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Highlight  26 

The specific and complex metabolic responses of plants to a combination of different 27 

abiotic stresses, that is predicted to worsen with climate change, is reviewed. 28 

 29 

Abstract 30 

Climate change is predicted to increase the frequency and intensity of abiotic stress 31 

combinations that negatively impact plants and pose a serious threat to crop yield and 32 

food supply. Plants respond to episodes of stress combination by activating specific 33 

physiological and molecular responses, as well as by adjusting different metabolic 34 

pathways, to mitigate the negative effects of stress combination on plant growth, 35 

development, and reproduction. Plants synthesize a wide range of metabolites that 36 

regulate many aspects of plant growth and development, as well as plant responses to 37 

stress. Although metabolic responses to individual abiotic stresses have been studied 38 

extensively in different plant species, recent efforts have been directed at understanding 39 

metabolic responses that occur when different abiotic factors are combined. In this review 40 

we examine recent studies of metabolomic changes under stress combination in different 41 

plants and suggest new avenues for the development of stress combination-resilient crops 42 

based on metabolites as breeding targets. 43 

 44 
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Introduction  55 

Plant growth, yield and survival are highly affected by global warming and climate 56 

change that cause a constant increase in global atmospheric CO2 levels, as well as the 57 

intensity and frequency of different abiotic stresses including drought, extreme 58 

temperatures, and flooding; resulting in many cases in a multifactorial stress combination 59 

phenomenon (Steg, 2018; Masson-Delmotte et al., 2021; Zandalinas et al., 2021b,a; von 60 

der Gathen et al., 2021; Houtan et al., 2021; Rivero et al., 2022). The predicted increase 61 

in soil-associated stresses such as salinity, inorganic nutrient imbalances or heavy metals, 62 

alongside biotic stresses, further adds to the complexity of the future plant environment 63 

and make it difficult to forecast how plants will respond to the challenges posed by the 64 

interactions of multiple stresses. In addition to the activation of specific physiological and 65 

molecular responses to stress, plants adjust several metabolic pathways to mitigate the 66 

effects of stress on growth and development and to adapt to new energetic demands 67 

imposed by different climatic and environmental scenarios (Dusenge et al., 2019; Fernie 68 

et al., 2020). The efficiency of reconfiguring metabolic networks, resuming active growth 69 

and seed production, and restoring a new state of homeostasis after stress release will 70 

further determine how successful a plant is in acclimating to stress (Shulaev et al., 2008; 71 

Dusenge et al., 2019).  72 

Plants produce a wide range of different metabolites in a spatiotemporal- and/or 73 

environment-dependent manner (Fang et al., 2019), including carbohydrates, amino 74 

acids, phenolics, polyols, polyamines, lipids, and others, with many different biological 75 

functions. This large diversity is traditionally divided into primary metabolites, which are 76 

directly required for plant growth [e.g., carbohydrates, tricarboxylic acid (TCA) cycle 77 

intermediates or amino acids]; secondary metabolites, which are involved in regulating 78 

plant–environment interactions (e.g., phenolics, terpenes or nitrogen-containing 79 

compounds); and hormones, that control many aspects of plant growth and development, 80 

as well as plant responses to stress [e.g., abscisic acid (ABA), jasmonic acid (JA), salicylic 81 

acid (SA) or ethylene (ET)] (Fang et al., 2019; Erb and Kliebenstein, 2020). It was 82 

recently proposed that some secondary metabolites are multifunctional and could function 83 

as potent regulators of plant growth and development processes, as well as defense against 84 

pathogens, thus acting as plant regulatory compounds or hormones. For example, 85 

secondary metabolites such as flavonoids were implicated in regulating plant growth and 86 

development, as well as environmental responses (Erb and Kliebenstein, 2020). In 87 
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addition to being considered as downstream targets of many stress-response signaling 88 

pathways, it was suggested that different metabolites also function as stress signals. In 89 

this sense, metabolic responses generated by specific abiotic stresses that persist in the 90 

plant could prime metabolic responses for subsequent environmental stresses 91 

(Schwachtje et al., 2019). Examples of stress-induced metabolic signals include the 92 

amino acid proline, that is triggered by drought in Periploca sepium (An et al., 2013) or 93 

tobacco plants (Vanková et al., 2012). Other metabolic signals consisting of primary 94 

metabolites (e.g., sugars, sugar phosphates and different amino acids) and/or secondary 95 

metabolism, were previously described in response to drought (e.g., Moyankova et al., 96 

2014; Wedeking et al., 2018), cold (e.g., Kaplan et al., 2004; Mazzucotelli et al., 2006) 97 

or heat stress (e.g., Hemme et al., 2014). Plants can therefore produce a wide array of 98 

variable and flexible regulators to adjust their growth and development, and to survive 99 

challenging environmental habitats.  100 

Metabolic responses to single abiotic stresses are well described for many plant systems 101 

and in both perennial and annual plants (e.g., Wang et al., 2016b, 2020; Kang et al., 2019; 102 

