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Abstract 
Memristors are candidate devices to construct artificial neurons, synapses and 

computational networks for brain-like information processing and sensory-motor 
autonomous systems. However, the dynamics of natural neurons and synapses are 
challenging and cannot be well reproduced with standard electronic components. Halide 
perovskite memristors operate by mixed ionic-electronic properties that may lead to 
replicate the live computation elements. Here we explore the dynamical behaviour of a 
halide perovskite memristor model to evaluate the response to a step perturbation and the 
self-sustained oscillations that produce analog neuron spiking. As the system contains a 
capacitor and a voltage-dependent chemical inductor, it can mimic an action potential in 
response to a square current pulse. Furthermore, we discover a property that cannot occur 
in the standard two-dimensional model systems: a three-dimensional model shows a 
dynamical instability that produces a spiking regime without the need for an intrinsic 
negative resistance. These results open a new pathway to create spiking neurons without 
the support of electronic circuits. 
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The processing of information and sensory data managing in networks of neurons and 

synapses in the brain occurs by stimulation of neurons causing repeated action potentials 
in periodic rhythms.1-3 To construct artificial brain-like computation and sensory-motor 
autonomous systems, we need networks of miniature elements that perform and distribute 
rhythmic spiking.4-7 Currently many CMOS-based neuromorphic computation systems 
use very simple integrate and fire neurons.8 These consist basically of a 𝑅𝑅𝑅𝑅 (resistance-
capacitor) circuit that becomes progressively charged and discharges suddenly when the 
voltage exceeds a threshold value.  

However, natural spikes have more complex properties like a refractory post-spike 
period.9 The natural neuron spiking is a self-sustained oscillation connected to dynamical 
instability.3 A Hopf bifurcation is a critical point where the system destabilizes and a 
periodic behavior that never reaches equilibrium arises.10,11 The spiking patterns are well 
described by dynamical models formed by a few differential equations, based on the 
pioneering work of Hodgkin and Huxley on the giant axon of the squid.2 Many useful 
simplified models with a lower number of equations as the FitzHugh-Nagumo model have 
been derived11-15 and classified by the number and type of equations and the dynamic and 
bifurcation properties.11 We have recently described the conditions for Hopf bifurcation 
and spiking regimes in two-dimensional models, using the methods of equivalent circuits 
(EC) and impedance spectroscopy.16 We concluded that the main elements needed for a 
self-sustained oscillation to occur are: (1) a membrane capacitor, (2) a chemical inductor, 
(3) a built-in negative resistance.17 

A memristor is a two-terminal device whose resistance depends on the history of 
current and voltage applied to the device. Memristors allow the storage of information by 
metastable modification of device conductivity.18-22 Memristor devices are the main 
candidates to produce compact and reliable artificial neurons and synapses for 
computation algorithms based on neuron spiking.9,18,19,22-27 Recently halide perovskite 
memristors have been investigated, as their ionic-electronic properties and strong 
hysteresis effects are promising for neuromorphic applications.18,19,28-30 Halide 
perovskites produce synapse-like functionality with a simple structure and extremely low 
energy consumption.26,31 The question is, can we generate the analog neuron properties of 
spiking neurons with memristors? This property requires the presence of instabilities in 
addition to the memory conductance effects. 

To address this topic, we use here a model for a halide perovskite memristor that has 
recently been shown to describe well the experimental current-voltage cycling and 
impedance response.32 This type of model may be applied with suitable adaptations to a 
variety of material platforms such as mixed ionic-electronic organic materials.5,9,33 Here 
we analyze the time transient voltage response to step stimulation, the stability, and the 
bifurcation properties of this model using the EC methods.16,17  

The model will be presented in different steps. We first describe a two-dimensional 
simplified version of the model that enables to calculate the transient response to a voltage 
or current pulse as it is usually done for the analysis of synapsis potentiation and 
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plasticity.26,30,34,35 Then we present the three-dimensional model and we show that it 
presents a dynamical instability in which self-sustained oscillations occur without the 
need for an intrinsic negative resistance, in contrast to the two-dimensional models.  

