconds.8

4 Conclusions
We have presented a VQMC-effective mass model which calcu-
lates the XX ground state in colloidal NPLs, including the effects of
lateral and vertical quantum confinement, dielectric confinement,
and Coulomb correlations. These are all necessary ingredients for
a reliable description of the fine balance between attractions and
repulsions in such systems.

We have used the model to investigate XX in CdSe NPLs. The
XX geometry has been found to deviate from the planar square ex-
pected for strictly 2D systems, mainly because of the finite thick-
ness and inhomogeneous dielectric environment. This invalidates
the rule that EXX

b /EX
b = 0.23, which was proposed for 2D quan-

tum wells24 and has been occasionally accepted for NPLs.10,12

The ratio EXX
b /EX

b is still roughly constant with the NPL thickness
between 4.5 and 6.5 ML, but it increases with the lateral confine-
ment and decreases with the dielectric confinement, with values
EXX

b /EX
b = 0.05− 0.10. For typical CdSe NPLs surrounded by or-

ganic ligands, EXX
b is in the range of few tens of meV, and thus

susceptible of being stable at room temperature. The radiative
lifetimes of XX are estimated to be of the same order than those
of X.

The codes associated with our VQMC model have been pro-
vided along with this work, and can be readily used to investigate
XX in NPLs built of different materials, by simply changing the
input effective masses, dielectric constants and NPL dimensions.
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