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ABSTRACT
From the classical explicit Euler scheme of first order, nonstandard finite difference
(NSFD) schemes were envisioned to mimic the essential properties of the governing
differential equation model for every time step-size. In the context of compartmental
epidemiological models, these properties are generally concerned with positivity of
subpopulations, conservation laws (dynamics of the total population), and stabil-
ity. However, for autonomous systems, the symmetry (self-adjoint) condition is not
preserved. Compartmental epidemiological models are Poisson systems, so meth-
ods from geometric numerical integration should be applicable. It is found out that
symmetrization of NSFD schemes does not respect positivity for every step-size,
though other characteristics are maintained and second order is reached. Composi-
tion through the Lie formalism can then be applied to obtain higher-order schemes.
This is a more efficient and consistent alternative to Richardson’s extrapolation,
which has often been used to go beyond order one.
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1. Introduction

It is known that most of the models formulated by differential equations do not possess
closed-form solutions, which makes the use of numerical methods necessary. Differential
equation models may have some underlying structure, so it seems natural to design
numerical integrators that preserve it. The motivation is not only the improvement of
the qualitative behavior, but also the accuracy provided compared to general-purpose
methods.

With this aim, R.E. Mickens suggested a new field of research involving nonstan-
dard finite difference (NSFD) schemes [1–4]. This dates back to twenty–thirty years
ago, and it is still a very active area of research [5–8]. Essentially, two principles are
followed: from the classical explicit Euler (or forward Euler) scheme of first order,
nonlocal discretizations are set and the classical denominator for the discretization of
the first-order derivative is modified. In the setting of compartmental epidemiological
models [9], nonlocal discretizations help ensuring the positivity of the subpopulations.
These nonlocal discretizations usually make the scheme half way between an explicit
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and an implicit formulation, which confers it stability. Explicit standard schemes (Eu-
ler, Heun, Runge-Kutta, etc.) may fail at reproducing the correct dynamics for some
step-sizes, which may be especially problematic for stiff problems. On the other hand,
the new denominator functions for the discretization of the first-order derivative are
selected according to conservation laws, normally related to the dynamics of the total
population, and on the basis of exact schemes for basic models. See [10–12]. To sum-
marize, NSFD discretizations of compartmental epidemiological models are concerned
with positivity, stability and conservation laws. Often, after algebraic manipulations,
NSFD schemes can be written explicitly, so that they can be easily run compared with
traditional implicit standard schemes [8].

NSFD schemes are of first order. To achieve higher order, the application of Richard-
son’s extrapolation (RE) [13] was proposed [14, 15]. The correction to remove the
leading-order error term may not respect positivity for every step-size, although other
characteristics are maintained. Because of convergence, positivity holds for sufficiently
small step-size on any bounded time domain, albeit the positivity threshold is generally
unknown.

When the compartmental epidemiological model is autonomous, the symmetry (or
self-adjointness) of the solution is not conserved by NSFD schemes. This feature,
along with others, are taken into account in the context of Hamiltonian dynamics by
geometric numerical integration (GNI) [16, 17]. The symplectic character of the solu-
tion, rather than the invariability of mechanical energy (conservation law), is always
preserved, giving rise to symplectic integrators. Whenever possible, reversibility of the
flow is mimicked as well. GNI constructs high-order methods by composition and split-
ting. When the Hamiltonian system is noncanonical, one refers to Poisson systems and
works with Poisson integrators, which respect the associated Casimir functions and
the Poisson character of the flow. Compartmental epidemiological models are Poisson,
as shown thirty years ago for the SIR model [18] and recently generalized [19].

