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Abstract: Maintaining a high rate of productivity, in terms of completed jobs per unit of time, in
High-Performance Computing (HPC) facilities is a cornerstone in the next generation of exascale
supercomputers. Process malleability is presented as a straightforward mechanism to address that
issue. Nowadays, the vast majority of HPC facilities are intended for distributed-memory applications
based on the Message Passing (MP) paradigm. For this reason, many efforts are based on the Message
Passing Interface (MPI), the de facto standard programming model. Malleability aims to rescale
executions on-the-fly, in other words, reconfigure the number and layout of processes in running
applications. Process malleability involves resources reallocation within the HPC system, handling
processes of the application, and redistributing data among those processes to resume the execution.
This manuscript compiles how different frameworks address process malleability, their main features,
their integration in resource management systems, and how they may be used in user codes. This
paper is a detailed state-of-the-art devised as an entry point for researchers who are interested in
process malleability.

Keywords: exascale; job reconfiguration; MPI; data redistribution; resource management; adap-
tive workloads

1. Motivation

We are about to cross the exascale frontier in High-Performance Computing (HPC).
Year after year, the computational power in large computing facilities is progressively
increasing, as reflects the TOP 500 list [1]. In this regard, the persistent effort to pave the
road to exascale computation can be understood twofold: on the one hand, hardware
improvements in memory, storage, or network communications, as well as processor’s
massive parallelism, are providing brute force to our systems; on the other hand, novel
programming models, runtimes, and libraries capable of leveraging these new technologies
are improving.

For this reason, it is not enough to reach exascale [2] performance by running a series
of benchmarks. If a system is not reliable and does not provide high productivity, it will
impair scientific advances and the investment will not be worth it. At the end of the day,
exascale computation has to have a real impact on society; for this reason, a smart system
able to maintain high throughput in terms of completed jobs per unit of time is crucial.
With this sense of productivity, smartness can be regarded as the rapid system adaptation
to the constant changes happening in the workload, and the reliability of a system in order
to recover from hardware faults in such a complex environment. These two features would
mean maintaining in time a high rate of successfully completed jobs.

Firstly, providing more resources opens the door to run larger applications that prop-
erly exploit parallelism; however, not all codes can harness an increase in resources. Within
the wide range of applications, we also can find production scientific codes with a scalability
limit, or even not scalable at all.
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Secondly, the growth in the number of computational resources leads to an increase in
failure rates. Fault-tolerant techniques will become essential for long-running executions.
Several research efforts have studied fault tolerance in exascale systems [3].

Thus, future exascale systems and their applications must have a dynamic behavior
that adapts to both the availability of system resources and the needs of the application
itself at any given time. That is, the system has to be able to allocate resources dynamically
and applications to be adapted to this operation mode at runtime. This versatility will allow
to obtain the best performance for the system without harming the application performance.
Such type of applications are named malleable or elastic. Current studies conducted in
the USA Exascale project [4] show that including this feature in applications will be very
profitable for both users and system.

Although these types of applications are now becoming more relevant, their design and
performance analysis have been taken into account since quite some time. The beginning
of the development of malleable applications took advantage of the solutions designed
for fault tolerant systems. This is because the two problems are very similar, as in both
cases, applications have to be restarted on a different set of resources (processors); however,
malleability counts with a higher degree of complexity than fault tolerance since not only
the resources are different but also their amount, also known as size. In the latter case, the
overhead of data reallocation is a non-negligible issue to be considered.

On the other hand, in the last years, in the vast majority of HPC facilities, the pro-
gramming model based on the passing message paradigm has become more and more
relevant for designing parallel applications, particularly using the Message Passing Inter-
face (MPI) [4]. The standardization efforts of the MPI forum (https://www.mpi-forum.org
(accessed on 7 March 2022)) have allowed applications to be portable across computing
systems, and this has led it to be one of the most widely used and the de facto standard of
distributed memory programming. In this sense, efforts have also been made to develop
tools that allow to easily include malleability in this type of parallel applications.

The main contribution of this paper is to provide a thorough study of the different
solutions that have been proposed over the last years in order to design malleable solutions
focused mainly on the reallocation of processes at runtime. In this regard, this manuscript
is the cornerstone for any researcher willing to contribute to this area of knowledge.

The rest of the paper is structured as follows: Section 2 introduces concepts necessary
for understanding malleability and how it has been implemented. Section 3 presents a
series of checkpoint/restart mechanisms utilized in process malleability. Section 4 describes
deeply MPI-based frameworks that enable malleability in HPC systems. Section 5 intro-
duces the CHARM++ paradigm and how it is leveraged in malleability. Section 6 compiles
process malleability solutions based on approaches that cannot fit in the previous sections.
Section 7 compares the most remarkable features of the presented malleability solutions.
Finally, Section 8 concludes this work.

2. Background

HPC environments are formed by tightly coupled systems that include a cluster of
nodes, and accelerators, interconnected via high-speed networks, and parallel files systems
with multiple storage tiers.

It is a big challenge for coders to implement applications able to maximize their
performance, as well as the efficiency of these complex systems, since parallel applications
will have to be prepared to deal with multicore heterogeneous shared resources, distinct
types of memory access, parallel I/O, or fault tolerance, among other features.

Applications are submitted to run on HPC systems within the shape of jobs. In this
regard, a job is an instance of code, together with the specification of resources needed
during its execution, and the input data that have to be processed by the program.

Jobs and resources are controlled by a batch system, which is composed of a job
scheduler and a resource manager. Batch systems, also referred to as resource manage-

https://www.mpi-forum.org
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ment systems (RMS), are responsible for orchestrating the efficient arbitration of jobs, and
maintaining system productivity matching the business rules.

An RMS can include a wide range of options and working modes categorized in
different partitions or queues; however, it is usual that RMS follow, in their main queues,
very strict policies to allocate resources among running jobs based on two main aspects:

1. Wait until all requested resources are available. This causes situations where there
are available resources, but are not sufficient to satisfy a job request; therefore, the job
has to keep waiting, increasing its waiting time and in consequence its finalization
time. In turn, available resources are wasted while waiting to be assigned.
Notice that this aspect also prevents large jobs from starvation, since not always small
jobs, whose resources are available, overtake jobs waiting for remaining resources.

2. Exclusive resource dedication. In this case, requested resources are assigned exclu-
sively to a job until its completion. This can lead to have idle resources for some
periods during the execution of the jobs, because some applications are decomposed
into several phases, and they rarely use all the requested resources in each phase. It is
important to take into account this issue to maximize the system productivity.

Clearly, the implementation of these policies can lead to a non-negligible waste of
resources since they remain idle but disabled for further usage. In order to deal with this
problem, both systems and applications must collaborate to promote a better usage of
resources that drives to more productivity.

This work is mainly focused on distributed parallel jobs, in other words, jobs that can
concurrently execute a task collaboratively with several processes in different processors.
These type of applications can be classified into four groups following the Feitelson and
Rudolph [5] categories, depending on who and when determines the size (number of
processes) of parallel jobs. In this regard, there exist two actors who can request job
reconfigurations in two scenarios. The actors responsible for triggering reconfigurations can
be either the system or the users themselves. In turn, the scenarios when reconfigurations
can be programmed are on job submission, and during the execution itself. Following, the
job classification is detailed:

• Rigid jobs: Only can run with a fixed number of processes.
• Moldable jobs: Can be initiated with a variable number of processes. The size is

determined by the resource manager just before launching the execution of the job.
• Evolving jobs: Are provided with a user-defined reconfiguration scheme, specifying

how and when the job changes its resources. The RMS must satisfy the requests or the
job will not be able to continue its execution.

• Malleable jobs. Can be reconfigured during their execution if the RMS decides so.

The first two types use static allocation because resources are maintained during the
whole execution, whereas the latter two use dynamic allocation since allocated resources
may vary on execution time, and therefore, include in their codes the corresponding resize
commands. Rigid and evolving job sizes are determined always by the user, while moldable
and malleable are decided by the system. In addition, rigid and moldable jobs cannot be
resized during their execution. In this way, malleable jobs are the most flexible since they
can be adapted to the cluster workload, being capable of reallocating their resources at
any time, increasing the system throughput. In the practice, malleable jobs incorporate
synchronization points where reconfigurations can be performed. Moreover, these types of
jobs are provided with hints, such as the optimal range of processes, provided by the user
to narrow down resizing options.

Malleable jobs are the main goal of study of this work. In order to be able to execute
these jobs in a cluster, it will be necessary to have three major components:

1. A parallel runtime able to rearrange processes and redistribute data.
2. An RMS that supports dynamic reallocation of resources.
3. A mechanism to coordinate the previous two subsystems.
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Additionally, there are some other aspects to be considered when malleable jobs are
executed on an HPC system:

• The increase in the resources does not always assure more throughput; therefore, the
RMS has to be prepared to analyze the job performance.

• The incorporation of some fairness in shrink/expand could promote the use of mal-
leability among the users. Thus, the scheduling strategy should maximize the system
efficiency including as much fairness as can be delivered.