Muchate et al., 2019; Itam et al., 2020; Cai et al., 2020). However, plants growing in the 103 

field are typically subjected to more than one abiotic stress condition at a time (i.e., stress 104 

combination), imposing new and unique metabolic demands on plants (Mittler, 2006; 105 

Zandalinas et al., 2018; Rivero et al., 2022). Although considerable research efforts have 106 

been invested in the last decade in dissecting plant responses to a combination of two or 107 

three different stresses (e.g., Vile et al., 2012; Iyer et al., 2013; Zandalinas et al., 2020a,b, 108 

2021b; Cohen et al., 2021), a deeper understanding of the metabolic response of plants to 109 

multiple stress factors under field conditions is crucial for improving stress-tolerance of 110 

different crops. Because the plant metabolome plays such a crucial role in defining the 111 

phenotype of plants during stress (Fang et al., 2019; Sharma et al., 2021; Carrera et al., 112 

2021), studies of the metabolome of plants grown under multiple stress combinations 113 

could be used to identify stress resistance-associated metabolites, which can then be used 114 

in future metabolic engineering strategies, or breeding programs, as selective markers 115 

(Abdelrahman et al., 2018). In addition, since annual and perennial plant species 116 

generally adopt different strategies to cope with abiotic stresses, future research should 117 

consider these differences in dissecting and identifying stress-specific markers under 118 

multiple stress combinations. 119 
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In this review, we describe recent research efforts focused on studying the metabolomic 120 

responses of plants to different abiotic stress conditions and their combination and 121 

propose stress combination-resistance metabolites as potential targets for plant breeding. 122 

Unraveling the complexities of the plant metabolomic responses to a combination of 123 

multiple abiotic stresses could facilitate the development of climate-resilient crops, 124 

improving global food supply.  125 

 126 

Primary metabolic pathways impacted by abiotic stress combination 127 

The general primary response of plants to abiotic stress includes a reduction in energy 128 

consumption and overall protein biosynthesis in order to shift from plant growth to 129 

protective mechanism, adjusting various primary metabolic pathways, including 130 

carbohydrate, amino acid and polyamine metabolism (Zhang et al., 2022). Below we 131 

describe specific and common changes in primary metabolic pathways in response to 132 

different abiotic stresses and their combination (Fig. 1). 133 

Sugars 134 

Different abiotic conditions and their combinations induce stomatal closure to minimize 135 

water loss. Examples for these include drought (e.g., Flexas et al., 2002, 2004; Carmo-136 

Silva et al., 2012; Medina and Gilbert, 2016; Zhang et al., 2021), high light (e.g., 137 

Devireddy et al., 2018, 2020a; Zandalinas et al., 2020a), and salinity (e.g., Flexas et al., 138 

2004; Orsini et al., 2012; Zhu et al., 2014; Hedrich and Shabala, 2018), as well as 139 

combined drought and heat (Rizhsky et al., 2002, 2004; Carmo-Silva et al., 2012; 140 

Zandalinas et al., 2016a; Zhou et al., 2017; Shaar-Moshe et al., 2017), salinity and heat 141 

(Shaar-Moshe et al., 2017; Balfagón et al., 2019b), or salinity and drought (Shaar-Moshe 142 

et al., 2017; Dugasa et al., 2019). This response is accompanied by a decrease in the 143 

intercellular CO2 concentration of plants, limiting photosynthesis (Chaves et al., 2003), 144 

that in turn alters carbohydrate levels. Carbohydrates are direct products of photosynthetic 145 

CO2 fixation and are substrates for biomass accumulation and biosynthesis of other 146 

organic molecules such as sugar alcohols. In addition, they play a central role in stress 147 

perception and signaling, function as a regulatory hub for stress-mediated gene 148 

expression, and act as stabilizers of membranes and proteins as well as osmoprotectants 149 

and reactive oxygen species (ROS) quenchers (Sami et al., 2016; Pommerrenig et al., 150 

2018). Therefore, a fine-tuned reconfiguration of sugar accumulation under stress 151 
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combination is crucial for plant acclimation and survival. Different abiotic stresses result 152 

in distinct, and sometimes opposing, patterns of sugar accumulation (Fig. 1), and this 153 

pattern depends on the type of stress as well as the plant species. For example, in response 154 

to cold stress, the pathway leading to raffinose was shown to be crucial for freezing 155 

tolerance in Arabidopsis (Korn et al., 2010). Heat stress caused a decrease in glucose in 156 

soybean plants (Das et al., 2017), but an increase in soluble sugars in Arabidopsis plants 157 

(Wang et al., 2020a). In addition, in both plant species (Arabidopsis and soybean), heat 158 

stress inhibited the accumulation of metabolites involved in the TCA cycle (Das et al., 159 