 
The two-dimensional model 
We discuss the dynamical memristor model formed by the system of equations32 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑢𝑢
𝑅𝑅𝑏𝑏

+ 𝑖𝑖𝑐𝑐 (1) 

𝜏𝜏𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑐𝑐0
1+𝑒𝑒−(𝑢𝑢−𝑉𝑉𝑇𝑇)/𝑉𝑉𝑚𝑚 − 𝑖𝑖𝑐𝑐 (2) 

The model has three independent variables: 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑢𝑢 are the external current and voltage, 
and 𝑖𝑖𝑐𝑐 is an internal current. Eq. (1) describes the three components of 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡: a capacitive 
charging of the interfaces with capacitance 𝐶𝐶𝑚𝑚, a small ohmic current of constant 
resistance 𝑅𝑅𝑏𝑏, and the slow internal current 𝑖𝑖𝑐𝑐 described by Eq. (2). As described before,32 
Eq. (2) represents a diffusion or migration time of ions that introduces a delay of 𝑖𝑖𝑐𝑐 with 
respect to the external perturbation, by the characteristic time constant 𝜏𝜏𝑑𝑑. In the steady 
state the slow current takes the value 

𝑖𝑖𝑐𝑐 = 𝑖𝑖𝑐𝑐0𝑓𝑓𝑠𝑠𝑠𝑠(𝑢𝑢)  (3) 
according to the function 

𝑓𝑓𝑠𝑠𝑠𝑠 = 1
1+𝑒𝑒−(𝑢𝑢−𝑉𝑉𝑇𝑇)/𝑉𝑉𝑚𝑚  (4) 

that varies from 0 at low voltage to 1 at high voltage,  with the redox potential 𝑉𝑉𝑇𝑇  and an 
ideality factor 𝑉𝑉𝑚𝑚 with dimension of voltage. Consequently the slow current varies from 
0 to a saturation value 𝑖𝑖𝑐𝑐0 depending on the applied voltage. Specific physical mechanisms 
behind the function 𝑓𝑓𝑠𝑠𝑠𝑠  are the filamentary conductive pathway20 or the decrease of a 
surface barrier between the perovskite layer and the contacts.36,37 However filamentary 
systems usually show an abrupt transition to the high conduction state and the above 
model is adapted to those systems that show a gradual transition. 
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Fig. 1. (a) Logarithmic current-voltage curve for the model memristor, showing the 

two component currents and the total equilibrium dc current (gray line). (b) Impedance 
parameters. (c) Equivalent circuit of Eqs. (1, 2) and the impedance spectrum in the 
indicated conditions (d). (e) Equivalent circuit of Eqs. (1, 10, 11) and impedance spectrum 
(f). Parameters: 𝑅𝑅𝑏𝑏 = 1; 𝑖𝑖𝑐𝑐0= 10, 𝑉𝑉𝑇𝑇 = 1, 𝑉𝑉𝑚𝑚 = 0.05, [𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑 , 𝜏𝜏𝑘𝑘]. 

 
Combining (1), and (3) we find the steady state current-voltage equation is 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑢𝑢𝑎𝑎𝑝𝑝𝑝𝑝
𝑅𝑅𝑏𝑏

+ 1
1+𝑒𝑒−(𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎−𝑉𝑉𝑇𝑇)/𝑉𝑉𝑚𝑚 𝑖𝑖𝑐𝑐0  (5) 

The total current of the memristor (grey line) and the component currents are shown in 
Fig. 1a.  

By linearization of Eqs. (1-3) at a steady-state point it can be obtained the impedance 
spectroscopy response function in terms of the variable 𝑠𝑠 = 𝑖𝑖𝑖𝑖, where 𝜔𝜔 is the angular 
frequency of the small perturbation. The impedance model is 

𝑍𝑍(𝑠𝑠) = �𝐶𝐶𝑚𝑚𝑠𝑠 + 𝑅𝑅𝑏𝑏−1 + 1
𝑅𝑅𝑎𝑎+𝐿𝐿𝑎𝑎𝑑𝑑𝑠𝑠

�
−1

  (6) 

