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1. Introduction and background

Let D be the open unit disk of the complex plane C and H(ID) the space of complex analytic functions
on D. In this paper we will investigate sequences (z,) C D which are interpolating for the derivative of
functions in Bloch type spaces (see [1], [4]). It is also possible to study these sequences for Bloch type spaces
that do not take into account the derivative of the function. For classical Bloch spaces, this has been done
in [5].

Let v be a weight, that is, a strictly positive continuous function on D and suppose that v is typical: v
is radial (v(z) = v(]z]) for any z € D), non-increasing and lim|;|_,; v(z) = 0.

The Bloch type spaces BX and BY are defined by:

B ={f e HD) : |fllzz = [f(0)| + Slelgv(Z)If’(Z)l < foo}

By ={feBy: Rics v(2)|f'(2)] = 0}.

li
z|—1

It is clear that BY is a closed subspace of B°. We will also consider gﬁo and Eg , the closed subspaces
of B and BY respectively consisting in functions f satisfying f(0) = 0. It is also clear that BY is a closed
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subspace of li?o For typical weights v, it is well-known that the closed unit ball of ES is dense with respect
to the compact-open topology (co—topology) in the closed unit ball of gﬁo . Indeed, for f in the closed unit
ball of B2, the functions f,(z) = f(rz) belong to the closed unit ball of BY for 0 < r < 1 and f, — f.

Recall that H*° is the classical space of bounded analytic functions f : D — C endowed with the
supremum norm || - [|s- If v(2) = 1 — |2|?, then BY, and By become the classical Bloch space B and the little
Bloch space By respectively. It is well-known that H* is properly contained in 5. This will remain true if
we deal with weights O(1 — |z]?), but it is not true in general. Take v, (2) = (1 — |2])* for 0 < a < 1 and
f(z) = (1 —2)? for 0 < 8 <1—a. Then f belongs to H>® but |f’(2)|va(2) = 0o when z — 1, so f ¢ BX.

Let us first adapt some results due to Bierstedt and Summers done for the weighted Banach spaces of
analytic functions H>® and H? to the frame of Bloch type spaces [3]. Denote by i : B® — (B2°)** the
natural inclusion of B2 into its bidual (B3)** given by i(f)(u) = u(f) for f € B and u € (B%°)*. In [7]
it has been pointed out that the closed unit ball of Ego is co—compact, so using the Dixmier-Ng Theorem
[13] we obtain that the space:

*BX = {l € (BX)" : {| B, is co—continuous}

endowed with the norm induced by the dual space (Eﬁo)* is a Banach space and the map f € Ego >
i(f)
Consider the evaluation functionals §, given by ¢,(f) = f'(z) for any z € D, which clearly belong to
*B%. By the Hahn-Banach theorem it follows that the linear span of {d’ : z € D} is norm dense in *B°.
Therefore, *BJ° is separable since it is sufficient to consider evaluations 7, for z = p + iq, where p,q € Q.

oo € (*By°)* is an onto isometric isomorphism. In particular, *B3° is a predual of Bg°.

Following the argument given by Bierstedt and Summers [3] we show:

Proposition 1.1. The space *Ego is isometrically isomorphic to (53)* and the restriction map R: *gf —

*%

(BYY* given by R(f) = {50 is an onto isometric isomorphism. In particular, (B2)** is isometrically isomor-

phic to ggo .

Proof. The map R is well-defined since for any ¢ € *Ego C (EgO)* it follows that ||[R(£)| < [|¢]|. First
we prove that R is surjective. Consider ¢ € (Eg)* Notice that [§3 is isometrically isomorphic to a closed
subspace of Cy(D), the space of continuous functions on the closed unit disk which vanish in the boundary,
via f — vf’. By the Hahn-Banach theorem and the Riesz representation theorem, there is a bounded Radon
measure p on D such that:

E(f):/vf’du for f € BY.

D

Define ((f) = Jp vf'dp for all f e gso which is clearly well-defined and satisfies /| 5o = L. It follows from
the Lebesgue bounded convergence theorem that ¢ | 5o 18 co—continuous, so Ris surjective. Since the closed

unit ball of gg is co—dense in the closed unit ball of g,‘jc , we conclude that R is an isometry. 0

Corollary 1.2. The space (B2)* is isometrically isomorphic to *B and (*BX)* is isometrically isomorphic
to BS®. In particular, the space (BY)** is isometrically isomorphic to BY.