2017; Wang et al., 2020a). In response to drought stress, many of the major carbohydrates 160 

such as glucose, fructose and sucrose accumulated in soybean (Mutava et al., 2015; Das 161 

et al., 2017) as well as in Arabidopsis (Rizhsky et al., 2004). In addition to drought, 162 

changes in the amounts of carbohydrates (including trehalose, glucose and fructose) were 163 

determined  in leaves and roots of soybean plants subjected to flooding (Coutinho et al., 164 

2018). Salinity stress caused an increased abundance of sugars and sugar derivatives such 165 

as arabinose, inositol, mannose, sucrose, trehalose, xylose, and galactose in sugar beet 166 

(Hossain et al., 2017). Moreover, high amounts of hexoses, sugar alcohols and organic 167 

acids were found in the salt-tolerant Thellungiella halophila plants (Gong et al., 2005), 168 

demonstrating the protective functions of sugars under salt stress. 169 

In contrast to individual stresses, different combinations of adverse conditions displayed 170 

unique patterns of sugar accumulation (Rizhsky et al., 2004; Wulff-Zottele et al., 2010; 171 

Rivero et al., 2014; Obata et al., 2015; Zandalinas et al., 2016c; Zinta et al., 2018; 172 

Weiszmann et al., 2018; Balfagón et al., 2022a) (Fig. 1). A metabolite profiling analysis 173 

of Arabidopsis subjected to a combination of drought and heat stress revealed that plants 174 

accumulated sucrose and other sugars such as maltose and gulose exclusively under this 175 

stress combination. In addition, it was suggested that a combination of drought and heat 176 

stress required sucrose rather than proline (accumulated only under drought applied 177 

individually) as an osmoprotectant, and that sucrose biosynthesis could occur from starch 178 

in Arabidopsis plants (Rizhsky et al., 2004). In maize subjected to a combination of 179 

drought and heat, metabolite profiles were analyzed and contrasted with grain yield in the 180 

field (Obata et al., 2015). Metabolic responses under this stress combination could be 181 

mostly predicted from the sum of those in single stresses, but eight metabolites, including 182 

succinate, raffinose and xylose, were specifically regulated under the combined stress 183 

conditions (Obata et al., 2015). Interestingly, elevated CO2 levels reduced the impact of 184 
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a combination of drought and heat on sugar metabolism, showing less accumulation of 185 

soluble sugars in Arabidopsis plants, pointing towards the role of high CO2 in stress 186 

combination mitigation (Zinta et al., 2018). In addition to the possible beneficial role of 187 

CO2 in alleviating damages from a combination of drought and heat stress, it was reported 188 

that elevated CO2 decreased iron and zinc concentration in soybean seeds when plants 189 

where growing in the field, heat stress had the opposite effect, and the combination of 190 

elevated CO2 and heat generally restored seed iron and zinc concentrations to levels 191 

obtained under ambient CO2 and temperature conditions (Köhler et al., 2019). These 192 

results suggest that increased levels of CO2 due to climate change could be beneficial for 193 

the nutritional quality of crops. However, it should be noted that C3 grains and legumes 194 

had lower concentrations of zinc and iron when grown under field conditions at elevated 195 

atmospheric CO2 concentration (Myers et al., 2014), highlighting the complexity of 196 

predicting climate change effects on food and nutritional security. In addition to the 197 

combination of drought and heat, it was recently reported in Arabidopsis that a 198 

combination of high light and heat stress resulted in a unique metabolic response that 199 

included increased accumulation of sugars (including maltose, glucose and fructose), 200 

coupled with decreased levels of metabolites participating in the TCA cycle (including 201 

citrate and fumarate), compared to the individual stresses (Balfagón et al., 2022a). 202 

Similarly, the combination of high light and sulfur depletion had a profound effect on 203 

central metabolic pathways including the TCA cycle and glycolysis. Specifically, sugars 204 

such as glucose, fructose and raffinose were elevated compared to control (Wulff-Zottele 205 

et al., 2010). Another stress combination that affected the accumulation of sugars in 206 

Arabidopsis was cold and high light stress. The freezing-tolerant Arabidopsis Rsch 207 

accession significantly increased sucrose, fructose and glucose concentrations in response 208 

to this stress combination, and a role for vacuolar invertase activity in preventing a 209 

limitation in cytosolic hexose metabolism under stress was suggested (Weiszmann et al., 210 

2018). An increased content of fructose, glucose and UDP-glucose was also found in the 211 

combined stress-tolerant tomato line RIL-76 under a combination of heat and salinity, 212 

indicating that the level of this specific sugar could be used for the selection of varieties 213 

more resistant to conditions of climate change (Lopez-Delacalle et al., 2021). 214 

Furthermore, tomato plants subjected to a combination of heat and salinity specifically 215 

accumulated trehalose, that could have an important role in protecting photosynthetic 216 

proteins from this stress combination (Rivero et al., 2014). 217 
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Taken together, a general increase in soluble sugar accumulation seems to be a common 218 

response to different stress combinations, that could be a result of reduced plant growth 219 