𝑅𝑅𝑎𝑎−1 = 𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑐𝑐0
𝑉𝑉𝑚𝑚
𝑓𝑓𝑠𝑠𝑠𝑠(1 − 𝑓𝑓𝑠𝑠𝑠𝑠)  (7) 

𝐿𝐿𝑎𝑎𝑑𝑑 = 𝜏𝜏𝑑𝑑𝑅𝑅𝑎𝑎  (8) 
The model of Eq. (6) is the recently described impedance of a chemical inductor.17 It 

is characteristically observed in halide perovskite devices in the high voltage domain.38,39 
The equivalent circuit is shown in Fig, 1c, impedance parameters are shown in Fig. 1b, 
and the characteristic spectrum with the inductive component in the fourth quadrant is 
shown in Fig. 1d. The interpretation of EC elements of Fig. 1c is as follows. 𝐶𝐶𝑚𝑚 is a 
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capacitance element as already mentioned. In the halide perovskites there are two 
dominant capacitances.32,39,40 The geometric capacitance 𝐶𝐶𝑔𝑔 stands for dielectric 
relaxation at high frequency and it is independent of the voltage. On the other hand a low 
frequency capacitance 𝐶𝐶1 is related to ionic polarization of the interface. 𝐶𝐶1 is voltage and 
light-dependent and takes very large values. The elements resistance 𝑅𝑅𝑎𝑎 and inductor 𝐿𝐿𝑎𝑎𝑑𝑑  
are the components of the chemical inductor branch in the equivalent circuit. These 
elements are formed by the delay equation,17 in our case Eq. (2), that is interpreted as an 
electronic current that depends on ionic displacement.32,41 

 
 

 
 
Fig. 2. Time transient response to current steps of value 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎) and duration ∆𝑡𝑡. 

The grey line is the current pulse indicated by the voltage 𝑅𝑅𝑏𝑏𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎. The magenta line is the 
pulse voltage at equilibrium 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎 = 1.  [𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑, ∆𝑡𝑡] as indicated, and 𝑅𝑅𝑏𝑏 = 1; 𝑖𝑖𝑐𝑐0= 10 all 
cases. 
 

Time transient response of the two-dimensional model 
We analyze the time transient response of the model to a square perturbation, that was 

not studied in the previous publication.32 This analysis is particularly important for the 
formation of analog response of artificial neurons and synapses. In the experiments, the 
sample is pulsed repetitively and the changing response is recorded.30,34 The output in 
response to a pulsed perturbation can be obtained by the solution of Eqs. (1-2). The 
transient response is controlled by two main time constants in the model: 𝜏𝜏𝑚𝑚 = 𝑅𝑅𝑏𝑏𝐶𝐶𝑚𝑚 , 𝜏𝜏𝑑𝑑 ,  
and by the pulse duration time ∆𝑡𝑡, so that different responses to a step perturbation are 
expected, according to their combinations. A representative set of responses to a square 
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current perturbation 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 with 𝑅𝑅𝑠𝑠 = 0 is shown in Fig. 2. The different behaviours can be 
interpreted in terms of the model EC of the chemical inductor of Fig. 1c. Note, however, 
that the circuit is strictly valid only for a small perturbation. When the large external 
perturbation is applied, the circuit elements are not constant, but undergo the variations 
shown in Fig. 1b. In a detailed analysis the response times include the total resistances of 
the network, instead of the simplified time constants 𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑. The calculation tool to 
explore all the possibilities is provided in Supporting Information. 

In Fig. 2 the capacitor 𝐶𝐶𝑚𝑚 is charged within the time constant 𝜏𝜏𝑚𝑚 producing a voltage 
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑏𝑏 (indicated by the gray line). The inductor line responds with the time constant 
𝜏𝜏𝑑𝑑 = 𝐿𝐿𝑎𝑎𝑑𝑑/𝑅𝑅𝑎𝑎. The magenta line is the final equilibrium voltage of the activated state, with 
the dc resistance  