• Usually, the expansion is faster than shrinking, because in the first the nodes are idle
whereas in the second they are executing a task and it has to arrive to a checkpoint.

• Some feedback application can be used by the scheduler to make decisions, although
the corresponding overhead has to be considered.

Hence, the balance on the overhead and the improvement of the throughput cannot
be ignored and has to be analyzed.

3. Fault Tolerance for Malleability

Fault tolerance and malleability are important issues in high-performance computing.
Fault tolerance is especially relevant in large-scale systems, where the likelihood of node
failures is extremely high. The term malleability captures applications’ ability to incorporate,
or release, resources upon system request. This issue becomes crucial in the performance of
applications and systems, as it implies a significant overhead.

Both approaches share similar features, because they need to stop an application
execution and restart it from the last valid checkpoint. Although from a malleability
standpoint, there are two main differences:

1. Malleable applications have to be restarted each time they are resized and checkpoint
phases are only triggered when such reconfiguration is required.

2. Reconfigurations may consist of allocating more or few resources. In any case, it is
very important to address the data redistribution in the new process layout.

Furthermore, several techniques used in fault tolerance are leveraged in malleability.
One of the main ones is the checkpoint and restart technique (C/R). This strategy consists of
periodically writing an application state to reliable storage, typically a parallel file system.
Upon failure, an application can restart from a prior state by reading its checkpoint file.

In the following, some of the most important efforts to adopt malleability in C/R
techniques are described.

3.1. SRS Library and RSS

In [6], the authors present a tool for the development and execution of malleable and
migratable parallel MPI applications for distributed systems. This infrastructure consists of
a user-level semi-transparent checkpointing library called Stop Restart Software (SRS) and the
Runtime Support System (RSS) that provides the necessary mechanisms for reconfigurating
applications during its execution.

The solution is composed of a set of functions that users can invoke from their applica-
tion to specify the checkpoints and restore the state in the case of a resize. The storage of
this information and the redistribution of the data are handled internally by the library and
it is transparent to the user.

The novelty of this system relies on its ability to administrate data in different file
systems without the need for users to manually migrate checkpoint data. This is achieved
through the use of a distributed storage infrastructure called Internet Backplane Protocol
(IBP) [7], which allows applications to remotely access checkpoint data.

The SRS library consists of six main functions:

• SRS_Init: Has to be called after invoking MPI_Init in the program. This is a collec-
tive operation that initializes the data structures used internally and reads various
parameters from a user-supplied configuration file that indicate how the application
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is to be run. This function also contacts RSS to send and receive information about the
resources used.

• SRS_Restart_Value: Provides information about the running status of the application. It
returns false if it starts its execution, and true if it continues from a previous checkpoint.

• SRS_Read: Retrieves the checkpoint data and allows the reconfiguration of an appli-
cation. Different parameters are used to indicate checkpoint file name, location, and
type of data distribution.

• SRS_Register: Is used to mark the data that will be stored during periodic checkpoint-
ing or when SRS_Check_Stop is called.

• SRS_Check_Stop: Checks if the application has to be stopped because some external
component has requested it. It is invoked from various stages of the application and it
contacts RSS to obtain this information. It is a collective operation, so if the answer
is to stop, SRS_Check_Stop stores the current data registered by SRS_Register to the
IBP depots.

• SRS_Finish: Deletes all the local data structures maintained by the library and contacts
RSS requesting to terminate the execution. It is called collectively by all the processes
of the parallel application before MPI_Finalize.

RSS is a runtime that enables the reconfiguration of the application. It has communicating
daemons running on every node where the parallel application is allocated. RSS exists for the
entire execution of the application and handles multiple migrations. Before the actual parallel
application is started, RSS is launched by the user and will set up, showing a number port on
which it listens for requests; therefore, users have to fill out a configuration file containing
this information to enable communication. When the parallel application is started on a set of
nodes, the main process reads the configuration file with a call to SRS_Init. RSS maintains
the current application configuration, as well as the previous executions and an internal
flag, called stop_flag, that indicates if the application has to be stopped. A utility named
stop_application is provided and allows to stop the application at any point. When running
such a utility, RSS sets stop_flag. The application calls the SRS_Check_Stop function to retrieve
the stop_flag’s value, and according to this running stops or continues. Thus, to develop a
malleable application, this function has to be executed in the users’ application.

Listing 1 shows a simple MPI parallel program with additional code that invokes SRS
library functions that allow us to stop and continue the application with a different number
of processes, i.e., it is a malleable application. First, MPI application initializes data to begin
execution. Then, the program enters a loop where data are modified. The additional code
includes calls to SRS functions in order to initialize environment, mark which data should
be stored when the application stops and, finally, indicate the checkpoint where the test
will be performed in each iteration. The interactions between the user, the application, and
the SRS library and RSS are illustrated in Figure 1.

MPI Application RSS

Query to stop the application

Initialization, registration and handles 
checkpoint data

IBP Storage
Storing and 
retrieving data 
from checkpoint

External agent

Request to stop 
application

Figure 1. SRS and RSS—interactions between different components in the SRS checkpointing archi-
tecture [6]. Based on: http://cds.iisc.ac.in/faculty/vss/publications/vadhiyar-srs-ppletters2003.pdf
(accessed on 7 May 2022). Adapted with permission from [6]. Copyright 2003, Sathish S. Vadhiyar.

http://cds.iisc.ac.in/faculty/vss/publications/vadhiyar-srs-ppletters2003.pdf 
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Listing 1. MPI code modified with calls to SRS in order to include malleabily [6]. Based on: http:
//cds.iisc.ac.in/faculty/vss/publications/vadhiyar-srs-ppletters2003.pdf (accessed on 7 May 2022).

1 int main(int argc , char** argv){
2

3 MPI_Comm comm = MPI_COMM_WORLD;
4

5 MPI_Init (&argc , &argv);
6

7 // Initialization data and parameters for the application
8 // to be reconfigurable.
9 SRS_Init ();

10

11 // Checking if the application is starting its execution
12 // or continued from its previous checkpoint
13 restart_value = SRS_Restart_Value ();
14

15 if(restart_value == 0){ // application is starting
16 // Code for application initialization
17 }
18 else{ // Application continues from its previous checkpoint and
19 // data are retrieved
20 // Call to SRS_Read function for each data stored in checkpoint
21 // Call to SRS_Read to retrieves iteration to continue
22 // execution (iter)
23 }
24

25 // Mark the data that will be stored during a checkpointing
26 // Call to SRS_Register function for each data that has to be stored
27 // in a checkpoint
28 // Call to SRS_Register to store iteration where execution will
29 // continue (iter)
30

31

32 for(i=iter; i<global_size; i++){
33 // Checkpoint to test if the application has to be stopped
34 stop_value = SRS_Check_Stop ();
35 if(stop_value == 1){ // Execution ends
36 MPI_Finalize ();
37 exit (0);
38 }
39

40 // Code for iterative application
41 }
42

43 SRS_Finish ();
44 MPI_Finalize ();
45 exit (0);
46 }

The authors conclude with an analysis of the overhead of using this library. The
experimental results show that the parallel applications transformed into malleable and
migratable, were able to be reconfigured incurring at a very low overhead [6]. These
experiments were performed on the ScaLAPACK QR factorization application and two
clusters that were connected employing the Internet.

3.2. PCM API

The Process Checkpointing and Migration (PCM) API [8] allows iterative MPI applica-
tions to be migrated based on the C/R technique [9].

PCM API relies on the reconfiguration capabilities of Internet Operating System
(IOS) [10]. IOS is a distributed middleware framework that supports dynamic reconfigura-
tion of large-scale applications via load balancing, and resource-level and application-level
profiling. IOS reconfiguration mechanisms provide:

• Analysis of profiled application communication patterns.

http://cds.iisc.ac.in/faculty/vss/publications/vadhiyar-srs-ppletters2003.pdf
http://cds.iisc.ac.in/faculty/vss/publications/vadhiyar-srs-ppletters2003.pdf
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• Capture behaviors of the underlying physical resources.
• Reconfiguration of application entities by changing their mappings to other physical

resources (migration).

The IOS architecture consists of distributed agents that are capable of interconnect-
ing themselves in different virtual topologies. Moreover, using IOS as runtime, PCM is
implemented in the user space to provide portability with MPI-2 standard implementations.

In [11], PCM is extended with routines for splitting and merging MPI processes that
eventually enables malleability, being responsible for the spawning and splitting operations,
as well as re-arranging communication among processes. Nevertheless, programmers still
need to specify the data structures that will be involved in the migration operations regard-
ing the specific ways of subdividing data among processes. Furthermore, programmers
also need to guide the split and merge operations for data redistribution. Additionally,
PCM API provides four classes of services:

1. Environmental inquiry. Performed by two functions to know the rank and state of
each process, one for the state of the application and another one to simplify the data
redistribution task.

2. C/R techniques. Performed by two functions to store or load checkpoints to redis-
tribute data. Data are stored with proximity to their destination.

3. Initialization and finalization. Performed by one function to initialize the environment
and another one to finalize it.