In this brief note, the symmetry of NSFD schemes is studied. As is well-known,
symmetric integrators must be of even order, so the NSFD schemes of order one cannot
be symmetric. In GNI, the usual procedure to transform a nonsymmetric method into a
symmetric one consists in composing with the adjoint version. But it is not clear which
properties of the NSFD scheme are still preserved. Also studied here is the composition
procedure from GNI to generate higher-order NSFD integrators. In conclusion, it is of
interest to investigate the relation between NSFD integration and GNI, as both rely
on preserving the structure of the governing model. A comparison with RE, in terms of
consistency and cost, is performed in detail. A numerical example on an autonomous
SIRS model is conducted, where different selections of input parameters yield non-stiff
and stiff equations.

2. Symmetrization and composition of NSFD schemes

In the context of autonomous systems, ẋ = f(x), x ∈ Rd, the flow φt(x) satisfies a
symmetry condition: φt = φ−1

−t . NSFD schemes are not symmetric. That is, if Xh(x)
is the map of the NSFD scheme with step-size h (i.e. the scheme reads recursively as
xN+1 = Xh(xN )), then Xh ̸= X−1

−h . Indeed, being of order one prevents from satisfying
this property [17] (see the first appendix). Also, higher-order schemes cannot be con-
structed by composition. For instance, a usual strategy from GNI to build higher-order
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integrators [17] is to compose

ψh = Xγsh ◦ Xγs−1h ◦ · · · ◦ Xγ1h,

where γ1, . . . , γs are selected appropriately. It is known that Xh(x) = eX(h)[Id](x),

where X(h) =
∑∞

n=1 h
nXn is an operator, with X1 = Lf =

∑d
i=1 fi

∂
∂xi

being the Lie

derivative of f , and X2 ̸= 0. By the BCH formula, which expresses eXeY = eZ(X,Y ) for
any two operators X and Y (see the second appendix), it is obtained γ1+ . . .+ γs = 1
and γ21 + . . . + γ2s = 0. Thus, it is not possible to apply composition for a first-order
NSFD scheme. It would be necessary that Xh be of even order r, as in such a case
X1 = Lf , Xn = 0 for 2 ≤ n ≤ r, and the conditions

γ1 + . . .+ γs = 1, γr+1
1 + . . .+ γr+1

s = 0 (1)

can hold to achieve a new method ψh of order at least r + 1.
In order for the NSFD scheme to be symmetric, one considers the adjoint X ∗

h =

X−1
−h and defines Sh = X ∗

h/2 ◦ Xh/2 (analogously, Xh/2 ◦ X ∗
h/2). The adjoint is easily

computable, by replacing xN+1 ↔ xN and h ↔ −h in the scheme xN+1 = Xh(xN ).
The new scheme Sh is symmetric (Sh = S−1

−h) and of order two. Each iteration of step-
size h is computed by first applying the NSFD scheme with step-size h/2 and afterward
its adjoint scheme with step-size h/2. In the setting of compartmental epidemiological
models, the symmetrization does not respect the positivity of Xh independently of the
step-size, though conservation laws and stability are maintained. It is not clear whether
either symmetry or positivity should be preferred. At least, due to convergence, it is
evident that positivity holds for sufficiently small step-size h on any bounded time
domain, albeit the positivity threshold is generally unknown.

Since Sh is of second order, the symmetric composition

ψh = Sαh ◦ Sβh ◦ Sαh (2)

can be employed, with α = 1/(2 − 21/3) and β = 1 − 2α (check (1) with s = 3,
γ1 = γ3 = α, γ2 = β). This new method ψh is of fourth order and symmetric. Further,
conservation laws and stability hold. Each iteration of step-size h is computed by first
applying S with step-size αh, then S with step-size βh, and finally S with step-size
αh.

In conclusion, the strategies from GNI may be used for NSFD integration, but
positivity may be lost for moderate step-sizes in favor of symmetry, conservation laws
and higher order through composition.

Some open questions are the following:

1. Given an autonomous compartmental epidemiological model, do there exist ef-
ficient second-order NSFD schemes that satisfy symmetry, positivity, stability
and respect conservation laws? In such a case, composition methods would be
applicable to increase the order.