𝑅𝑅𝑑𝑑𝑑𝑑 = (𝑅𝑅𝑏𝑏−1 + 𝑅𝑅𝑎𝑎−1)−1 (9) 
In Fig 2a we start with a very short 𝜏𝜏𝑚𝑚 charging time. The current rises instantaneously 

to the grey level, and since the inductor is large, the magenta line will be achieved only at 
extremely long times. For smaller inductor values in Fig. 2d-c we observe the inductive 
negative spike reaching the dc voltage value of the square pulse, and a negative discharge 
characteristics when the pulse is switched off.  In Fig. 2e we combine a longer charging 
time and a very large inductor. The response is the typical 𝑅𝑅𝑅𝑅 charging process to the grey 
reference and subsequent discharge. For smaller inductor values in Fig. 2f-g the decay of 
initial current peak reaches the stationary line. For the very small inductor value in Fig. 
2h the system displays overdamped oscillations.  

By using a larger 𝜏𝜏𝑚𝑚 (or a shorter pulse time), in Fig. 2i the signal is not allowed to 
reach the grey saturation value. Then for smaller inductor values, Fig. 2f, we have a raising 
feature in charge but a negative spike in discharge due to the chemical inductor. This 
pattern reproduces closely the natural shape of the action potential in biological neurons. 
This action potential in associated to a single square perturbation and not to self-sustained 
oscillations; we note that the oscillations are damped and vanish in Fig. 2h-m. The general 
conditions for obtaining stationary oscillations in a two dimensional dynamical model 
have been reviewed,16 and it has been concluded that an internal negative resistance sector 
in dc conditions is necessary to destabilize the system and produce a Hopf bifurcation, as 
in the FitzHugh-Nagumo model.12 Instabilities and bifurcation can happen in two-
dimensional models in the presence of time-delayed coupling,42 which is not considered 
here. In consequence, the model of Eqs. (1-2) cannot produce a bifurcation and limit cycle 
oscillations, as it lacks the negative resistance feature.  
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Fig. 3. Time transient response to voltage step pf value 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 1.5 V and duration ∆𝑡𝑡. 

The grey line is the initial value of the current when the applied voltage lies at the series 
resistance, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎/𝑅𝑅𝑠𝑠 and the magenta line is the pulse current at equilibrium 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎).  [𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑, ∆𝑡𝑡] as indicated, 𝑅𝑅𝑠𝑠 = 0.1; 𝑅𝑅𝑏𝑏 = 1; 𝑖𝑖𝑐𝑐0= 10 all cases. 

 
For the calculation of the transient current to a step of the external voltage 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎  we add 

the voltage drop across the series resistance according to  
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑢𝑢  (10) 

The results are shown in Fig. 3. 
 
The three-dimensional model 
We proceed to a more general model describe before.32 In this model we use again the 

Eq. (1) but we introduce two slow variables, 𝑖𝑖𝑐𝑐 and 𝑓𝑓, described by the following 
equations: 

𝜏𝜏𝑑𝑑
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑖𝑖𝑐𝑐0𝑓𝑓 − 𝑖𝑖𝑐𝑐 (11) 

𝜏𝜏𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓) − 𝑒𝑒−
𝑢𝑢−𝑉𝑉𝑇𝑇
𝑉𝑉𝑚𝑚 𝑓𝑓 (12) 

Eq. (12) describes the voltage-controlled activation of the high conduction 
configuration. 𝜏𝜏𝑘𝑘 is the characteristic formation time of the high conduction state. The 
variable 𝑓𝑓 is an occupation function (0 ≤ 𝑓𝑓 ≤ 1) that describes the onset of the memristor 
activated state. Similarly to the ion channel behaviour in neurons,2 the variable 𝑓𝑓 indicates 
the state of the mechanism that establishes the high conductivity state in the memristor. 
As commented in Eq. (2) the parameter 𝜏𝜏𝑑𝑑 in Eq. (11) indicates the diffusion time 
necessary to establish the configuration of high 𝑓𝑓 that produces the large electronic current 
𝑖𝑖𝑐𝑐0.  