Proof. Notice that B is isometrically isomorphic to (B2 x C, || - ||1), so (BY)* is isometrically isomorphic to
B = (*B° X C, || - |loo). The dual of this space is isometrically isomorphic to (B3 x C, || - ||1) which in
turn is isometrically isomorphic to BS° and we conclude that (BY)** is isometrically isomorphic to BX. O
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2. Interpolating sequences for Bloch type spaces

Recall that the pseudohyperbolic distance for z,w € D is given by:

p(z,w) =

zZ—w
1—zw|’

A sequence (z,) C D is said to be separated if there exists 6 > 0 such that:
p(zn, 2k) > 6 for any n # k, (2.1)

and we define its constant of separation as r := inf,,+x p(2n, 2k).

A sequence (z,) C D is said to be interpolating for H if for any (a,) € ¢~ there exists f € H* such
that f(z,) = a, for any n € N. The most important result on interpolating sequences for H is the classical
Carleson’s Theorem [6], which states that (z,) C D is interpolating for H> if and only if (z,,) is uniformly
separated, that is, if there exists § > 0 such that infycn Hn# p(zn, 2k) > 6.

A sequence (z,) C D is said to be interpolating for the Bloch type space B if for any (a,) € €5 there
exists f € BS° such that v(zy,) f'(2,) = a, for any n € N. We define the interpolating operator T" : BS° — £°
by T(f) = (v(zn)f'(2,)), which is clearly well-defined and linear. Notice that (z,) is interpolating for BS°
if and only if 7' is surjective. If (z,) C D satisfies [2,| — 1, then the interpolating operator T'|zo maps B
into ¢g since f'(z,)v(z,) — 0 when n — oo.

For H* and Bloch type spaces, we can also consider cg—interpolating sequences just by considering
sequences (a,) in ¢y instead of £,. Notice that interpolating sequences (z,) for Bloch type spaces satisfy
|zn] — 1 since they do not have accumulation points in D. The connection between co—interpolating
sequences and interpolating sequences has been studied in the context of uniform algebras (see [8]). In
particular, the authors proved that co—interpolating sequences for H* are indeed interpolating for H°.
We will show that this result remains true if we deal with B°.

In the proof of the next theorem we will use the following result (see [12], Theorem 5, p. 82): let X, Y be
Banach spaces and T : X — Y a linear and bounded operator. Then T is bounded below if and only if T™*
is surjective. Furthermore, T' is surjective if and only if 7™ is bounded below.

Theorem 2.1. Let v be a typical weight on D. If (z,) C D is a sequence of distinct points, then the following
statements are equivalent:

(a) The sequence (zy,) is interpolating for BS°.
(b) There exists a constant C > 0 such that:

Z Env(2n>6lzn

n=1

()l < C for any (£,) € £;.

(c) The sequence (zy,) is co—interpolating for BY.

Proof. Define S : ¢; — *B° given by:

S(€)) = 3 Gav(za)dl,
n=1

which is clearly a well-defined, linear, continuous map. Condition (b) states that S is bounded below. We
have (*B°)* = BS° by Corollary 1.2 and it is easy that S* = T, where T is the interpolating operator on
BXr.
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(a) & (b) It is clear since (a) states that the interpolating operator T is surjective and this is equivalent
to S being bounded below.

(b) < (c) Notice that *By® = (BY))* by Corollary 1.2. Since |z,| — 1, T maps B into ¢o and (T'|go)* = S.
Hence (b) and (c) are equivalent by the result above. O

From Theorem 2.1 and its proof we have the following results:

Corollary 2.2. We have:

(a) A sequence (z,) C D is interpolating for B if and only if it is co—interpolating for BY.
(b) (T|go)** =T and T is w* — w*—continuous.

The inspiration to the next result comes from Theorem 2.4 in [8] and Proposition 7.7 in [4].

Theorem 2.3. Let v be a typical weight and (z,) C D. Suppose that for any (a,) € ¢y there exists f € B
such that v(zy,) f'(zn) = an for any n € N. Then (z,) is interpolating for BS°.

Proof. Let a = (a,) € {. By Goldstein’s theorem, there exists a sequence {b¥} C cq such that b* Y a
when k& — oo. Consider the interpolating operator T : B — £ given by T(f) = (f'(zn)v(2n)) and take
A = T Y(co) C B. Since A is closed in B, it follows that A is a Banach space. The linear operator

T|a : A — ¢ is surjective by the assumption. The induced operator T|4 : A/ker(T|4) — co is thus
bounded, injective and surjective. Therefore by the Open Mapping theorem, there is M > 0 such that:

it 17 e < Bl i TIaf) =€ o
Hence for each b € ¢y there is f € A such that T|4(f) = b and | f||p= < M]|b||oc. In particular for
any k € N there exists g, € By° such that T(gx) = b* and ||gi||se < M|[b*||o. Since {b*} is weak-star
convergent, it is bounded in ¢, so there is C' > 0 such that ||gx|| < C for all k € N. Since *B° is separable
and (*BS°)* = BS°, by Alaoglu’s theorem there exists a subsequence (gy,,) of (gr) which w*—converges to
g € By, By Corollary 2.2, (T'|go)** = T and T is w* — w*—continuous, so:
a=w"— lim b* =w* — lim T(g,)="T(g9). O
m—o0 m—o0