4. Collective reconfiguration. Performed by four different functions to allow different
kinds of reconfigurations using some or all the processes of the application

It also supports data distributions such as block, cyclic, and block-cyclic; however, it is lim-
ited to data-parallel programs with a 2D data structure and a linear communication structure.

Users can develop their malleable applications through both: PCM API calls, such as
MPI_PCM_Init that initializes internal data structures; a configuration file that has informa-
tion about the IOS runtime configuration as the port number where accept connections and
the location of the PCM daemon.

PCM functions wrap many of the MPI functions/variables. In this regard, coders are
expected to use the API following this workflow:

• Check if there is a migration in progress. If so, determine which type of reconfiguration
has been scheduled (expansion or shrinkage).

• Spawn new processes and configure them to load data according to the new pro-
cesses layout.

PCM explores how malleability can be used in C/R applications [12]. Especially,
PCM reconfiguration has been implemented and evaluated with a fluid dynamic prob-
lem that solves heat diffusion in a solid for testing purposes. The C/R mechanism is
leveraged to restart applications with a different number of processes from data stored in
checkpoint files.

3.3. Scalable Checkpoint /Restart Extended

Authors in [13] present the scalable C/R (SCR) library, which consists of a novel
multi-level checkpoint system that allows us to write checkpoints to RAM memory, flash,
or disk on the compute nodes in addition to the parallel file system. This library enables
MPI applications to use storage distributed on a system’s compute nodes to attain high
checkpoint and restart bandwidth.

This technique uses multiple types of checkpoints that have different levels of re-
siliency and cost in a single application run. The slowest but most resilient level writes
the checkpoint file to the parallel file system. Faster but less resilient checkpoint levels
utilize local node memory, such as RAM, Flash, or disk to cache these files. So, applica-
tions can take frequent inexpensive checkpoints and less frequent and more resilient ones,
resulting in better efficiency and reduced load on the parallel system. It also reduces the
input/output bandwidth.
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SCR library implementation is focused on two key issues:

1. Jobs only need their most recent checkpoint. As soon as the next one is saved in
the local storage of the compute node, the previous can be discarded. SCR can also
apply a cross-redundancy scheme by caching a local checkpoint file on others nodes.
This helps to recover from a failure of a small part of the system. In addition, SCR
periodically copies the local checkpoint file to the parallel file system to support
failures that disable larger parts of the system.

2. SCR depends on an external service (such as an RMS) to cancel a job that presents a
failure. Upon failure, it attempts to recover the most recent checkpoint from a local
cache. Assuming it succeeds, SCR can copy that file to the parallel file system and try
to restart the execution from the checkpoint. If it fails, it looks for the last file cached
in the parallel file system and attempts to restart execution from there.

In [14], authors extend SCR to enable malleability in MPI applications, leveraging the
multi-level C/R. In addition, it also permits data to be cached at a specific position in the
checkpoint files providing their further redistribution. Originally, SCR was only allowed to
retrieve the checkpoint file that matches the MPI rank that wrote the file; however, in [14], it
has been modified so that each rank can request and access any checkpoint file on demand.
Finally, the malleable application can be restarted with a different number of processes
(expand/shrink) performing the required data redistribution.

Authors compare malleability implemented via SCR and User-Level Failure Mitigation
(ULFM) library, described next, in Section 3.4. The analysis is focused on malleability
in HPC applications to study the effects on execution time as well as resources usage
efficiency. The study comprises both techniques applied on two basic applications. These
have been a state-of-the-art parallel matrix multiplication algorithm and an application
with no computation, but a global matrix shared using a two-dimensional block-cyclic
data distribution.

The study involves jobs with long execution times being resized to accommodate
short running jobs with higher priority. In this regard, a candidate job is shrunk to free up
resources for a high-priority job and then resized back after the latter has finished execution.
Thus, the RMS maintains several separate queues according to their priority. The scheduler
extracts jobs according to the order of priority and locates the resources needed for their
execution. If it is necessary, it will reduce resources to a lower priority job in execution.

Results showed the improvement that malleability can provide in terms of reducing
the queuing time for high-priority jobs and also that the ULFM approach enables faster
reconfigurations.

3.4. ULFM

User-Level Failure Mitigation (ULFM) (https://fault-tolerance.org/ (accessed on
3 March 2022)) is a proposal for extending the standard MPI with new features that support
failure mitigation. These improvements are intended to avoid deadlock in communication
operations and return control to the application so it can build its failure tolerance [15,16].
ULFM is the most accepted to integrate this type of application among other projects for
MPI and it is highly active in the development of constant advances [3,17].

ULFM incorporates three additional error types:

• MPIX_ERR_PROC_FAILED: This error is returned when a communication operation
fails in any process. It is sent to all processes that participated in that operation
and have not finished yet. So, the same operation for some processes could return
successfully while others do not. For example, the root process in a MPI_Bcast will not
detect an error if the operation fails during the reception in the remaining processes. In
this regard, processes that still have the communication operation active will receive
the error code, but the root will not. From this moment, the failed process will always
return this error code for all the operations in its participation.

https://fault-tolerance.org/
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• MPIX_ERR_REVOKED: Returned by all non-local functions in a communicator/win-
dow/file after calling MPI_Comm_revoke/MPI_Window_revoke/MPI_File_revoke
for that same handler, respectively.

• MPIX_ERR_PROC_FAILED_PENDING: Returned by non-blocking receiving func-
tions from MPI_ANY_SOURCE, where no send has matched to this operation and a
potential send operation from an MPI process has failed. It intends to avoid deadlocks
caused by waiting on a failed process or that are on the recovery path.

These errors are only found locally, and not necessarily globally. For non-blocking,
one-sided, or I/O functions, errors are notified when processes call synchronous operations.

The main objective of ULFM is to create a recovery path from failures and continue
the execution. In this regard, the most relevant functions are described below:

• MPIX_Comm_revoke: Local operation which revokes a communicator. All fur-
ther non-local operations in this communicator are canceled and return the error
MPIX_ERR_REVOKED, which allows other processes to know a problem in this com-
municator.

• MPIX_Comm_shrink: Creates a new communicator with the same characteristics as a
revoked communicator. The new one includes only all non-failed processes.

• int MPIX_Comm_failure_ack(): Local function to acknowledge all errors in a commu-
nicator. If there are errors, from this moment all collective operations will return the
error MPIX_ERR_PROC_FAILED.

Authors in [16] analyze this approach and show its effectiveness with hardly any
degradation in performance in their experiments.

These functions can also be used to implement malleability in users’ codes. Although
ULFM does not provide any specific mechanism other than those found in the native
MPI Standard [18] to expand a job; however, shrinking is enabled with the function
MPI_Comm_shrink, which terminates a defined number of processes intentionally. In
short, if a job has to be shrunk from n to m processes, n − m processes are forced to fail.
Then, invoking MPI_Comm_shrink, the processes are removed from the communicator.

Listing 2 shows how ULFM can be used to achieve malleability. Notice in the listing
that there is no data redistribution helper provided by ULFM, as it is not intended for this
task; therefore, the application itself has to include the necessary code to carry out this
redistribution.

Listing 2. ULFM–Example of ULFM malleability.

1 int main (int argc , char **argv){
2 int numP;
3 MPI_Comm comm;
4 ... // Initialization code
5 MPI_Comm_size(comm , &numP);
6 ... // Initialization code
7 for (...){
8 nodeList = get_new_nodelist_somehow ();
9 // Perform resize only if there is a new node list

10 if (nodeList != NULL) {
11 MPI_Comm aux_comm;
12 if (numP >= nodeList.maxProcs) { // Expand operation
13 MPI_Comm_spawn(myapp.bin , nodeList.maxProcs ,
14 nodeList.names , &aux_comm);
15 ... // Data redistribution code
16 exit (0);
17 } else { // Shrink operation - ULFM
18 ... // Data redistribution code
19 kill_N_processes_somehow(numP - nodeList.maxProcs);
20 MPIX_Comm_shrink(comm , &aux_comm);
21 MPI_Comm_free(comm);
22 comm = aux_comm;
23 }
24 }
25 ... // Compute and MPI code
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26 }
27 ... // Finalization code
28 }

In [14], the authors also demonstrate the superiority of ULFM malleable applications
in front of SCR malleable counterparts (see Section 3.3), as a reconfiguration is performed
in less time with ULFM when expanding and shrinking a job.

4. MPI Malleability

The dynamic creation of processes, in other words, spawning processes from a running
application, is available since MPI standard version 2 [18]; however, most RMS operate in
ways that make it difficult to add dynamic processes support, which prevents its usage in
production systems. For this reason, jobs run with a fixed number of processes and may
use load balancing techniques that do not rely on spawning processes. The straightforward
integration of processes management in RMS would allow for different load balancing
strategies and more efficient use of resources.

The API function provided by the MPI standard to support dynamic processes is
MPI_Comm_spawn, which creates processes with an inter-communicator connected to
the original invoking communicator. We can also find a variant of this function named
MPI_Comm_spawn_multiple, which additionally, supports different binaries or configura-
tions in the same call.