If we consider the steady state situation we obtain again Eqs. (3) and (4) and the current 
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voltage is given by Eq. (5). If we assume that formation time 𝜏𝜏𝑘𝑘 is short, then Eq. (12) 
leads to quasi equilibrium condition 𝑓𝑓 ≈ 𝑓𝑓𝑠𝑠𝑠𝑠  and the model becomes the two-dimensional 
set Eqs. (1-2) that we analyzed before.  In the three dimensional model the transient 
response is controlled by three main time constants: 𝜏𝜏𝑚𝑚 = 𝑅𝑅𝑏𝑏𝐶𝐶𝑚𝑚 , 𝜏𝜏𝑑𝑑 , 𝜏𝜏𝑘𝑘 , and by the pulse 
time duration. 

The impedance of the three dimensional model has the form32 

𝑍𝑍(𝑠𝑠) = �𝐶𝐶𝑚𝑚𝑠𝑠 + 𝑅𝑅𝑏𝑏−1 + 1
𝑍𝑍𝑐𝑐
�
−1

  (13) 

The 𝑍𝑍𝑐𝑐 impedance is 
𝑍𝑍𝑐𝑐(𝑠𝑠) = (1 + 𝑠𝑠𝜏𝜏𝑑𝑑)(𝑅𝑅𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑘𝑘𝑠𝑠)  (14) 

These last two equations provide the EC of Fig. 1e. The impedance parameters are 
defined as before and a new inductor appears due to Eq. (12) 

𝐿𝐿𝑎𝑎𝑘𝑘 = 𝑓𝑓𝜏𝜏𝑘𝑘𝑅𝑅𝑎𝑎  (15) 
We can write Eq. (15) as 

𝑍𝑍𝑐𝑐(𝜔𝜔) = 𝑅𝑅𝑎𝑎 + 𝑖𝑖𝑖𝑖𝐿𝐿𝑎𝑎𝑘𝑘 + 𝑖𝑖𝑖𝑖𝐿𝐿𝑎𝑎𝑑𝑑 + 𝑅𝑅𝑐𝑐(𝜔𝜔)  (16) 
where 

𝑅𝑅𝑐𝑐(𝜔𝜔) = − 𝐿𝐿𝑎𝑎𝑘𝑘𝐿𝐿𝑎𝑎𝑑𝑑

𝑅𝑅𝑎𝑎
𝜔𝜔2  (17) 

The impedance spectra have been fully described32 and a representative example 
showing a 𝑅𝑅𝑅𝑅 arc at high frequency and a distorted inductive arc at low frequency is 
shown in Fig. 1f. This type of spectra has been observed experimentally in halide 
perovskite memristors,32 giving strong support to the relevance of the model.  

 

 
Fig. 4. Impedance spectra of the model memristor of Eqs. (1, 10, 11) in the indicated 

conditions. Parameters: 𝑅𝑅𝑏𝑏 = 1; 𝑖𝑖𝑐𝑐0= 10, 𝑉𝑉𝑇𝑇 = 1, 𝑉𝑉𝑚𝑚 = 0.05, [𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑, 𝜏𝜏𝑘𝑘]. 
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Bifurcation and self-sustained oscillations 
In Fig. 4 we show the impedance spectra of the general three-dimensional model, Eqs. 

(1, 11-12), for a different set of kinetic parameters in comparison to Fig. 1f. The Fig. 4a 
is the normal form of the inductive spectrum of a chemical inductor shown in Fig. 1d.17 
But Fig. 4b presents a negative resistance at a finite frequency. This pattern occurs in a 
narrow voltage range around the transition region of the memristor, as discussed later. 
The spectrum of Fig. 4b is the characteristic mark of a Hopf bifurcation that causes self-
sustained oscillations in electrochemical systems and neurons, in galvanostatic 
conditions.12,16,43  

Our model, however, does not contain a negative resistance component, as already 
commented, since the 𝐼𝐼 − 𝑢𝑢 curve in Fig. 1a is formed by strictly positive dc resistances. 
In the present system, the negative resistance is caused by the coupling of two inductive 
features that produce the element 𝑅𝑅𝑐𝑐(𝜔𝜔) of Eq. (17). It is a dynamical instability that exists 
at nonzero frequency and disappears in dc conditions.  