(decreasing the demand for primary metabolites) as well as impaired photosynthetic rate. 220 

In turn, the decreased photosynthetic rate under stress combination would indicate that 221 

the increase in sugar levels could come from starch breakdown instead of carbon fixation. 222 

Therefore, remobilizing starch reserves to produce energy, and sugar and derived 223 

metabolites when photosynthesis is suppressed could provide metabolites that act as 224 

osmoprotectants and compatible solutes to alleviate the negative effect of different stress 225 

combinations (Thalmann and Santelia, 2017). It should be noted that in the future the 226 

combination of different abiotic stresses will be accompanied by an elevation in CO2 227 

levels under climate change conditions, and high CO2 concentrations are expected to 228 

increase leaf photosynthetic rates. However, the degree to which this will occur is 229 

unknown, given that the stimulation of photosynthesis by CO2 depends on leaf 230 

temperature, and water and nutrient availability (Dusenge et al., 2019). Plant respiration 231 

could be also altered by elevated CO2 levels due to its effects on stomatal aperture. 232 

Dusenge et al. (2019) reviewed recent literature focused on increased CO2 levels and plant 233 

respiration, concluding that responses of respiration to changes in CO2 are highly variable 234 

and that a consistent theoretical basis for making strong predictions for how respiration 235 

will change when CO2 levels are high are still unclear (Dusenge et al., 2019). 236 

Amino acids 237 

Like sugars, the accumulation of amino acids during different abiotic stresses can also 238 

contribute to osmotic adjustments and ROS scavenging (Hildebrandt, 2018). Moreover, 239 

amino acids can function as alternative substrates for mitochondrial respiration when 240 

carbohydrate supply is insufficient due to a decrease in photosynthesis rate, as well as 241 

serve as precursors of secondary metabolites (Hildebrandt, 2018; Batista‐Silva et al., 242 

2019; Heinemann and Hildebrandt, 2021). The accumulation of amino acids resulting 243 

from protein breakdown or de novo biosynthesis can therefore minimize the adverse 244 

effects of different abiotic stresses (Lugan et al., 2010; Krasensky and Jonak, 2012; Obata 245 

and Fernie, 2012; Hildebrandt, 2018). For example, during cold stress, amino acids play 246 

an important role in N fixation into glutamine, and the synthesis of different proteins as 247 

well as polyamines, phenylpropanoids, glucosinolates, auxins and indole alkaloids 248 

(Alcázar et al., 2006; Bernard and Habash, 2009; Amir, 2010; Tzin and Galili, 2010; 249 

Hildebrandt, 2018). In Arabidopsis, the catabolic intermediates of lysine and the 250 
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branched-chain amino acids valine, leucine and isoleucine represent key factors in 251 

drought tolerance (Pires et al., 2016), and the activation of biosynthetic pathways of 252 

serine, arginine, glutamine and alanine during osmotic and salt stress are associated with 253 

storage of precursors for protein synthesis to prepare for rapid recovery of plant 254 

metabolism following stress (Batista‐Silva et al., 2019). Proline is thought to be crucial 255 

for acclimation to drought, cold stress and salinity but not to heat stress  (Rizhsky et al., 256 

2004; Kaplan et al., 2004; Gagneul et al., 2007; Usadel et al., 2008; Kempa et al., 2008; 257 

Urano et al., 2009; Szabados and Savouré, 2010; Lugan et al., 2010; Lv et al., 2011; Per 258 

et al., 2017). In addition, the non-proteinogenic amino acid γ-aminobutyric acid (GABA) 259 

accumulates in response to drought, hypoxia, anoxia, heat stress, salinity, zinc, osmotic 260 

stress, wounding and oxidative stress (Bouché and Fromm, 2004; Xing et al., 2007; 261 

Miyashita and Good, 2008; Fait et al., 2008; Allan et al., 2008; Bor et al., 2009; Renault 262 

et al., 2010; Akçay et al., 2012; Nayyar et al., 2014; Vijayakumari and Puthur, 2016; Daş 263 

et al., 2016; Mei et al., 2016; Mekonnen et al., 2016; Salvatierra et al., 2016; Bown and 264 

Shelp, 2016; Wang et al., 2017; Scholz et al., 2017; Priya et al., 2019; Xu et al., 2021; 265 