As it is reported in [19], the current process spawning in MPI Standard involves
several limitations:

• The spawn operations are synchronous for all processes involved in the invocation of
this operation and the new set of processes created.
Therefore, they are implemented as collective operations that block the processes they
invoke while the new ones are created and initialized.

• These operations produce inter-communication based on disjoint processes groups.
The majority of applications consider a single flat communicator (MPI_COMM_WORLD),
from which other intra-communicator could be defined and used in their MPI codes.

• Subsequent creation of processes results in multiple process groups. Communication
between them is not straightforward to manage.

• Processes can only be terminated on the entire process group. Processes in a group are
not destroyed until all of them invoke MPI_Finalize.

• Processes created with spawn operations are run in the same resource allocation
by default.

Finally, another important issue to consider in this approach is how to redistribute
the data among existing and new processes, which is usually performed on the memory
of each process during resizing. As a consequence, without proper management, it could
affect the performance of the application.

This section describes various efforts that deal with these issues.

4.1. Elastic Execution of MPI Applications

In [19], the authors propose an extension to the MPI Standard 2.0 to better support
moldable and malleable applications on large-scale distributed memory systems.

This consists of a new API that extends the MPICH library and allows the dynamic
reshaping of the processes’ layout.

Following, the new functions are described:

• MPI_Init_adapt: Initializes MPI likewise MPI_Init does, but it has an additional output
parameter that informs about how processes are created. If the parameter contains
joining, it means that the process was created during the execution. While if it contains
new, it means that the process was created when the execution started.
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• MPI_Probe_adapt: With this routine, processes can ask the RMS whether a reconfig-
uration is required when a synchronization point is reached. There is an alternative
interface of this routine, which is useful for fault tolerance applications.

• MPI_Comm_adapt_begin: This routine starts the adaptation phase. It retrieves the
inter-communicator, equivalent to the generated by spawn routines, and a flat intra-
communicator, which will be MPI_COMM_WORLD when the adaptation is completed.
When shrinking, the intra-communicator of the processes that have to be terminated
is set to MPI_COMM_NULL. They still are connected to the other processes with
the inter-communicator. Management of these two communicators will allow data
redistribution required during the adaptation.

• MPI_Comm_adapt_commit: This routine notifies the RMS that the reconfiguration
has ended. MPI_COMM_WORLD is changed by the new_comm_world obtained in
the previous routine, in which the processes to be destroyed are excluded.

An example of how to implement malleability using these functions is showcased in
Listing 3.

Listing 3. Elastic MPI–Structure of a simple malleable application using the elastic execution [19].

1 int main (int argc , char **argv){
2 MPI_Init_adapt (&argc , &argv , &local_status );
3 for (...){
4 MPI_Probe_adapt (&adapt , . . . ) ;
5 if ( local status == MPI_ADAPT_STATUS_JOINING
6 || adapt== MPI_ADAPT_TRUE){
7 MPI_Comm_adapt_begin (...);
8 // Redistribution code
9 MPI_Comm_adapt_commit (...);

10 }
11 // Compute and MPI code
12 }
13 }

SLURM Integration

Despite the different alternatives when it comes to RMS, the proposed framework is
integrated into SLURM [20]. Since other malleability solutions leverage SLURM as well, at
this point, it is worth it to describe its architecture:

• The SLURMCTLD daemon is a single centralized component (running on the man-
agement node), which is responsible for monitoring each compute node state and for
allocating resources to jobs. The rest of the nodes (compute nodes) run the SLURMD
daemon, on which the SLURMCTLD notifications arrive. These daemons periodically
communicate to the SLURMCTLD to exchange node and job state information.

• Jobs are included in a priority-ordered queue, concerning the criteria of the defined
scheduling policy. When a job is selected to be executed, the job is initiated in a
compute node, executing an SRUN instance. This instance notifies the other compute
nodes that a SLURMSTEPD daemon has to be launched in each node. SLURMSTEPD
daemons launch the local processes and interact with them via the Process Manage-
ment Interface (PMI).

Figure 2 depicts the interactions among SLURM daemons.
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Figure 2. Elastic MPI—overview of the interactions between the SLURM daemons [21]. Source:
https://mediatum.ub.tum.de/doc/1539159/file.pdf (accessed on 7 May 2022). Reprinted with
permission from [21]. Copyright 2020, Mohak Chadha.

To incorporate elasticity, some modifications to the design and functionality of SLURM
are proposed in [19] to support its malleability framework [21,22].

• The batch script language is extended by the following parameters:

– -min-nodes-invasic defines the minimum number of nodes, such that the job is
properly executed.

– -max-nodes-invasic defines the maximum number of nodes for the job.
– -node-constraints includes additional constraint on the number of cores. Some

values are odd, even, power-of-two, cubic, . . .

• SLURMCTLD is divided in two components:

– Elastic Runtime Scheduler (ERS) manages expand/shrink operations for mal-
leable jobs. It is also responsible to manage the parameters on which the reconfig-
uration decision is founded, such as runtime performance or power consumption.

– Adaptive Batch Scheduler (ABS) is responsible for efficient job scheduling and
dynamic reconfiguration decisions for running jobs. It maintains two separate
priority-ordered queues, one for rigid and the other for malleable applications.

These components are executed concurrently in two independent threads of the node.

https://mediatum.ub.tum.de/doc/1539159/file.pdf
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The interaction between them is event-triggered and occurs every SchedulerTick second
(defined in the configuration file) when a job is submitted or after job completion.

• When an SRUN is launched in a node, a unique port number to a particular thread is
communicated to the ERS, on which specific messages will be received.

• Thus, the reconfiguration of a job can be summarized in the following steps:

1. ERS sends a reconfiguration signal to the SRUN instance.
2. If a shrinking is notified by ERS, SRUN informs the corresponding SLURMD

daemons about the processes to terminate.
3. If an expansion is triggered, SRUN notifies the corresponding SLURMD daemons

about the number of processes to create.
4. When children processes are executing MPI_Probe_adapt, SLURMD notifies

SRUN and the state of the job is changed to ADAPTING.
5. After the execution of MPI_Comm_adapt_commit in all processes, SRUN sends

a reconfiguration complete message to ERS.
6. Finally, ERS sends to SRUN the updated job credentials and updates the job state

back to RUNNING.

Figure 3 depicts how these stages are followed.

Figure 3. Elastic MPI—overview of interactions between different SLURM daemons during a reconfig-
uration with the elastic execution [21]. Source: https://mediatum.ub.tum.de/doc/1539159/file.pdf
(accessed on 7 May 2020). Reprinted with permission from [21]. Copyright 2020, Mohak Chadha.

The scheduling policies can be based on different criteria. In [22], the evaluation
on a cluster of 6480 compute nodes using the standard benchmark and synthetic elastic
applications were made. In this experimentation, the authors used two different scheduling
strategies:

• The performance-aware strategy considers the MTCT ratio (the time spent in MPI
calls versus the time doing relevant computation), as an intuitive heuristic.

https://mediatum.ub.tum.de/doc/1539159/file.pdf
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• The power-aware strategy requires the correct management of the RAPL counters,
specifically updating automatically system files that store energy values.

All this information is stored and managed by ERS component.

4.2. ReSHAPE

ReSHAPE [23] is a coupled solution for malleability that implements a runtime, an
API, a RMS, and the communication layer among them.

Unlike other solutions, ReSHAPE does not need to know in advance the data partition
sizes for the reconfigurations. This framework calculates partitions based on the runtime
performance of the application. Furthermore, ReSHAPE redistributes data among processes
using message passing mechanisms which avoid data load/store in the disk.

ReSHAPE framework consists of two main components: an application scheduling
and monitoring module and a programming model for resizing applications.

• Firstly, the scheduler allocates resources and gathers jobs performance data to make
appropriate decisions. Particularly, the scheduling module is based on the DQ/GEMS
project [24], which was extended with job resizing support [25].

• Secondly, the programming model includes the resize library and the API. The library
consists of algorithms for mapping processors and communications, and redistributing
data. This library is built on top of (BLACS) [26] (Basic Linear Algebra Communication
Subprograms), the ScaLAPACK communication library [27], which is extended with
support for dynamic process management. The API provides the methods to establish
communication with the scheduler module.

All in all, the strong integration of ReSHAPE modules forces users to specifically de-
velop applications for this exclusive system. In this regard, applications need to be compiled
with the resize library to enable the scheduler to dynamically add or remove processors.

During a reconfiguration, the application execution control is transferred to the resize
library, which maps the new set of processors and redistributes the data. Then, the resize
library returns control back to the application following with its next iteration. Users are
expected to define global data structures and variables so that they can be redistributed
among children processes after the reconfiguration. The steps taken during a resize are
the following:

• Application requests a resize.
• The resize library conveys the performance data to the scheduler, which in turn,

gathers the application’s past performance.
• Scheduler takes an action: expand, shrink, or nothing.
• If it expands, new processes are spawned and added to the context. If it shrinks,

processes are terminated, and a new context is created.
• If any action is taken, data have to be redistributed among the new process layout.

