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Abstract. In this paper, we improve the existing analysis on the randomized radioactive decay chain
model based on Bateman master equations, by Hussein and Selim (2020). For a decay chain of three
species of radionuclides, the authors derived the probability density function for the concentrations, by
using the random variable transformation (RVT) technique. We extend this application to the general
solution of Bateman equations. The density function is expressed as an expectation, which has important
implications for parametric density estimation. This may improve the classical kernel estimation when the
random dimensionality is not low. Numerical examples are included, where the decay parameters and the
initial concentrations are assigned different probability distributions.

1 Introduction

Recently, paper [1] investigated the process of radioactive decay in time subject to randomness. The radioactive decay
chain (RDC) model was described through Bateman master equations, which set differential–difference equations
for the number of radionuclides of the species. The decay parameters and the initial concentrations were assumed
to be random variables. Under this setting, the sample–path solution to the model becomes a stochastic process (a
random variable that evolves with time) [2], and its uncertainty must be quantified [3]. An important feature of
Bateman equations is that the stochastic solution is given in closed form. Given three species of radionuclides with
zero concentrations for the daughters at time zero, the authors derived the probability density function (PDF) of the
solution via the random variable transformation (RVT) technique [4–7]. This technique expresses the PDF of the output
in terms of the joint PDF of the input random coefficients, when the deterministic input–output relation is available
in closed form and satisfies certain assumptions (continuous differentiability, one–to–one, and non–vanishing Jacobian,
on the whole domain or over a partition of it). This is an effective and direct method for uncertainty quantification.
It is analogous to Liouville’s equation [8–11], though simpler when the Jacobian computation is straightforward.

In this paper, the aim is to extend the application of the RVT method done by [1] to the general stochastic solution
of the RDC model. Namely, for an arbitrary number of species, the expression for the PDF of the solution is obtained.
This expression, as usual, is semi–implicit, since it depends on integrations. When the number of integrations is low,
as in [1], quadrature methods are applicable (many software perform these multidimensional integrations via built–in
commands). For moderate or high integrations, the PDF is alternatively expressed as an expectation. This permits
estimating the PDF parametrically and improving the classical kernel methods in a lot of situations [12].

The structure of this paper is the following. In Sect. 2, the solution to the RDC model is reviewed. In Sect. 3, the
RVT method and its alternative formulation are described and discussed. In Sect. 4, the PDF of the stochastic solution
is obtained, in a general framework. In Sect. 5, we treat the topic of input-uncertainty estimation, by maximizing
entropy. In Sect. 6, some numerical computations are presented. Finally, Sect. 7 draws the main conclusions.

2 The RDC model

As described in [1], the RDC model formulated through the Bateman equations is

dN1(t)

dt
= −λ1N1(t),
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dNj(t)

dt
= −λjNj(t) + λj−1Nj−1(t), j = 2, . . . , n− 1,

dNn(t)

dt
= λn−1Nn−1(t).

There is a serial decay chain of n nuclear species X1 → X2 → · · · → Xn, where λj is the rate of decay of the
radionuclides from the species Xj into the species Xj+1. Transition rates from j + 1 to j are not allowed. The
parameter λn is 0 because the nuclides of species Xn are stable. The number of radionuclides of species Xj at time t
is Nj(t), j = 1, . . . , n. The analytical solution is [13]

Nm(t) =

m∑
i=1

Ni(0)

m−1∏
j=i

λj

 m∑
j=i

e−λjt∏m
p=i, p 6=j(λp − λj)

 , (1)

for m = 1, . . . , n.
When λj and Nj(0), j = 1, . . . , n, are random variables, the solution Nm(t) is a stochastic process, m = 1, . . . , n.

It is assumed that the decay coefficients are different almost surely. The main goal is to compute the PDF of Nm(t) at
each time t, denoted as fNm

(xm; t) (evaluated at xm ∈ R). In [1], the authors restricted to n = 3 (parameters λ1 and
λ2, with λ3 = 0), N1(0) = N1,0 6= 0, N2(0) = 0 and N3(0) = 0. In this paper, the PDF will be computed for arbitrary
n, m, decay parameters and initial abundances.