2. Given a compartmental epidemiological model, would it be better to treat it as a
Poisson system and use methods from GNI, instead of the NSFD methodology?
In which situations do the same schemes arise?
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3. Comparison with RE

Compared to RE, Sh is symmetric. Both methods respect the conservation law, but
not the positivity for every step-size. Thus, Sh is more consistent.

RE with step-size h at a time T is defined here as twice the first-order approximation
at T with step-size h/2, minus the first-order approximation at T with step-size h. Let
us see that the computational cost of Sh is lower than that of RE. Let c be the cost,
defined as the number of arithmetic operations, of an evaluation (h′, x) 7→ Xh′(x).
The cost is approximately equal for any h′ and x, therefore c is assumed constant. A
single evaluation (h′, x) 7→ Sh′(x) costs 2c, by composition. At time T and with step-
size h, for which T/h steps are required (assuming divisibility), the total cost of Sh is
cSh

= 2cT/h. By contrast, the total cost of RE is cRE,h = 2cT/h+cT/h = 3cT/h (first-
order approximation with step-size h/2, and first-order approximation with step-size
h). In conclusion,

cRE,h =
3

2
cSh

.

Similarly, one evaluation (h′, x) 7→ ψh′(x) costs 6c, by composition (recall (2)). At time
T and with step-size h, the total cost of ψh is cψh

= 6cT/h. The application of three
RE (to achieve order four) costs cRE◦RE◦RE,h = 27cT/h. In consequence,

cRE◦RE◦RE,h =
9

2
cψh

.

As the order increases, the ratio of costs tends to infinity. Notice the these estimates
do not depend on the implementation or the computer.

4. A SIRS model

4.1. The model

Consider the following SIRS model with vital dynamics:

Ṡ(t) = µ− µS(t)− βS(t)I(t) + γR(t),

İ(t) = βS(t)I(t)− νI(t)− µI(t),

Ṙ(t) = νI(t)− γR(t)− µR(t),

where S(t), I(t) and R(t) are the proportions of susceptible, infected and recovered
individuals at time t ≥ 0. The coefficients are positive and time invariant. The total
population, P (t) = S(t) + I(t) + R(t), satisfies Ṗ = µ(1 − P ). This is a conservation
law. When P (0) = 1, the equality P (t) = 1 holds for all t. If P (0) < 1, then P (∞) = 1.
(This latter case is studied when there are two disjoint groups P (t) and P ′(t) in the
population, the investigation is focused on P , and all the newborns from parents in
P ′ enter into P automatically.)
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4.2. The numerical schemes

In [5], the NSFD methodology was applied (when β is dependent on t, but here it is
assumed invariant to have an autonomous system). The discretization is the following:

SN+1 − SN
ϕ(h)

= µ− µSN+1 − βSN+1IN + γRN+1,

IN+1 − IN
ϕ(h)

= βSN+1IN − νIN+1 − µIN+1,

RN+1 −RN
ϕ(h)

= νIN+1 − γRN+1 − µRN+1.

The step-size is h. The nonlocal discretizations ensure positivity. The denominator
function is

ϕ(h) =
eµh − 1

µ
,

which gives an exact scheme for P (t), irrespective of the step-size h and the initial
condition P (0):

PN+1 − PN
ϕ(h)

= µ(1− PN+1). (3)

As shown in [5], the scheme can be written explicitly, so that (SN+1, IN+1, RN+1) =
Xh(SN , IN , RN ) in closed form. Consider Sh = X ∗

h/2 ◦ Xh/2 and ψh through (2). Even

though Sh can be expressed in closed form, with huge formulas, in a symbolic software,
both Sh and ψh can (and should) be run numerically through the compositions.