In [28], the authors use ReSHAPE to implement malleability in some applications of the
Nasa Parallel Benchmark (http://www.nas.nasa.gov/Software/NPB (accessed on 3 March
2022)). Furthermore, in [29], the authors also developed a malleable version of a classical
molecular dynamics code, LAMMPS (http://lammps.sandia.gov (accessed on 3 March
2022)), leveraging its native C/R methods.

4.3. Flex-MPI

Flex-MPI [30] is a library, built on top of MPICH [18], to improve Single Program
Multiple Data (SPMD) application performance using a performance-aware dynamic recon-
figuration where users set performance objectives and application constraints.

When an application is executed using Flex-MPI, information related to performance
is automatically gathered and analyzed to decide if a reconfiguration would benefit the
performance. Furthermore, Flex-MPI also takes care of load-balancing issues, selecting how
data will accordingly be partitioned and redistributed among processes.

http://www.nas.nasa.gov/Software/NPB
http://lammps.sandia.gov
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Flex-MPI is composed of the following modules, which work together under a recon-
figuration policy:

• Monitoring: Takes care of gathering data from the application using the library
PAPI [31] to retrieve information from hardware counters, and PMPI to collect in-
formation from MPI calls. Metrics are collected for each process and are preserved
during a context switch.

• Computational prediction model (CPM): Predicts how the application will perform
from gathered data when executing on different processor configurations. The re-
sult is the expected computation and communication time for the following itera-
tions. It also calculates the expected time for the creation/finalization process and
data redistribution.

• Dynamic process management: Controls process creation and termination. Processes
are divided between initial, which are in the first set of processes created, or dynamical,
which are created in execution time. Flex-MPI will always have at least an initial
number of processes working and this group can not be terminated.
To create a process, the function MPI_Comm_spawn is called with an MPI_Info object
to select where the process will be bound. Processes are created one by one to allow
fine-grained control over the processes’ number and, therefore, satisfy performance
constraints. This makes the termination of processes different to the initial ones easier;
therefore only dynamic processes can be removed [30].
A new process is created with a new inter-communicator connected to the main group
of processes, which in turn, is merged into an intra-communicator with the function
MPI_Intercomm_merge. So, a new main processes group is started where the recently
created process is added, knowing this operation as a “merge” method [32]. The
intra-communicator in Flex-MPI is called XMPI_COMM_WORLD and is updated
after each process creation or finalization.
Processes are created only if these criteria are met:

– There are idle processors in the system.
– Current performance does not meet the user-given performance objective.
– CPM predicts a performance improvement to satisfy the user-given perfor-

mance objective.

• In order to remove a dynamic process, XMPI_COMM_WORLD is released and recre-
ated without the process that is being terminated, which ends the compute and calls
MPI_Finalize. The rest of the processes recreate XMPI_COMM_WORLD by invoking
the API function MPI_Group_incl, without the removed process.
Processes are removed only if all this criterion is met:

– Current performance does not meet the user-given performance objective.
– CPM predicts a performance reduction that satisfies the user-given performance

objective.

• Load balancing: Ensures that data are partitioned among processes having a workload
according to the processor they are bound. This module is based on techniques
described at [33,34], and creates a partition concerning the computing power of
each processor.

• Data redistribution: Redistributes data according to the model set by the load balanc-
ing module. The distribution is performed completely by this module and users do
not need to describe the data structures; however, Flex-MPI only handles the following
types of data: one-dimensional, two-dimensional, and dense or sparse matrices with
block-based one-dimensional domain decomposition.

The reconfiguration policy, which controls the previous modules, follows these steps
to decide if a resize is necessary:

1. Activation of the monitoring module.
2. Computation of an iteration.
3. Gathering data from the monitoring module.
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4. CPM predicts the application performance for the next iterations.
5. Checking if the predicted application performance for the next iteration meets the user

performance objective by comparing if the difference is bigger than a given threshold.
If it is met, the application continues normally. If not, new resources are requested to
the RMS.

6. The CPM calculates different options that meet the goal from the available resources
and selects the one that fits best the requirements. Results return the new process
quantity and their layout.

7. In the case of an expansion, the following modules are activated:

(a) Dynamic process management module, to create new processes.
(b) Load balance module, to select how data will be partitioned in the new layout.
(c) Data redistribution module, to communicate data accordingly to the previous step.

When shrinking, the dynamic process management module will be activated after the
data have been redistributed among the remaining processes, and then, unnecessary
processes will be finalized.

8. Notification of the new layout to the RMS.

Listing 4 shows an example code of how to use Flex-MPI API. Before the computation
loop, it can be seen that data are partitioned among processes and registered in Flex-MPI,
so it can be performed automatically in future resizes.

For dynamic processes, they also obtain their data partitions from other processes. At
the beginning of every iteration in the computation loop, function XMPI_Monitor_init()
starts gathering application performance metrics for posterior resize evaluations. Finally,
at the end of every iteration, it is considered a resize XMPI_Eval_reconfiguration. In the
case of shrinking, processes check who should finalize invoking XMPI_Get_Process_status
and terminating.

Listing 4. Flex-MPI–Example of use of Flex-MPI [30]. Based on: https://core.ac.uk/download/pdf/
41830176.pdf (accessed on 7 May 2022).

1 int main (int argc , char **argv){
2

3 ... // Initialization code
4 XMPI_Get_Wsize (...); // Distribute data among processes
5 XMPI_Register (...); // Register data structures
6

7 XMPI_Get_shared_data (...);
8 // Obtain data from other processes (Dynamic processes only)
9

10 for (...){
11 XMPI_Monitor_init (); // Gather application data
12

13 // Compute and MPI code
14

15 XMPI_Eval_reconfiguration (...); // Considers a resize
16 XMPI_Get_Process_status (...); // Should the process continue

execution?
17 if(status == EMPI_REMOVED) break; // This process is no longer

required
18 }
19 ... // Finalization code
20 }

Classic iterative applications such as Jacobi [35], CG, or EpiGraph [36] have been
implemented and evaluated with Flex-MPI. Results showcase how CPM effectively esti-
mates application performance previous resizing and, therefore, improves the efficiency of
resource utilization and cost-efficiency of application’s executions.

In [37], CPM is extended to allow energy-efficiency constraints, where configurations
with better Power Usage Effectiveness (PUE) ratios are favored. Results show that com-

https://core.ac.uk/download/pdf/41830176.pdf
https://core.ac.uk/download/pdf/41830176.pdf
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pacting the workload in fewer nodes can reduce energy consumption while maintaining
the performance objective.

4.4. DMR

The Dynamic Management of Resources (DMR) [38] malleability framework consists
of two main components: an RMS and a parallel distributed runtime based on MPI.
DMR provides the communication layer between them and allows malleable application
execution in a cluster workload.

SLURM is the RMS used by DMR and, as in other solutions, it is responsible for
monitoring the resource utilization and jobs requests. SLURM has been extended with the
capability of scheduling malleable jobs and managing dynamic resources.

In a nutshell, job malleability in DMR works as follows:

• When an application is running, it has to periodically contact the RMS in order to
show its rescaling willingness.

• This communication is established in a synchronization point, defined by users, where
the reconfiguration operation can be initiated.

• Then, SLURM evaluates the global system status to decide whether to perform that
reconfiguration and communicate that decision to the runtime.

• If this call resolves to resize the job, SLURM reallocates the resources and returns the
resulting number of processes, which can mean to expand or shrink the job.

• Finally, the runtime, with the guidelines of the application, redistributes the data
between parent and children, and the job continues the execution with the new
process layout.

Furthermore, the current implementation of DMR accommodates three scheduling
modes with different degrees of freedom when requesting a resize action:

• Applications are allowed to strongly suggest a specific operation. For instance, to
expand a job, users are allowed to define the “minimum” number of requested nodes
to a value greater than the number of allocated nodes of that job.

• Determine a sweet spot number of processes to run an application. Users can configure
a malleable application with a preferred size from which the execution cannot be
scaled down; however, the scheduler can decide to grant an expansion up to its
specified maximum.

• Wide expansion:

– Expand a job as long as there are sufficient available resources if:

* There is no job pending for execution in the queue.
* No pending job can be executed due to insufficient available resources.

– Shrink a job if there is any queued job that could be initiated.

DMR counts with two different approaches: using an API or a library. The API is
based on the OmpSs programming model [39] and uses their compiler directives for the
user code. The library is a module that can be loaded during the compilation of an MPI
program providing the logistics to support malleability. They are described below:

• The DMR API [40] implements a communication layer between the OmpSs runtime
(Nanos++ (https://pm.bsc.es/nanox) (accessed on 5 May 2022)) and SLURM that
allows the reconfiguration of MPI applications (see Figure 4). This API is based
on the OmpSs off-load semantics [41] for automatically managing processes and
redistributing data among them.
Nanos++ runtime is extended with the logic to handle job reconfigurations. In this
regard, a new routine, named dmr_check_status, is provided to the users. This
function is responsible for triggering the reconfiguration. Moreover, the authors
in [42] also present an asynchronous version of the function, such that when an action
is scheduled, DMR sets up the new process layout while the application continues its

https://pm.bsc.es/nanox
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execution. This version deploys the reconfiguration in the next iteration, to reduce the
effective reconfiguration time.
Since DMR API relies on OmpSs, the reconfiguration is conducted by #pragma direc-
tives, with which, users can define data dependencies and the communication pattern
among processes.
Listing 5 showcases the use of this directive where data dependencies are explicitly
indicated. After the #pragma users indicate the resuming function for continuing with
the execution.