Wu et al., 2021) (Table 1). 266 

As shown for sugar metabolism, a combination of different abiotic stresses results in 267 

different patterns of amino acid accumulation compared to those caused by individual 268 

stresses. These unique patterns can be correlated with the specific demands the combined 269 

stress imposes on plants. For example, valine, asparagine and glutamine significantly 270 

accumulated in the tomato tolerant line RIL-76 under a combination of salinity and heat, 271 

and this accumulation was correlated with better nitrogen use efficiency compared to that 272 

of the sensitive tomato line RIL-66 (Lopez-Delacalle et al., 2020). In response to a 273 

combination of drought and heat stress, the specific accumulation of certain amino acids 274 

including glutamate, tyrosine, valine, and tryptophan in Purslane plants was thought to 275 

play a role in the cellular osmotic adjustment aimed at maintaining leaf turgor during 276 

stress combination (Jin et al., 2016). In addition, a stress combination induced by two 277 

metals, Co and Cu, led to a higher amino acid accumulation in the tolerant barley 278 

genotype Yan66 (Lwalaba et al., 2020), suggesting that amino acids could confer 279 

resistance to toxic levels of metals due to their potential metal-binding capacity (Anjum 280 

et al., 2015; Yuan et al., 2020; Lwalaba et al., 2020). Special attention has been recently 281 

given to GABA in response to different abiotic stress combinations (Table 1). The tomato 282 

tolerant line RIL-76 subjected to a combination of salinity and heat (Lopez-Delacalle et 283 
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al., 2020), as well as Arabidopsis plants subjected to a combination of high light and heat 284 

stress (Balfagón et al., 2022a), specifically accumulated this amino acid in response to 285 

stress combination. GABA also accumulates under combinations of salinity and drought, 286 

and heat and drought, as well as salinity, drought and heat, in Brachypodium distachyon 287 

plants (Shaar-Moshe et al., 2019). In addition to its involvement in plant growth 288 

regulation and stomatal responses, and its proposed role in enhancing plant tolerance to 289 

different environmental stresses (Bouché and Fromm, 2004; Shi et al., 2010; Shang et al., 290 

2011; Yu et al., 2014; Mekonnen et al., 2016; Salvatierra et al., 2016; Li et al., 2016b; 291 

Seifikalhor et al., 2019, 2020; Priya et al., 2019; Fromm, 2020; Xu et al., 2021), GABA 292 

was also proposed to regulate autophagy during stress and stress combination (Signorelli 293 

et al., 2019; Li et al., 2020; Wang et al., 2021; Balfagón et al., 2022a). Therefore, GABA 294 

could play a key role regulating plant responses to individual as well as combined abiotic 295 

stresses (Table 1), emerging as a potential metabolic marker to assist breeding programs 296 

in the development of climate-resilient crops. Further research is needed to decipher the 297 

role of GABA in plant tolerance of crops growing in the field subjected to a multifactorial 298 

stress combination. 299 

Polyamines 300 

Amino acids such as arginine and ornithine are precursors of polyamines, including 301 

spermine, spermidine and putrescine. These metabolites are aliphatic compounds induced 302 

by several abiotic stresses such as salt, heat, drought and oxidative stress (Alcázar et al., 303 

2010; Fu et al., 2014; Glaubitz et al., 2015; Sang et al., 2017; Ebeed et al., 2017; 304 

Podlešáková et al., 2019; Jing et al., 2020; Upadhyay et al., 2020). Elevated levels of the 305 

main polyamines putrescine, spermidine and spermine have been shown to confer 306 

tolerance to different abiotic stresses. For example, a T-DNA mutational analysis of 307 

Oryza sativa Lysine Decarboxylase-like Protein 1 (OsLDC-like 1) revealed that an 308 

increased polyamine biosynthesis enhanced oxidative stress tolerance by preventing the 309 

accumulation of ROS (Jang et al., 2012). In addition, spermidine could be involved in the 310 

expressions of proteins related to cell rescue and defense and the activation of antioxidant 311 

enzymes in tomato seedlings exposed to high temperatures (Sang et al., 2017) and has 312 

also been suggested to protect Arabidopsis from heat stress by increasing the expression 313 

of genes encoding heat shock proteins (Sagor et al., 2012). In addition to high 314 

temperatures, drought responses can be modulated by polyamines in wheat plants 315 

growing in the field through osmolytes accumulation (Ebeed et al., 2017). Spermidine 316 
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has been proposed to alleviate salinity damages in tomato plants (Zhang et al., 2015) and 317 

in sorghum seedlings (Yin et al., 2016), as well as to reduce chilling injury during low 318 

temperature storage of grape berries from vineyards (Harindra Champa et al., 2015). In 319 

addition, an Arabidopsis mutant plant (acl5/spms), which cannot produce spermine, was 320 

hypersensitive to high salt and drought (Jang et al., 2012). Therefore, the role of 321 

polyamines in protecting plant cells from a wide range of different stress-associated 322 

damages in several plant species has been extensively demonstrated. However, the 323 

potential role of polyamines in regulating plant responses to abiotic stress combination 324 

remains unclear. It was previously suggested that proline could be involved in the 325 

protection of tobacco plants against a combination of drought and heat stress by 326 

modulating polyamine biosynthesis (Cvikrová et al., 2013). In addition, spermine could 327 

confer tolerance to combined high temperature and drought stress in trifoliate orange 328 

seedlings by modulation of antioxidant capacity (Fu et al., 2014). However, the 329 

combination of high light and heat stress repressed the accumulation of putrescine in 330 