3 The RVT technique

3.1 Classical formulation

The RVT technique, also called change of variables technique, is used to find the relation between the PDFs in a
closed–form input–output system [14, Th. 2.1.5]. Let YYY = (Y1, . . . , Yk) and ZZZ = (Z1, . . . , Zk) be two random vectors,
k ≥ 1, related as ZZZ = ggg(YYY ), where ggg : D ⊆ Rk → Rk is a Borel–measurable deterministic mapping. When ggg
is continuously differentiable on an open set D containing the support of YYY , one–to–one, and with non–vanishing
Jacobian Jggg(y) = det(∂ggg∂yyy (yyy)), the joint PDF of ZZZ is given in terms of the joint PDF of YYY by

fZZZ(zzz) = fYYY (hhh(zzz))|Jhhh(zzz)|, zzz ∈ ggg(D),

where hhh = ggg−1 is the inverse of ggg on its domain and Jhhh(zzz) = det(∂hhh∂zzz (zzz)). Indeed, for any Borel set B contained in the
support of ZZZ, we have

P[ZZZ ∈ B] = P[ggg(YYY ) ∈ B] = P[YYY ∈ hhh(B)] =

∫
hhh(B)

fYYY (yyy) dyyy =

∫
B

fYYY (hhh(zzz))|Jhhh(zzz)|dzzz.

First, it is used the principle that an event has the same probability regardless of whether it is described in terms of
ZZZ or YYY , and second, the change of variables formula for Lebesgue integration is applied.

The one–to–one condition may be overcome by dividing the domain of ggg into sub–domains where it is one–to–one
[14, Th. 2.1.8]. Write D as a pairwise disjoint union D = ∪si=1Di, where gggi = ggg|Di is continuously differentiable on
Di, one–to–one, and with non–vanishing Jacobian Jgggi(yyy). Then the joint PDF of ZZZ is given by

fZZZ(zzz) =
∑

i:zzz∈ggg(Di)

fYYY (hhhi(zzz)) |Jhhhi
(zzz)| , zzz ∈ ggg(D),

where hhhi = ggg−1i is the inverse of gggi on Di.

3.2 Alternative formulation

There is an alternative version of the RVT technique when the transformation mapping g consists of sums and
products [12]. Let A be an absolutely continuous random variable with explicit PDF fA, independent of the random
vector (Z1, Z2) (which is not necessarily absolutely continuous), where Z1 6= 0 almost surely. Then the random variable
Z1A+ Z2 is absolutely continuous, with PDF

fZ1A+Z2
(z) = E

[
fA

(
z − Z2

Z1

)
1

|Z1|

]
, z ∈ R. (2)
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The proof is presented in an appendix. To provide the analogy with the customary RVT formula, there is a transfor-
mation mapping ggg(A,Z1, Z2) = (Z1A+Z2, Z1, Z2) on D = R3, whose inverse is hhh(Z,Z1, Z2) = ((Z −Z2)/Z1, Z1, Z2).
The Jacobian of hhh is 1/Z1.

Whenever possible, the expectation E in (2) should be computed by integration (quadratures). Otherwise, if the
explicit probability law of (Z1, Z2) is too complicated (because it depends on a significant number of random variables),
then Monte Carlo simulation may be applied to (2) [12]:

fZ1A+Z2
(z) ≈ 1

M

M∑
k=1

fA

(
z − Z2(ωk)

Z1(ωk)

)
1

|Z1(ωk)|
, (3)

where Z1(ω1), . . . , Z1(ωM ) and Z2(ω1), . . . , Z2(ωM ) are randomly drawn samples of length M . Notice that the approx-
imation integrates 1 and is still a PDF, since∫

R

(
1

M

M∑
k=1

fA

(
z − Z2(ωk)

Z1(ωk)

)
1

|Z1(ωk)|

)
dz =

1

M

M∑
k=1

∫
R
fA

(
z − Z2(ωk)

Z1(ωk)

)
1

|Z1(ωk)|
dz =

1

M

M∑
k=1

∫
R
fA(z) dz

=
1

M

M∑
k=1

1 = 1.

Convergence of the approximation as M → ∞ is always guaranteed by the law of large numbers. The PDF esti-
mation becomes a parametric problem, since an expectation parameter is estimated. The convergence rate, given M
independent realizations of (Z1, Z2), is O(M−1/2), due to the central limit theorem (the constant of O depends on
the evaluation point z ∈ R). Variance reduction methods may be applied, such as antithetic or control variates [15].
Since the parametric method acts pointwise, the discontinuities and non–differentiability points of the target PDF are
correctly captured, without smoothing them out. Thus, the method is robust.