Listing 5. DMR–Pseudo-code of job reconfiguration using the DMR API [38].

1

2 void compute(double *data , int dataSize , int step) {
3 for (t = step; t < TIMESTEPS; t++) {
4 action = dmr_check_status (& newComm);
5 if (action) {
6 #pragma omp task in(data) onto(newComm)
7 compute(data , dataSize , t);
8 } else
9 // Computation

10 }
11 }
12

Figure 4. DMR API architecture.

• On the other hand, although the DMR API provides a highly usable interface, irregular
applications, such as consumer–producer, may be hard to implement with #pragma
directives since not every process features the same data structures.
DMRlib [43] is designed to ease malleability adoption by application developers. Built
on top of the DMR API, DMRlib hides all the interactions among the application,
the runtime, and RMS (see Figure 5). For this purpose, the library is in charge of the
whole job reconfiguration procedure, honoring the malleability parameters provided
by the user.
DMRlib usage is based on a macro that triggers and handles the whole reconfiguration
process. The macro, DMR_RECONFIG, expects five arguments corresponding to five
function names:

– compute: Function that will be executed when the reconfiguration ends (usually
the same function where the macro is invoked).
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– send_expand: Function that implements the algorithm for sending data from
parent processes to child processes.

– recv_expand: Function that implements the algorithm for receiving data in child
processes from parent processes.

– send_shrink: Similar to the send_expand but for shrinking.
– recv_shrink: Similar to the recv_expand but for shrinking.

Listing 6 showcases how DMRlib could be used in a user code that implements
malleability.

Listing 6. DMR–Enabling malleability using DMRlib in a user code [38].

1 void compute(double *data , int data_size , int step) {
2 DMR_Set_parameters(minimum , maximum , preferred);
3 for (int t = step; t < TIMESPTEPS; t++) {
4 DMR_RECONFIG(compute(data , data_size , t),
5 send_expand(data , data_size),
6 recv_expand (&data , &data_size),
7 send_shrink(data , data_size),
8 recv_shrink (&data , &data_size));
9 // Computation

10 }
11 }
12

Figure 5. DMRlib architecture.

DMR has been proved an interesting solution to implement malleability in a wide
range of applications, not only the traditional iterative applications widely used in mal-
leability, such as Jacobi, CG, N-body [44], LAMMPS, but also producer–consumer bioinfor-
matic applications [45]. Furthermore, DMR has been the first malleability framework to
implement reconfiguration in GPU-enabled applications [46].

5. Charm++ Malleability

CHARM++ is a parallel object-oriented programming paradigm designed to en-
hance programmer productivity delivering high performance. Its key feature is over-
decomposition, in other words, to divide the problem into a large number of chares (basic
unit of computation), which are assigned to physical processors.

Chares can be seen as MPI processes, which communicates through asynchronous
remote method invocation, using entry methods, which are executed atomically but never
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block waiting for messages; therefore, CHARM runtime (Converse) is a message-driven
scheduler that gathers pending messages from a prioritized queue and executes the entry
method of the selected object indicated in the message.

A relevant feature in CHARM++ is that data of each chare have to be located in global
memory space. CHARM++ forbids the use of global variables; therefore, if a code requires
this kind of data, they should be clubbed in a specific global memory part, and all chares
have to receive a pointer to that area.

This section describes the steps taken in CHARM++ to support malleability in cluster systems.

5.1. Charm++ Integration into an RMS

CHARM++ leverages Torque/Maui as an RMS to manage and reallocate resources.
This integration implied modification in both tools in order to enable malleability.

The Torque/Maui RMS is composed of a set of daemons that are mapped in the differ-
ent nodes of the cluster. The communication among them allows the correct scheduling of
parallel jobs [47]. The main features of scheduling are described below:

• The front-end includes the pbs_server daemon and Maui scheduler, whereas the
compute nodes execute pbs_mom daemon.

• Clients submit jobs using command qsub in which the required resources are specified.
• Jobs are incorporated into the corresponding queue of the server.
• Maui chooses the “most suitable” job in the queue to be executed, according to the

established scheduling policies.
• A node assigned to the parallel is referred to as mother superior, which receives the list

of reserved nodes.
• All nodes perform a join operation before parallel job execution starts.

Figure 6 shows the order in which these steps are taken.

Figure 6. Charm++ and RMS—workflow of the Torque/Maui batch system [47]. Based on: http:
//charm.cs.illinois.edu/newPapers/15-12/paper.pdf (accessed on 7 May 2022). Adapted with
permission from [47]. Copyright 2014, Suraj Prabhakaran.

The integration of CHARM++ in the Torque/Maui RMS to enable malleability required
new features to be incorporated [47,48]:

• qsub is extended with an extra option (-L) to specify the upper bound rescaling.
• The communication between runtime and pbs_mom daemons had to be defined:

– A Converse Client–Server (CCS) interface is designed in CHARM++ to control
malleability actions via TCP/IP communication.

– A CCS client is integrated into each pbs_mom daemon, while a CCS server will
run for each job in the pbs_server.

– The mother superior assigns a unique port to communicate the CCS server and a
specific parallel job.

• In the scheduler, Maui instructions allow to expand/shrink the resources on the server,
according to this algorithm:

– The scheduler notifies the pbs_server that a resource reconfiguration is required.

http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
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– The pbs_server incorporates the modifications and forwards the information to
mother-superior node.

• The pbs_mom daemon of the mother-superior reallocates the resource according to the
received information.

• When the reconfiguration is completed, a CCSExpand/CCSShrink message is sent to
the CCS server. Notice that CCSExpand can be immediately sent, but CCShrink has to
be sent only when the data from removed nodes are fully retrieved.

Figures 7 and 8 depict how a job expansion and shrinkage are performed, respectively.

Figure 7. Expanding a job by adding nodes 2 and 3 [47]. Based on: http://charm.cs.illinois.edu/
newPapers/15-12/paper.pdf (accessed on 7 May 2022). Adapted with permission from [47]. Copy-
right 2014, Suraj Prabhakaran.

Figure 8. Charm++ and RMS—shrinking a job by removing nodes 2 and 3 [47]. Based on: http:
//charm.cs.illinois.edu/newPapers/15-12/paper.pdf (accessed on 7 May 2022). Adapted with
permission from [47]. Copyright 2014, Suraj Prabhakaran.

The authors complete their study with a performance evaluation of malleable and
evolving jobs analysis in a workload using standard benchmark and synthetic applications.

5.2. Adaptive MPI

Adaptive MPI (AMPI) [49,50] is presented as a regular MPI implementation (such
as MPICH or OpenMPI) that allows MPI developers to leverage CHARM++’s dynamic
runtime system. In this regard, MPI applications, with zero to minimal changes, are granted
support for process virtualization, the overlap of communication and computation, load
balancing, and fault tolerance [51,52].

There are different options to implement CHARM++ chares: processes, kernel-threads,
and user-threads. AMPI has chosen the latter because it provides full control over schedul-
ing. Moreover, with user threads, it is also possible to maintain information on the commu-
nication pattern among chares, and their computational and memory requirements.

As has been introduced before, each chare has local data and references to global
memory that are stored in the stack of the thread. The success of the migration is achieved
by copying data and references from one thread to another and keeping consistent the

http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
http://charm.cs.illinois.edu/newPapers/15-12/paper.pdf
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allocations in the new mapping. In order to convert an MPI code to AMPI, global and static
variables have to be transformed as private variables in each chare [49,50]. AMPI proposes
the use of an scalable variant of the isomalloc functionality PM2 [53]. This technique consists
of allocating the thread’s stack, in such a way that it spans the same reserved virtual
addresses across all the processors. Thus, the total virtual address space is split among
physical processors with the same virtual addressing. For this reason, during migrations,
memory locations do not change among threads.

Finally, it should be noted that the management of the virtual address space is based
on the use of mmap and munmap functionality of Linux. Thus, the allocation routines
are intercepted and handled by the runtime which locates the memory reservation in the
corresponding virtual address.

Natively, CHARM++ operations are non-blocking. To enable blocking, operations
are expected to be split into two different chares. The first one implements the same
operation in a non-blocking manner, whereas the second contains the task after blocking,
thus, when the first is completed, the next starts. The use of blocking MPI operations could
considerably alter the structure of the program, therefore, to avoid this problem,

AMPI includes specific implementations of these routines to facilitate their use.
AMPI includes several routines as extensions to the MPI standard, in which AMPI_Migrate

is the most relevant for load balancing and malleability. This is a collective operation where
all chares have to execute with the same parameters. Then, the runtime analyzes the load
of the physical processors, and the corresponding load balancing strategy is applied. As a
result, chares could be scheduled for migration, and consequently, the job rescaled.