Since the reported general analysis of bifurcation by IS16 is restricted to two-
dimensional systems, we apply the normal mode method10 to the current system. From 
the linearized equations of (1, 11-12) we find the Jacobian  

 

⎝

⎜
⎛
− 1

𝜏𝜏𝑚𝑚
− 1

𝐶𝐶𝑚𝑚
0

0 − 1
𝜏𝜏𝑑𝑑

𝑖𝑖𝑐𝑐0
𝜏𝜏𝑑𝑑

1−𝑓𝑓
𝜏𝜏𝑘𝑘𝑉𝑉𝑚𝑚

0 − 1
𝑓𝑓𝑓𝑓𝑘𝑘⎠

⎟
⎞

  (SI18) 

 
The characteristic equation for the eigenvalues 𝜆𝜆 has the form 
𝜆𝜆3 + 𝑐𝑐2𝜆𝜆2 + 𝑐𝑐1𝜆𝜆 + 𝑐𝑐0 = 0 (19) 

where the coefficients are given by the expressions 

𝑐𝑐0 = 𝑖𝑖𝑐𝑐0(1−𝑓𝑓)
𝜏𝜏𝑑𝑑𝜏𝜏𝑘𝑘𝐶𝐶𝑚𝑚𝑉𝑉𝑚𝑚

 (20) 

𝑐𝑐1 = 1
𝑓𝑓𝑓𝑓𝑑𝑑𝜏𝜏𝑘𝑘

+ 1
𝑓𝑓𝑓𝑓𝑚𝑚𝜏𝜏𝑘𝑘

+ 1
𝜏𝜏𝑑𝑑𝜏𝜏𝑚𝑚

 (21) 

𝑐𝑐2 = 1
𝜏𝜏𝑚𝑚

+ 1
𝜏𝜏𝑑𝑑

+ 1
𝑓𝑓𝑓𝑓𝑘𝑘

 (22) 

At the Hopf bifurcation a pair of eigenvalues become purely imaginary.44 We insert 
the form 𝜆𝜆 = 𝑖𝑖𝑖𝑖 and we obtain the equations 

𝜛𝜛2 = 𝑐𝑐1 (23) 

𝜛𝜛2 = 𝑐𝑐0
𝑐𝑐2

 (24) 

Therefore, the Hopf bifurcations occur at the points that satisfy 
𝑐𝑐1𝑐𝑐2 = 𝑐𝑐0 (25) 

The different coefficients as functions of voltage are plotted in Fig. 5a. It is observed 
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that in the crossing of 𝑐𝑐0 and 𝑐𝑐1𝑐𝑐2 two Hopf bifurcations occur that mark a domain where 
the system is unstable and can perform limit cycle oscillations. By solving the full three-
dimensional system (1, 11-12) in the time domain, the oscillations can be generated as 
shown in Fig. 5b, c.  

 
 
Fig. 5. Model of Eqs. (1, 10-11). (a) Coefficients of the characteristic equation vs. 

voltage and location of the Hopf bifurcations. [𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑, 𝜏𝜏𝑘𝑘] as indicated. (b-c) Time 
transient response to current steps of value 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎). The grey line is the current pulse 
indicated by the voltage 𝑅𝑅𝑏𝑏𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎. The magenta line is the voltage at equilibrium 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎.  
[𝜏𝜏𝑚𝑚 , 𝜏𝜏𝑑𝑑, 𝜏𝜏𝑘𝑘, 𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎] as indicated. 𝑅𝑅𝑏𝑏 = 1; 𝑖𝑖𝑐𝑐0= 10 all cases. 

 
In conclusion, we analyzed the time domain and impedance response of a three-

dimensional memristor dynamical model. In a simplified two-dimensional version, we 
obtain responses to a pulsed current perturbation in which the main properties of a 
neuronal action potential can be reproduced with a simple device without internal 
electronic parts. 

In addition, we analyzed the properties of oscillating dynamics. It has been previously 
established that two-dimensional models require an intrinsic negative resistance, that 
persists in dc condition, to produce a Hopf bifurcation that moves the system into self-
sustained oscillations. Here we find a new property: In the three-dimensional system a 
Hopf bifurcation occurs without an intrinsic negative resistance. This is because a product 
of inductors produces a dynamical negative resistance that exists only in transient 
conditions. So far, such oscillating patterns of the perovskite memristor have not been 
observed. 
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