These features are in contrast to kernel density estimation, which is non–parametric because it reconstructs a
distribution. Recall that, given a random variable Y with PDF fY , the kernel density estimate is defined as

y 7→ 1

Mh

M∑
k=1

κ

(
y − Y (ωk)

h

)
,

where Y (ω1), . . . , Y (ωM ) are randomly drawn realizations, κ is a kernel (a nonnegative function) and h > 0 is a
smoothing parameter called the bandwidth. Under sufficient regularity of the target PDF and optimality of the
bandwidth selected, the root–mean–square error of the estimate is O(M−r), r < 1/2 [16]. Kernel density estimates are
highly influenced by smoothness; without prior knowledge on the features of the target PDF, the optimal kernel may
not be known. The kernel density estimate may consider wrong tails or ignore discontinuities and peaks, for instance.
Finally, notice that, for a fixed M , the kernel density estimation and the parametric estimation have practically the
same cost, since both rely on M realizations of Z1 and Z2 (the kernel density estimation also needs realizations of A,
evaluates the kernel function and considers a bandwidth, while the parametric estimation evaluates fA).

Despite all the favorable properties of the parametric estimation method, there are some situations, which were
not analyzed in [12], in which it may present slow convergence: since (2) involves random denominators, the variance
of the random quantity inside the expectation may be high for some z, which produces “noise” that plagues the PDF
estimate [17,18]. This issue is not observed for kernel density estimation.

Remark 1 When applying the new alternative formulation, there is no need to identify the support of the output
random variable analytically. In (2), the variable z belongs to R. When z is not in the support of Z1A + Z2, then
fA((z − Z2)/Z1) is 0 almost surely, and fZ1A+Z2

(z) = 0, as expected. In numerical computations, one estimates the
target PDF without prior specification of its domain; outside the domain, the numerical estimate will be exactly 0
and no problems will arise.

4 The PDF

The solution (1) has the special form Nm(t) = N1(0)Um(t) + Vm(t), where

Um(t) =

m−1∏
j=1

λj

 m∑
j=1

e−λjt∏m
p=1, p 6=j(λp − λj)
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and

Vm(t) =

m∑
i=2

Ni(0)

m−1∏
j=i

λj

 m∑
j=i

e−λjt∏m
p=i, p 6=j(λp − λj)

 .
Thus, if N1(0) is independent of the rest of random variables, formula (2) is applicable with Z1 = Um(t), Z2 = Vm(t)
and N1(0) = A:

fNm(xm; t) = E
[
fN1(0)

(
xm − Vm(t)

Um(t)

)
1

|Um(t)|

]
=

∫
Rm−1

∫
Rm−1

fN1(0)

(
xm − Vm(t)

Um(t)

)
1

|Um(t)|
×f(N2(0),...,Nm(0),λ1,...,λm−1)(N2(0), . . . , Nm(0), λ1, . . . , λm−1)

×dλ1 · · · dλm−1 dN2(0) · · · dNm(0).

This is the RVT formula after marginalizing. The case studied in [1] arises for m = 1, 2, 3, n = 3, N1(0) = N1,0 and
N2(0) = N3(0) = 0 (so that fN2(x; 0) = fN3(x; 0) = δ0(x) is a Dirac delta function). The authors assumed that λ1, λ2
and N1,0 are independent random variables, which gives a double integral for fNm(xm; t). In general, when the random
dimensionality is low, the integrals may be solved numerically. However, for moderate or high random dimensionality,
it is preferable to estimate the expectation via Monte Carlo simulation (see (3)). This has advantages compared to
kernel density estimation, as discussed in the preceding section.

When N1(0) is not independent of the remaining random variables, the RVT formula gives

fNm
(xm; t) =

∫
Rm−1

∫
Rm−1

f(N1(0),N2(0),...,Nm(0),λ1,...,λm−1)

(
xm − Vm(t)

Um(t)
, N2(0), . . . , Nm(0), λ1, . . . , λm−1

)
× 1

|Um(t)|
dλ1 · · · dλm−1 dN2(0) · · · dNm(0).