AMPI_Migrate has a single parameter (MPI_Info), which determines the opera-
tion. There are four different possibilities. Thus, two built-in MPI_Info objects, called
AMPI_INFO_LB_SYNC and AMPI_INFO_LB_ASYNC, which, respectively, determine
whether the load balancing is at a synchronization point (see Listing 7).

Moreover, MPI_INFO_CHKPT_IN_MEMORY is another built-in MPI_Info object that
forces to perform a checkpointing in memory. Finally, a specific MPI_Info object can be
created with the key “ampi_checkpoint” to enable checkpointing in non-volatile memory.

Listing 7 shows a usage example to perform a migration in a malleable application
leveraging AMPI_Migrate.

There exists an extend catalog (https://charm.readthedocs.io/en/latest/ampi/05
-examples.html (accessed on 13 April 2022)) of examples and applications for AMPI.

Listing 7. AMPI–Structure of a simple AMPI malleable application.

1 int main (int argc , char **argv){
2 ... // Initialization code
3 for (...){
4 MigrationAnalisisRequired = ...;
5 if (MigrationAnalisisRequired) {
6 AMPI_Migrate( AMPI_INFO_LB_SYNC );
7 }
8 ... // Compute and MPI code
9 }

10 ... // Finalization code
11 }

6. Other Malleability Solutions

In this section, we present some other interesting efforts on malleability that cannot
directly fit in the previous sections since they are not based on MPI, are not intended for
cluster computing, or are ad hoc malleability implementations.

6.1. Invasive Malleability

Invasive computing paradigm [54] suggest a resource-aware programming model,
where the application can dynamically fit to the available resources, e.g., processing ele-
ments, memory, and network connections. The request of these resources is named invade.

https://charm.readthedocs.io/en/latest/ampi/05-examples.html
https://charm.readthedocs.io/en/latest/ampi/05-examples.html
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Such resources invasion can be indicated by constraints. Next, application uses the invaded
resources for a certain computation. This action is named infect. When the resources are
not needed anymore, application frees them. This is known as retreat.

Applications developed by this paradigm must be extended in three ways: (i) applica-
tions must state its constraints and give hints to resource manager, (ii) resource adaptations
must be supported by the application, and (iii) application must handle data migration,
which results from resource adaptations. A resource manager is necessary to make decisions
on how to allocate resources based on application constraints during execution.

Originally, invasive computing (http://www.invasic.de (accessed on 13 April 2022))
was applied on a multiprocessor system-on-chip, with custom hardware [55] and operating
system [56]. Its main goal is to write applications in a cooperating and resource-aware
manner, where resource requirements are explicitly communicated to the system. Lever-
aging its global view, the system decides for the best action, and order the hardware and
applications to adapt. Most of these works have been developed using the programming
language X10.

X10 [57] is an object-oriented programming language in the PGAS family [58] that
supplies important tools to support the field of scientific computing with parallelization
considered from the very beginning.

One of its most interesting feature for malleability is the flexible treatment of concur-
rency, distribution, and locality, within an integrated type system. X10 also extends the
PGAS model with asynchrony, yielding the APGAS programming model [59]. This feature
introduces places as an abstraction for a computational context with a locally synchronous
view of shared memory. An X10 computation runs over a large collection of places. Each
place hosts some data and runs one or more activities.

The main features of X10 are as follows:

• Activities within the same place use shared memory, whereas elsewhere activities
must communicate with other means.

• An activity may synchronously (and atomically) use one or more memory loca-
tions in the place in which it resides, leveraging current symmetric multiprocessor
(SMP) technology.

• An activity may shift to another place to execute a statement block. X10 provides
weaker ordering guarantees for inter-place data access, enabling applications to scale.

• Multiple memory locations in multiple places cannot be accessed atomically. Im-
mutable data need no consistency management and may be freely copied by the
implementation between places.

• One or more clocks may be used to order activities running in multiple places. Dis-
tributed arrays, DistArrays, may be distributed across multiple places and support
parallel collective operations.

Authors in [60] have developed an invasive application near to malleable applications
using this programming language. It consists of a resource manager, as well as a multigrid
solver, with dynamical resource demands. It can be executed on common HPC many-
core and cluster systems. Such a solver has to modify its scalability behavior during
the execution and requires data migration upon reallocation due to distributed memory
systems, in the same way as a malleable application behaves. Their experimental results
reflect improved application throughput thanks to the dynamic adaptation of resources.

An invasive application features three steps [61] as it is shown in Listing 8:

1. A call to invade claims resources specified by various constraints. This set of resources
is called a claim.

2. A call to infect uses claimed resources for executing i-lets on them. i-lets are self-
contained units of computation that run until completion.

3. The retreat gives the claim’s resources back to the system.
4. Optionally, reinvade can change constraints in between and allows the system to adapt

a claim. This method is one of the major mechanisms for resource-aware programming
and allows for a reallocation of resources with two possibilities as shown in Listing 9.

http://www.invasic.de
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On the one hand, it allows the RMS to reallocate resources in front of a change of
situation. On the other hand, this method also offers the possibility to change the
resource constraints for an application providing a new specification.

An example of an invasive architecture for HPC systems is depicted in Figure 9, where
the X10 invasive framework is responsible for resource management. Applications request
resources with appropriate constraints by invade and its claim is set for each application.
The resource layer represents invaded resources assigned exclusively to an application
without interfering with others.

Listing 8. Invasive Malleability–The basic idea of invasive programming [60]. Based on: https://pp.
ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf (accessed on 13 April 2022). Adapted
with permission from [60]. Copyright 2013 Hans-Joachim Bungartz.

1 parallel_function () {
2 // Application code executed by each compute resource allocated
3 }
4 // Setting resources available to the application from the constraints.
5 // Define claim
6 claim = Claim.invade(constraints)
7

8 // Allocate those resources indicating function to run
9 claim.infect(parallel_function)

10

11 // Free resources not used
12 claim.retreat ()

Listing 9. Invasive Malleability–reinvade method allows resources reallocation [60]. Based on:
https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf (accessed on 13 April 2022).
Adapted with permission from [60]. Copyright 2013 Hans-Joachim Bungartz.

1

2 // First Setting resources available for the application and allocation
3 claim = Claim.invade(constraints)
4 claim.infect(parallel_function)
5

6 // New resource allocation and allocation
7 c1aim2 = claim.reinvade(Other_constraints)
8 claim.infect(parallel_funtion)
9

10 // Define other resource needs
11 claim3 = claim.reinvade(Other_Constraints_new)

An extension of this work is presented in [62] where asynchronously malleable applica-
tions are introduced. They can be reconfigured without specifying synchronization points.
The work describes how master–slave applications meet the requirements for asynchronous
malleability and how invasive computing supports that. In an asynchronously malleable
invasive application, the system can decide at any time to resize a claim.

For example, requiring an asynchronously malleable claim of four to ten processing
elements means the system can resize to five or nine processing elements at any time. In
contrast to normal claims, an asynchronously malleable claim must be adaptable even
within an active infect phase. The application is responsible for starting and terminating
i-lets concerning added and removed computational units.

https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf
https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf
https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf
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Figure 9. Invasive Malleability—invasive architecture developed whit X10 invasive framework [60].
Based on: https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf (accessed on
13 April 2022). Adapted with permission from [60]. Copyright 2013, Hans-Joachim Bungartz.

6.2. EasyGrid Application Management System

In [63], the authors leveraged EasyGrid framework [64] to transform a traditional
moldable MPI application into an autonomic malleable version that inherits the benefits
of both malleability [12] and autonomy [65]. As such, applications will thus be capable
of adjusting the number of their processes, if appropriate, and/or reallocating them to be
adapted to the applications’ requirements, resources availability, or resource failures in the
system. The most notable point is that this reconfiguring capability does not depend on an
external system nor the ability of the programmer, but an application management system.

EasyGrid was designed to generate a system-aware version of the application capable
of using the Grid resources available to the user in the most appropriate manner. The
EasyGrid methodology uses a middleware oriented to the application. This means the
service middleware is part of, and specific to, each particular grid application. A application
management system (AMS) distributed within each system-aware application will be will be
responsible for the efficient use of resources.

The AMS EasyGrid uses Local Area Multicomputer library (LAM), an predecessor
of modern MPI standard implementations. It transforms applications into system-aware
versions, capable of adapting their execution under changes in the grid environment. AMS
does not create all application processes at once, but rather according to an application-
specific scheduling policy. Since this is transparent to users’ MPI programs, AMS must also
manage all communications between processes.

EasyGrid AMS integrates functional layers for monitoring processes and resources,
and for dynamic reshaping the processes layout of a job. It employs over-provisioning, in
particular, to harness heterogeneous resources, and temporal process partitioning where
long-running processes are divided into a series of subprocesses; therefore, processes are
only created when they are ready for execution.