4.3. Comparison with RE

Some numerical experiments are performed, for fixed data µ = 1, ν = 0.01, β = 3,
γ = 10, S(0) = 0.8, I(0) = 0.1 and R(0) = 0.1. Four methods are used: Xh, Sh, ψh
and REh. For h = 1, Sh and RE give negative values for R(1) (S(1) is negative under
Sh too), which demonstrates that the symmetrization and the RE do not conserve
positivity for some h. However, the conservation law (3) is obeyed. In Figure 1, the
absolute errors between S(t) and SN are reported, at t = 3 (first panel) and t = 8
(second panel). Step-sizes h = 2−j , j ≥ 0, are taken. Double logarithmic scale is set, in
accordance with algebraic convergence. On the other hand, in terms of required cost,
recall that cost = kc ·3/h (t = T = 3), where c ≈ constant is the number of arithmetic
operations of any evaluation (h′, x) 7→ Xh′(x), and k = 1, k = 2, k = 3 and k = 6 for
Xh, Sh, RE with h and ψh, respectively. Figure 2 plots cost/(3c) = k/h against the
absolute errors between S(t) and SN , for t = 3 (first panel) and t = 8 (second panel).
Notice that cost/(3c) is equal to 1/h, 2/h, 3/h and 6/h for Xh, Sh, RE with h and ψh,
respectively. The plot compares computational effort with accuracy, rather than step-
size with accuracy; it is an efficiency plot. It is observed that the symmetrization Sh
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gives lower error than the RE for the same cost. Thus, symmetrization and composition
of NSFD schemes seems to be a good alternative to RE.

Figure 1. Comparison of the methods in terms of the step-size value h: Xh (first-order NSFD scheme), Sh

(second-order symmetrization X ∗
h/2

◦ Xh/2), ψh (fourth-order composition of Sh through the Lie formalism),

and second-order RE on Xh. Inputs: µ = 1, ν = 0.01, β = 3, γ = 10, S(0) = 0.8, I(0) = 0.1 and R(0) = 0.1.

First panel: t = 3. Second panel: t = 8. Absolute errors between S(t) and SN are reported.

Figure 2. Same as Figure 1, but with respect to the cost. Efficiency plot.

4.4. Comparison with explicit standard schemes: A non-stiff problem

Implicit standard schemes were designed to overcome the disadvantages of explicit
standard methods in terms of stability. An important feature of NSFD schemes is
that these are written explicitly, in contrast to implicit standard schemes, but still
maintain stability due to the nonlocal discretizations. In this regard, Figure 3 aims at
showing the instability of explicit Euler and Runge-Kutta methods, compared to the
nonstandard methods proposed in the present paper. We fix h = 0.3 and h = 0.5, for
the same parameter values as before: µ = 1, ν = 0.01, β = 3, γ = 10, S(0) = 0.8,
I(0) = 0.1 and R(0) = 0.1.

4.5. Comparison with explicit standard schemes: A stiff problem

As it occurs with implicit standard schemes, the main advantage of NSFD schemes over
explicit standard schemes arises when the model is stiff. We vary the input parameters
from the previous two subsections, so that very slow and very fast transition rates
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Figure 3. Comparison of the methods in terms of stability: Xh (first-order NSFD scheme), Sh (second-order
symmetrization X ∗

h/2
◦ Xh/2), ψh (fourth-order composition of Sh through the Lie formalism), second-order

RE on Xh, explicit Euler, and explicit Runge-Kutta RK4. Inputs: µ = 1, ν = 0.01, β = 3, γ = 10, S(0) = 0.8,
I(0) = 0.1 and R(0) = 0.1. Non-stiff case. First panel: h = 0.3. Second panel: h = 0.5. Absolute errors between

S(t) and SN are reported.

between compartments coexist. Let µ = 0.001, ν = 0.001, β = 0.001, γ = 10000,
S(0) = 0.8, I(0) = 0.1 and R(0) = 0.1. In Figure 4, we illustrate how explicit standard
schemes exhibit growing error for h = 0.0005, in contrast to NSFD methods. Let us
comment that the degree of stiffness of the problem may be increased as strongly as
wanted, so that the threshold h for which explicit standard schemes work is made
lower and lower.