Recall that an idempotent (a,) of £, is a sequence that satisfies a2 = a,, for any n € N, that is, a,, = 0
or a, =1 for any n € N. Hayman proved that it is sufficient to interpolate idempotent elements (a,) € ¢
to assure that the sequence (z,) C D is interpolating for H* (see [10]). We will prove that this result
remains true when we deal with interpolating sequences for B:°.

To prove Theorem 2.4, we will need the following result due to Beurling (see Theorem 4.3 in [2]): if
X is a Banach space and L : ¢; — X is a linear operator such that L*(X) is dense in ¢, = (¢1)*, then
L¥(X*) =l

Now we can state our main result:

Theorem 2.4. Let v be a typical weight and (z,) C D a sequence of distinct points. Then the following
assertions are equivalent:

(a) (zn) is interpolating for BY.

(b) (2n) is co—interpolating for BY.

(¢) (zn) is co—interpolating for BS°.

(d) (zn) s interpolating for BS° when only considering idempotents of Lo .
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Proof. It remains only to prove that (d) — (a). Let us consider the interpolating operator T': BS® — £°°.
By Theorem 2.1 and Corollary 2.2 we have that (T'|zo)** = T and (T'|0)* maps ¢; into *B;°. Therefore we
need to prove that 7" has dense range. Indeed, consider £ C N and denote by xg the sequence in £*° given
by:

(n) = 1 ifnekF
XV =00 ifne N\ E.

Define S C £ to be the set of functions on N of the form >"!" | a;xa, such that m € N, a; € C for any
i=1,2,...,m and (A;)", are pairwise disjoint sets. The set S is dense in ¢*° since S is the set of simple
functions in £o, = L>(N, ¢) where c is the cardinal measure. Let 2 € S, that is, z := > | a;xa, € (. By
hypothesis, for any ¢ = 1,2,...,m there are functions f; € B° such that:

fi(zn)v(zn) = xa,(n) foralln € N.

For f:=>"" a;f; € B we have that:

oo

= (Z aixa, (n)) =z

n=1

T(f) = (f' (zn)v(zn))nis = (Z azfz/(zn)v(zn)>

and we are done. O
2.1. Examples of interpolating sequences for BS°

Finally we turn to some examples of interpolating sequences for BS°. Recall that a sequence (z,) C D
is said to be a Blaschke sequence if Y07 (1 — |2,]) < oc. It is well-known that the sequence of zeros of a
non-zero bounded analytic function on D satisfies the Blaschke condition (see [9]). It is also well-known that
interpolating sequences for H°° satisfy the Blaschke condition. However, there exist interpolating sequences
for B for some particular weights which does not satisfy this condition (an easy adaptation of Proposition
6.4 in [4]).

Proposition 2.5. If (z,) C D is interpolating for H>® and zy € D is such that zg # zp for everyn € N, then
the sequence (wy,) defined by wy = zg and wn11 = z, for n > 1 is also interpolating for H™.

Proof. Let (z,) C D be an interpolating sequence for H>. Since it satisfies the Blaschke condition, we can
consider its Blaschke product B : D — C, which is a bounded analytic function satisfying B(z) = 0 if and
only if z = z, for some n € N. Consider (a,) € f. There exists a function f € H* satisfying f(z,) = an11
for every n € N, so if we let a := B(2) # 0 and define g : D — C by:

(a1 — f(Zo))B

(07

9(2) = (2) + /(%)

we have that g € H* and g(w,) = ay, foralln e N. O

Madigan and Matheson proved that if a sequence is sufficiently separated for the pseudohyperbolic
distance, then it is interpolating for the classical Bloch space B [11]. We prove that this condition is not
necessary since we can find interpolating sequences for B3°, where vy (z) = (1 — [2[*)%, a > 0, and in

particular for B, as close as we want:
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Proposition 2.6. Let o > 0. For any € > 0 there exist interpolating sequences for B;° whose constant of
separation is less than €.

Proof. Let ¢ > 0. Consider an interpolating sequence (z,) for H*, for example, z, := 1 — 2%, and add a
point zg € (z,) such that p(zo,z1) < €. By Proposition 2.5 the sequence given by {zo}U(z,) is interpolating
for H> hence interpolating for B® by Theorem 6.3 in [4]. O
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