Figure 10 depicts how to generate an EasyGrid system-aware application from MPI
source code.

https://pp.ipd.kit.edu/uploads/publikationen/bungartz13invasive.pdf
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Figure 10. EasyGrid AMS—framework [64]. Based on: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.536.1496&rep=rep1&type=pdf (accessed on 13 April 2022). Adapted with
permission from [64]. Copyright 2004, Cristina Boeres.

The authors in [63] extend EasyGrid AMS to support process malleability. For this
purpose, AMS, periodically, evaluates the need to rescale a job based on the monitor-
ing information collected during its execution. Thus, to incorporate malleability in this
environment, a new set of functions were added in order to:

• Define reconfiguration points where applications can be rescaled.
• Design the reconfiguration mechanism that calculates the new processes layout in the

next time step based on information gathered in previous ones.
• Define the moment during the execution when the reconfiguration mechanism will be

called (invocation point).

Experimental evaluations demonstrated that the EasyGrid AMS enhanced version allows
the creation of a malleable version of an application (in this particular case, N-body sim-
ulation), and it is capable of automatically rescaling it by reconfiguring processes and
reallocating resources. In addition, results presented a low overhead that decreases as the
problem size increases.

6.3. COMPSs-Based Solution

In [66], the authors develop an ad hoc malleable solution for Alya [67], a CFD software.
The work leverages the COMPSs (COMP Superscalar) runtime [68,69] along with the TALP
library [70] to enable performance-aware malleability. The solution is based on the Alya
native support of C/R to dynamically resize the number of resources.

COMPSs is a programming model and runtime system that allows users to write
applications in a sequential paradigm, which is later used in runtime to exploit parallelism
inherent to the sequential code. Its objective is to avoid users from addressing concur-
rency, so they are not expected to deal with threading, messaging, or data redistributions.
Users are still required to annotate which functions should be executed as asynchronous
parallel tasks.

The runtime was developed initially for grid computing [69] and later on for cloud
computing [71]. Nevertheless, the malleable solution in [66] only uses a portion of its
features, as only are needed those to communicate with the RMS to allocate or free resources
for the user application Alya. The version of COMPSs used is PyCOMPSs [72].

The application Alya has been parallelized with MPI and has an internal feature to
create a checkpoint to the filesystem by using MPI-IO functions. Later on, it can be restarted
with any amount of processes and data will be redistributed accordingly.

Alya is also compiled along with a library called TALP, which monitors the application
parallel efficiency in runtime, and if it does not reach a user-defined communication
efficiency threshold, Alya will ask COMPSs for more or fewer resources, depending on the
performance results.

The communication between Alya and COMPSs is established via a file. COMPSs
periodically reads if Alya has written the possibility for a resize, indicating that it, with the

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.1496&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.1496&rep=rep1&type=pdf
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help of TALP, has detected an efficiency improvement. When a resize is scheduled, it is
checked whether the job will be expanded or shrunk. If it is expanded:

• COMPSs communicates with the RMS to obtain new resources.
• Meanwhile, the application continues its execution.
• When the resources are available, COMPSs sends the signal SIGTERM to Alya, which

indicates the application to create a checkpoint and stop its execution.
• COMPSs launches again the application with the new resources layout and the

created checkpoint.

If the job is shrunk:

• COMPSs sends the signal SIGTERM to Alya, which indicates the application to create
a checkpoint and stop its execution.

• COMPSs launches again the application without the unneeded resources and the
created checkpoint.

• The application continues its execution while COMPSs frees the unneeded resources.

This solution has only been tested with the CFD application Alya, which has been
parallelized purely with MPI.

7. Discussion

This section summarizes and compares the previously described malleability solutions.
Table 1 compiles the most interesting features of the described malleability solutions
regarding the motivation of this manuscript and the importance of process malleability in
the upcoming exascale systems. The table contains information about the programming
paradigm (column 4) presented to users for the application implementation; how the
data transfers are performed (column 5); in which RMS the solution is integrated, if
any (column 6); if solutions support performance and power aware decisions, and fault
tolerance (columns 7, 8, and 9, respectively).

Table 1. Process malleability solution feature comparison.

Type Solution Sec.
Prog.

Paradigm
Data

Transfers RMS Perf.
Aware

Power
Aware

Fault
tol.

C /R

SRS Section 3.1 MPI Implicit No No No Yes
PCM API Section 3.2 MPI (ad hoc) Implicit † No No No Yes

SCR Section 3.3 MPI (ad hoc) Explicit Yes No No Yes
ULFM Section 3.4 MPI (ad hoc) Explicit No No No Yes

Dynamic
Resize

Elastic MPI Section 4.1 MPI (ad hoc) Explicit Slurm Yes Yes Yes
ReSHAPE Section 4.2 ad hoc Implicit ad hoc Yes No No
Flex-MPI Section 4.3 MPI (ad hoc) Implicit No Yes Yes No
DMR API Section 4.4 OmpSs Implicit Slurm No No No
DMRlib Section 4.4 MPI Implicit † Slurm No No No

CHARM++ Section 5.1 CHARM++ Implicit Torque Yes No Yes
AMPI Section 5.2 MPI Implicit † Torque Yes No Yes

Invasive computing Section 6.1 X10 Explicit ad hoc Yes No No
Easygrid AMS Section 6.2 LAM/MPI Implicit AMS (ad hoc) Yes No Yes
Alya malleable Section 6.3 COMPSs Implicit Slurm Yes No Yes

Notice that MPI (ad hoc) programming paradigm refers to modified implementations
of MPI that fit the needs of the specific solutions. With regard to the data transfers, two
categories have been defined:

• Explicit: Users are expected to fully implement the data redistribution among processes.
• Implicit: Data redistribution among processes is performed and is transparent to

users. Thus, user applications are not expected to be modified. For instance, users
can leverage data structure registers or data dependencies of the paradigm to enable



Appl. Sci. 2022, 12, 5231 28 of 32

automatic data redistributions; however, several solutions are marked as Implicit†,
which means that automatic data redistributions are performed in many cases, but not
in any case. For instance, PCM API automatic data transfers are limited to 2D linear
redistributions, or DMRlib does not provide an specific mechanism for non-standard
redistribution patters.

Nearly all of the solutions tend to provide an implicit data redistribution mechanism as
this could be a starting barrier for users to use malleability. Simplifying data redistribution
as much as possible makes malleability more attractive to incoming users, but it also proves
a challenge for malleability developers.

Many of the solutions provide fault tolerance capabilities as they were initially created
with this intention in mind. In [4], nearly half of the projects use checkpoint techniques to
provide fault tolerance, since they consider it a need for the potential increase in failures in
Exascale systems. This describes the obligation of future malleability solutions to provide
at least basic fault tolerance techniques in order to reach to a broader audience.

The adoption of performance, or power, aware techniques are interesting in terms
of making smart decisions when reconfiguring jobs. Instead of letting users manually
define the malleability boundaries, the runtime is able to evaluate resize actions depending
on the application performance compared to previous registered performances or power
limitations stated by the system administrator. These techniques provide a better resource
utilization of the application and, at the same time, of the system, which is one of the
key points malleability that researchers would like to improve; therefore, newer solutions
should ensure that the performed resizes induce a better resource utilization by monitoring
the applications in execution time within the defined power budget.

It is interesting to further describe the case of the Alya malleable solution. It appears
to be one of the most complete, since it implements automatic data transfers, is compatible
with Slurm, takes decisions based on performance metrics, and is resilient with C/R
methods. Although this solution is not generalist and it has been implemented only for
Alya, it has been included in the survey as an inspiration source of future developments in
the field of process malleability.

8. Conclusions

This paper was created to provide an updated state-of-the-art account of the most
significant efforts in process malleability. Its main goal was to introduce and describe how
different frameworks address process malleability, their integration into an RMS, and how
they can be used in our codes, as long as documentation has been publicly published.

Process malleability in HPC follows a long journey, starting from manual C/R methods,
to more complex solutions integrated into RMS with autonomous data redistribution among
processes, and with awareness to performance and efficiency metrics.

As we have seen, despite the variety of solutions, leveraging process malleability is not
as straightforward as running your existent MPI codes and expecting to be automatically
rescaled. It always requires some adaptation in the code and/or in the system, which
supposes a critical entry barrier for malleability being widespread in HPC systems.

Particularly, data redistribution is presented as one of the most challenging issues
for processes reconfiguration, not only with algorithms that improve computational load
balance [73,74], but also with usable codes that perform optimal data redistribution without
changes in the original codes [38]. This also allows us to use load-balancing techniques to
ensure better resource utilization. Upcoming solutions should keep this trend, as not all
final users in exascale systems will be willing to modify their applications to add their own
data redistribution mechanisms.

All in all, ideally, a malleability solution not only should implement completely
implicit data transfers, be compatible with most popular HPC RMS, consider for taking
reconfiguration decisions, and provide fault tolerance mechanisms, but also be incorporated
into the standard of an HPC ubiquitous programming paradigm such as MPI.
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In this regard, distributed malleability has still a long path ahead, particularly if topics
such as data locality for redistribution [73], asynchronous process management [75], in-
memory C /R fault tolerance methods [76], or intranode load balancing [77] are included
and combined with malleability.
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