Figure 4. Comparison of the methods in terms of stability: Xh (first-order NSFD scheme), Sh (second-order

symmetrization X ∗
h/2

◦ Xh/2), ψh (fourth-order composition of Sh through the Lie formalism), second-order

RE on Xh, explicit Euler, and explicit Runge-Kutta RK4. Inputs: µ = 0.001, ν = 0.001, β = 0.001, γ = 10000,

S(0) = 0.8, I(0) = 0.1 and R(0) = 0.1. Stiff case, h = 0.0005. Absolute errors between S(t) and SN are

reported.

5. Conclusion

NSFD schemes are dynamically consistent, but are of first order as originally for-
mulated. In the literature, higher-order constructions were proposed from RE. The
essential properties of the governing system were thus maintained, except maybe the
positivity condition regardless of the step-size value. In this short note, an alternative
approach is suggested. For autonomous systems, the NSFD scheme can be symmetrized
by composing with the adjoint scheme, so that the symmetry condition of the exact
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solution is mimicked. This is the usual procedure in GNI. It gives rise to an explicit
second-order method, which preserves all properties (symmetry, conservation laws,
stability) unconditionally except positivity for every step-size. Composition through
the Lie formalism allows increasing the order of the method. Here it is stopped at
fourth order. The symmetric method is more efficient and consistent than RE. For
a fixed step-size value, the ratio of costs is 3/2, independently of the implementation
and the computer. If fourth-order methods are compared, namely composition of three
symmetrizations and composition of three RE, then the ratio of costs is 9/2. The ideas
are illustrated on an autonomous SIRS model, albeit analogous applications may be
conducted for other epidemiological models such as SIS, SEIR, etc.

In the future, the link between NSFD integration and GNI shall be studied fur-
ther, as the connection is still under-investigated. This would also help to solve the
two open questions posed in this work. On the other hand, different compartmental
problems with many subgroups and strong stiffness shall be tackled in the future, as
the potential of NSFD schemes (with symmetrization and composition) will likely be
the biggest. Implicit standard schemes, whose usefulness is very significant, were de-
signed to overcome the disadvantages of explicit standard methods in terms of stability.
NSFD schemes achieve this target due to the nonlocal discretizations, while being ex-
plicit, positivity preserving / symmetric and conservation-law preserving. Thus, NSFD
methods have advantages compared to standard methods and deserve further research.

Appendix A

NSFD schemes of order one, and in general of odd order, cannot preserve symmetry:
Xh ̸= X ∗

h , where X ∗
h = X−1

−h is the adjoint. Let us justify this statement. It is known

that Xh(x) = eX(h)[Id](x), where X(h) =
∑∞

n=1 h
nXn and X1 = Lf . The scheme is of

order r if and only ifXn = 0 for 2 ≤ n ≤ r. On the other hand, X ∗
h (x) = e−X(−h)[Id](x),

where −X(−h) =
∑∞

n=1(−1)n+1hnXn. Thus, Xh = X ∗
h if and only if Xn = 0 whenever

n is even, that is, X(h) = hX1 + h3X3 + h5X5 + . . .; this is equivalent to Xh being of
even order r.

Appendix B

The BCH (Baker-Campbell-Hausdorff) formula expresses eXeY = eZ(X,Y ) for any two
operators X and Y . From eXeY =

∑∞
m,n=0

1
m!n!X

mY n and the power series expansion

of the logarithm function, Z = log(eXeY ) =
∑∞

m=1 Zm(X,Y ) is obtained. The com-
putation of the explicit series is not simple. The terms are usually expressed in terms
of the commutator [X,Y ] = XY − Y X:

Z1(X,Y ) = X + Y, Z2(X,Y ) =
1

2
[X,Y ],

Z3(X,Y ) =
1

12
([X, [X,Y ]]− [Y, [X,Y ]]) , Z4(X,Y ) = − 1

24
[Y, [X, [X,Y ]]].
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