Arabidopsis plants, suggesting that the role of polyamines under this stress combination 331 

might be marginal (Balfagón et al., 2022a).  332 

Although different transgenic approaches indicated that polyamines could be essential for 333 

abiotic stress tolerance, underlying the possibility of exploiting them as markers to 334 

improve plant tolerance (Alcázar et al., 2006), further research is needed to identify the 335 

role of polyamines in plants subjected to stress combination. 336 

 337 

Changes in secondary metabolites in response to stress combination 338 

A wide variety of secondary metabolites in higher plants are synthesized from primary 339 

metabolic pathways such as glycolysis, TCA cycle, aliphatic and aromatic amino acids, 340 

pentose phosphate pathway and shikimate pathway (Aharoni and Galili, 2011; Erb and 341 

Kliebenstein, 2020). The major secondary metabolites groups generated by plants are 342 

typically divided into three groups: phenolic compounds (including 343 

flavonoids/isoflavonoids, lignins and tannins), terpenes (including terpenoids or 344 

isoprenoids), and nitrogen- or sulfur-containing compounds including alkaloids and 345 

glucosinolates, respectively (Aharoni and Galili, 2011). In addition to their role in 346 

regulating plant defense against herbivores and pathogens, secondary compounds are 347 

essential for the acclimation of plants to different abiotic stresses (including temperature, 348 
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drought, nutrient deficiencies, elevated CO2, salinity and UV light) by protecting key 349 

biomolecules such as proteins and nucleic acids from stress-induced oxidative damage 350 

(Ramakrishna and Ravishankar, 2011; Austen et al., 2019; Ahanger et al., 2020; Jan et 351 

al., 2021). For example, flavonoids are accumulated in response to almost all abiotic 352 

stresses (Nakabayashi and Saito, 2015) and their antioxidant function has been 353 

experimentally identified under different stress conditions (Hernández et al., 2004; 354 

Kusano et al., 2011; Nakabayashi et al., 2014; Nakabayashi and Saito, 2015; Wang et al., 355 

2016a). Terpenoids are also involved in plant responses to different abiotic stresses 356 

providing antioxidant protection to drought, temperature, light and salt stresses (Schuh et 357 

al., 1997; Loreto and Delfine, 2000; Munné-Bosch et al., 2001; Vallat et al., 2005; Zhang 358 

et al., 2019; Ahanger et al., 2020). Similarly, nitrogen-containing compounds such as 359 

alkaloids increase in their levels in response to different stresses and are considered potent 360 

mitigators of oxidative damage resulting from stress (Kleinwächter and Selmar, 2015; 361 

Zhu et al., 2015; Benjamin et al., 2019; Patel et al., 2020; Yadav et al., 2021). In addition 362 

to alkaloids, glucosinolates accumulate in response to different stresses (Ramakrishna and 363 

Ravishankar, 2011) to mediate tolerance to, for example, low temperatures (Ljubej et al., 364 

2021), high temperatures (Rao et al., 2021), or drought stress (Eom et al., 2018; Salehin 365 

et al., 2019). Metabolic changes of Lonicerae Japonicae Flos exposed to salt stress 366 

included altered patterns of the biosynthesis of phenolic acid, flavonoids, and iridoids 367 

(Cai et al., 2020).  368 

Besides their protective role during different individual abiotic stresses, several studies 369 

provided evidence for the function of secondary metabolites in the response of plants to 370 

stress combination. Some reports showed that, depending on the plant species and the 371 

type of the abiotic stresses involved, the secondary metabolism response to one of the 372 

single stresses prevails over the other under combined stress. For example, Austen et al., 373 

(2019) reported that heat responses (inducing the accumulation of isoprene) overcame the 374 

effects of elevated CO2 (suppressing the accumulation of isoprene) under controlled 375 

growth conditions of combined heat and elevated CO2 in a woody plant (Salix spp.), 376 

indicating that the antioxidant function and capacity to protect cell membrane of isoprene 377 

compensates for its energetic cost under this stress combination (Austen et al., 2019). In 378 

contrast, phenylpropanoid accumulation in tomato plants under a combination of heat and 379 

salinity was more similar to that raised by salinity than that caused by heat. While several 380 

compounds belonging to the caffeoylquinic acids family were repressed under heat, they 381 
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were induced under salinity or the combination of salinity and heat. By contrast, flavonol-382 

related compounds were accumulated under heat, whereas under salinity and salinity 383 

combined with heat these metabolites were repressed, correlating with higher oxidative 384 

damage (Martinez et al. 2016). In addition, whereas phenylpropanoids were important for 385 

plant tolerance to a combination of salinity and heat (Martinez et al. 2016), a key role for 386 

tocopherols was found in the tolerance of tomato plants to the combination of light and 387 

heat stress (Spicher et al., 2017). Different stress combinations that included heavy metals 388 

resulted in different patterns of accumulation of secondary metabolites depending on the 389 

plant species (Zhao et al., 2016; Chrysargyris et al., 2019). For example, in Rhodiola 390 

rosea seedlings growing under semi-controlled conditions, heat stress enhanced the 391 

negative effects of heavy metals, showing a higher accumulation of secondary 392 

metabolites such as phenolic compounds under this stress combination (Zhao et al., 393 