That is, the joint PDF f(N1(0),N2(0),...,Nm(0),λ1,...,λm−1) does not factorize as a product fN1(0)×f(N2(0),...,Nm(0),λ1,...,λm−1).
In this case, fNm

(xm; t) is not expressible as an expectation, therefore the only possibility is to rely on integration
methods.

If fNm
(xm; t) is computable by numerical integration methods, then the statistics of Nm(t) may be determined by

integration:

E[G(Nm(t))] =

∫
R
G(xm)fNm

(xm; t) dxm. (4)

In particular, the mean and the variance of Nm(t) are

E[Nm(t)] =

∫
R
xmfNm(xm; t) dxm,

V[Nm(t)] =

∫
R
x2mfNm(xm; t) dxm − (E[Nm(t)])

2
.

When fNm
(xm; t) is not computable by numerical integration methods, but by parametric Monte Carlo simulation on

E instead, then it is preferable to directly apply Monte Carlo simulation or spectral techniques [3] for statistics, rather
than an integration (4).

5 Input uncertainty

In the task of uncertainty quantification, there are two main goals: random-input representation from data (inverse
uncertainty quantification), and quantification of the model stochastic output (forward uncertainty quantification) [3].
The computation of the PDF of the model output, which is the focus of this paper, corresponds to forward uncertainty
quantification.

For inverse uncertainty quantification, the maximum entropy principle (MEP) [19–21] derives probability distri-
butions for the parameters consistently. Subject to constraints on the support and the statistical moments of the
parameters, the entropy (ignorance) on the density functions described by the Shannon measure is maximized using
Lagrange multipliers. Given a random input parameter θ with PDF fθ and support [a, b], its Shannon entropy is
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S[fθ] = −
∫ b
a
fθ(θ) log fθ(θ) dθ. Prior information about θ is E[θk] =

∫ b
a
θkfθ(θ) dθ = fk, 0 ≤ k ≤ m. For example, f1

(the mean) may be a pointwise (deterministic) estimate. By calculus of variations, the maximum of S is attained at

fθ(θ) = X[a,b](θ)exp

(
−λ0 −

m∑
k=1

λkθ
k

)
,

where λ0, . . . , λm are the Lagrange constants.
There are different maximum entropy distributions depending on the prior information:

1. Only a bounded support [a, b] is known: θ ∼ Uniform(a, b).
2. Only the support [0,∞) and the mean f1 are known: θ ∼ Exponential(1/f1) with rate parameter 1/f1.
3. Only the support (−∞,∞), the mean f1 and the variance f2 − (f1)2 are known: θ ∼ Normal(f1, f2 − (f1)2).
4. Only the support [a, b] and the mean f1 are known: θ ∼ Exponential(1/f1)|[a,b].
5. Otherwise, the Lagrange constants and the maximum entropy distribution are calculated numerically by solving

the nonlinear system of equations defined by the restrictions.

6 Example

Paper [1] demonstrated that, for small n (in their case n = 3), the RVT technique is successfully applied by means
of numerical integration. In this section, we focus on a higher n, n = 10, for which numerical integration cannot be
performed and parametric Monte Carlo simulation is conducted. The methodology from [1] cannot tackle this problem.

For a test problem in forward uncertainty quantification, consider the following distributions for λ1, . . . , λ9 (recall
that λ10 = 0):

λ1 ∼ Exponential(0.5)|[1.97,2.03], λ2 ∼ Exponential(0.8)|[1.22,1.28],

λ3 ∼ Exponential(1)|[0.97,1.03], λ4 ∼ Exponential(0.4)|[2.47,2.53],

λ5 ∼ Exponential(0.6)|[1.637,1.697], λ6 ∼ Exponential(0.3)|[3.303,3.363],

λ7 ∼ Exponential(0.9)|[1.081,1.141], λ8 ∼ Exponential(1)|[0.97,1.03],

λ9 ∼ Exponential(1.2)|[0.803,0.863].

These are test Exponential distributions with rate parameter, truncated in the domain mean±0.03. ForN1(0), . . . , N10(0),
the following test distributions are considered, respectively:

Exponential(η), η ∈ {2, 3, 1, 4, 2, 3, 2, 2, 1, 3}.

Based on the MEP, the input probability distributions are selected according to prior information (pointwise/deterministic
estimates, variability, support, etc.), in a consistent manner by maximizing the Shannon entropy functional. In mod-
eling, this is the first step, before uncertainty quantification for the model output. Here, the prior information would
be a pointwise estimate, which would be regarded as the mean value, and a positive support. The obtainment of prior
information is not a trivial task and shall be further studied in the future.

In Fig. 1, the estimated PDFs of N1(t), N5(t), N6(t) and N10(t) (m = 1, 5, 6, 10) are plotted in four different
panels. Several times t are shown to illustrate the evolution of the PDF. Formula (2)–(3) is employed, with 50, 000
realizations. It is observed that, as t grows, the concentrations N1(t), N5(t) and N6(t) decay: the densities tend to the
vertical axis (i.e. to zero mean and zero variance). By contrast, the concentration N10(t) increases as t grows. This is
an analogous behavior to the deterministic counterpart. In order to better appreciate this behavior, we plot in Fig. 2
the time evolution of the deterministic solution, the expectation and the standard deviation, in three panels. For the
deterministic solution, the mean values of the input parameters are fixed as deterministic values (the deterministic
value for λ8 was slightly modified by adding an ε = 0.001, so that λ3 6= λ8 and (1) is well-defined). It is observed that
the deterministic solution and the expectation are very similar.

It can be seen that for some estimates (mainly for lower t and larger m) there is a noise due to the large variance
of the estimator (see the discussion at the end of Sect. 3); in those cases, more realizations are required. In this regard,
Fig. 3 examines the convergence of the estimated PDFs and the reduction of noise as the number of realizations gets
larger, for m = 10 and t = 4 (in the fourth panel of Fig. 1, the PDF was represented with 50, 000 realizations).
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Fig. 1. Estimated PDFs of N1(t), N5(t), N6(t) and N10(t) at different time instants.

7 Conclusions

The main results from [1] on the randomized RDC model have been extended to a general number of nuclear species,
by applying the RVT technique appropriately. The target PDF has been obtained semi–explicitly, in terms of an
expectation. The expression is independent of the input distributions, which may be consistently selected according to
the MEP. When the number of random inputs is low, numerical integrations give the PDF. However, when the number
of random inputs is moderate or large, the expectation that defines the PDF is estimated via Monte Carlo simulation.
This is a parametric estimation of the PDF, in contrast to the classical kernel estimation. Parametric estimation may
show many advantages, in terms of rate of convergence, capture of density features, robustness and acceleration via
variance reduction techniques, although care must be exercised due to possible noisy features.

Appendix

We prove (2). Let C be a Borel set in R. By definition of conditional law,

P(Z1A+ Z2 ∈ C) =

∫
R2

P(Z1A+ Z2 ∈ C|Z1 = z1, Z2 = z2)P(Z1,Z2)(dz1,dz2)

=

∫
R2

P(z1A+ z2 ∈ C)P(Z1,Z2)(dz1,dz2).

Since A has a PDF,

P(Z1A+ Z2 ∈ C) =

∫
R2

∫
(C−z2)/z1

fA(a) daP(Z1,Z2)(dz1,dz2)

=

∫
R2

∫
C
fA

(
a− z2
z1

)
1

|z1|
daP(Z1,Z2)(dz1,dz2).
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Fig. 2. Time evolution of the deterministic solution, the expectation and the standard deviation, for N1(t), N5(t), N6(t) and
N10(t).
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fN10 (x10;4)

Fig. 3. Convergence of estimated PDFs as the amount of realizations grows, for N10(4).

By Fubini’s Theorem (justified because the integrand is nonnegative) and the expression of the expectation,

P(Z1A+ Z2 ∈ C) =

∫
C

∫
R2

fA

(
a− z2
z1

)
1

|z1|
P(Z1,Z2)(dz1,dz2) da

=

∫
C
E
[
fA

(
a− Z2

Z1

)
1

|Z1|

]
da.

This proves (2).
Though not used in the current paper, (2) may be generalized as follows. LetAAA be an absolutely continuous random

vector of length m. Let MMM be an m ×m random matrix and ZZZ be a random vector of length m. Suppose that AAA is
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independent of (MMM,ZZZ) and that MMM is invertible almost surely. Then MMMAAA+ZZZ is absolutely continuous, with PDF

fMMMAAA+ZZZ(aaa) = E
[
fAAA
(
MMM−1(aaa−ZZZ)

) 1

|det(MMM)|

]
.
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