2016). The combination of salinity stress and Cu exposure altered the primary metabolic 394 

pathways in favor of production of different secondary metabolites including limonene in 395 

Mentha spicata plants (Chrysargyris et al., 2019). Furthermore, the combination of 396 

drought and heat resulted in activation of secondary metabolites that led to tolerance or 397 

sensibility to this stress combination depending on the plant tested. For example, 398 

tolerance to a combination of drought and heat stress was correlated with elevated levels 399 

of flavonoids and phenols in the cotton genotype Zhongmian 23 (Ibrahim et al., 2019), 400 

whereas the activation of secondary metabolism was associated to sensitivity to this stress 401 

combination in citrus plants (Zandalinas et al., 2016c).  402 

Overall, the ability of plants to synthesize a wide range of largely specialized secondary 403 

compounds is thought to facilitate their adaptation to a changing environment (Wink, 404 

2010), at the expense of their growth (Panda et al., 2021). The fact that plants invest large 405 

amounts of energy synthesizing secondary metabolites indicate the importance of these 406 

metabolites to plant survival, especially under combined stresses, in which damages tend 407 

to be higher compared to those caused by individual stresses. However, the complexity 408 

of metabolic networks, that include tens of thousands of plant secondary metabolites 409 

(Wink, 2010), and the findings that the production of secondary compounds is specific to 410 

the type of stress combination, as well as the plant species involved, render the use of 411 

secondary metabolites in breeding efforts to develop combined stress-resilient crops, a 412 

challenge that could be difficult to overcome. 413 

 414 
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Changes in hormone levels in response to stress combination 415 

Together with primary and secondary metabolites, hormones can display a stress-specific 416 

accumulation pattern in response to different stresses and their combination. Because the 417 

role of different hormones under individual abiotic and biotic stresses is too vast to cover 418 

here, readers are directed to excellent reviews on the subject (e.g., Shi et al., 2015; Dar et 419 

al., 2015; Eremina et al., 2016; Li et al., 2016a, 2021; Pandey et al., 2016; Verma et al., 420 

2016; Raja et al., 2017; Shigenaga et al., 2017; Shu et al., 2018; Dermastia, 2019; Wang 421 

et al., 2020b; Devireddy et al., 2020b; Yu et al., 2020). The ability of plants to regulate 422 

specific and unique hormonal responses when subjected to stress combinations has an 423 

important role in plant acclimation (Table 2). One of the main hormones involved in the 424 

response of plants to different abiotic stresses and their combination is ABA. It is thought 425 

to be involved in the acclimation of Arabidopsis to high temperatures combined with 426 

salinity (Suzuki et al., 2016), or with drought (Zandalinas et al., 2016a), by modulating 427 

gene expression and the accumulation of Ascorbate Peroxidase 1 (APX1) and 428 

Multiprotein Bridging Factor 1c (MBF1c), respectively (Suzuki et al., 2016; Zandalinas 429 

et al., 2016a). Furthermore, ABA accumulated in response to a combination of salinity 430 

and high temperatures in citrus plants (Balfagón et al., 2019b), and in tomato plants 431 

subjected to salinity and drought (Xue et al., 2021). The transcription of ABA-response 432 

genes such as Responsive to Desiccation 26 (RD26) and ABA Repressor 1 (ABR1) in 433 

poplar plants was also elevated under salinity and heat stress combination (Jia et al., 434 

2017), further suggesting that ABA could be a key component is signaling pathways 435 

involved in plant acclimation to different stress combinations. However, due to the 436 

complex (and sometimes opposing) interactions different stresses impose on hormonal 437 

signaling, other hormones can participate in plant responses to stress combination (Table 438 

2). For example, in contrast to ABA, JA was shown to be involved in plant acclimation 439 

to a combination of high light and heat stress by modulating the expression of different 440 

JA-response genes (Balfagón et al., 2019a). In citrus plants, SA accumulated under the 441 

combination of drought and heat stress (Zandalinas et al., 2016b), and at low temperatures 442 

combined with wounding citrus plants accumulated JA (Balfagón et al., 2019b). In 443 

contrast, wounded citrus plants subjected to high temperatures did not accumulate JA 444 

whereas SA levels increased, suggesting antagonistic interactions between SA and JA 445 

under a combination of heat and wounding (Balfagón et al., 2019b). Interestingly, a recent 446 

study of signal integration during the combination of high light and heat stress revealed 447 
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that the interplay between JA and SA could be involved in how an Arabidopsis leaf 448 

simultaneously subjected to high light and heat stress initiates systemic signaling and 449 

plant acclimation (Zandalinas et al., 2020a).  450 

In summary, during stress combination, different hormone interactions specific for 451 

particular stresses may collide, making the study of plant responses to stress combination 452 

a complex challenge. In order to identify new targets for crop improvements, deciphering 453 

the unique crosstalk modes between the different hormones under different stress 454 

combinations should be addressed in future studies of plant acclimation to the 455 

combination of multiple stresses. 456 

 457 

Interconnection among primary metabolism, secondary metabolism and hormones 458 

under stress 459 

The biosynthesis of secondary metabolites and hormones is closely associated with 460 

pathways of primary metabolism (Aharoni and Galili, 2011) (Fig. 2). For example, 461 

increments in the sugar/amino acid ratio leads to elevation in phenylpropanoid levels and 462 

a decline in the concentration of the alkaloid nicotine. In situations where photosynthesis 463 

is inhibited, the decrease in carbohydrates is accompanied by a collapse in the absolute 464 

levels of carbon- and nitrogen-rich secondary metabolites (Matt et al., 2002). In addition, 465 

amino acids represent major precursors for the synthesis of secondary metabolites and 466 

some hormones. Examples include the secondary metabolites nicotine, anthocyanins, 467 

glucosinolates, and terpenoid indole alkaloids, that are synthesized from proteinogenic 468 

amino acids (Wasternack and Strnad, 2019), or the hormones indole-3-acetic acid (IAA) 469 

and ET, that are synthesized from tryptophan and methionine, respectively (Yang et al., 470 

2020). Other primary metabolites involved in the biosynthesis of secondary metabolites 471 

are polyamines. The interaction of polyamines such as putrescine with secondary 472 

metabolism is well established in some plants. The enzyme Putrescine N-473 

methyltransferase (PMT) catalyzes the methylation of putrescine, and the product of this 474 

reaction (N-methyl putrescine) is required for the synthesis of nicotine, tropane and 475 

nortropane alkaloids in Solanaceae and Convolvulaceae plants (Biastoff et al., 2009). 476 

Hormones, in turn, can alter both primary and secondary metabolism (Fig. 2). The 477 

hormone ABA can trigger changes in the metabolism of sugars and organic acids in guard 478 

cells (Jin et al., 2014) and crosstalk between hormones and secondary metabolism was 479 
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described in response to different stresses. For example, under drought stress, methyl 480 

jasmonate (MeJA) and JA elicit the production of secondary metabolites such as 481 

alkaloids, taxanes, terpenoids, coumarins, and phenolic phytoalexins in several plant 482 

species (Jogawat et al., 2021). Supporting the link between JA and secondary metabolism 483 

reprograming, it was also reported that in tomato plants, constitutive activation of the 484 

jasmonate signaling pathway enhanced the production of secondary metabolites (Chen et 485 

al., 2006) and that the jasmonate-responsive transcriptional regulator ORCA3 controlled 486 

the production of terpenoid indole alkaloids (Van Der Fits and Memelink, 2000). In 487 

addition to JA, SA together with putrescine can trigger the accumulation of primary and 488 

secondary metabolites including sugars, succinate, leucine, and phenolic compounds to 489 

protect plants against drought stress (Khan et al., 2019). Other examples of the interaction 490 

of hormones and secondary metabolites under abiotic stress conditions were described 491 

previously in Arabidopsis plants (Hectors et al., 2012; Salehin et al., 2019). Auxins play 492 

a key role in UV acclimation by regulating flavonoid concentration (Hectors et al., 2012) 493 

and the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19 regulate the 494 

biosynthesis of aliphatic glucosinolates under drought stress (Salehin et al., 2019). 495 

 496 

Conclusions and future perspectives 497 

Among the many processes affected by harsh environmental conditions, plant metabolism 498 

is perhaps the most influenced, resulting in significant adjustments to the growth, 499 

development, and reproduction of plants. The ability of plants to modulate their primary 500 

and secondary metabolism in response to different stresses and/or stress combination is 501 

key for the reallocation of resources from growth and reproduction to stress acclimation 502 

that is crucial for plant survival (Fig. 2). Progress in our understanding of the changes that 503 

occur in different metabolic processes in response to stress combination would identify 504 

new targets for crop improvement. However, major challenges exist for metabolic studies 505 

and engineering projects attempting to alter these processes. These include: (i) the 506 

identification of the key metabolic processes occurring under multiple combined stresses; 507 

(ii) designing the proper engineering strategy to increase flux of the metabolic processes 508 

required to enhance plant acclimation to stress combination; and (iii) the identification of 509 

necessary genetic manipulations to implement this strategy. In addition, due to the 510 

conflicting nature of some metabolic changes triggered during different stress 511 
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combinations, together with the different stress intensities impacting plants in the field, it 512 

is difficult to predict the specific metabolites that could be good candidates for breeding 513 

programs. Perhaps special attention should be given to common metabolites that function 514 

during a wide range of single and combined stresses. In this sense, different studies of 515 

metabolic changes in plants subjected to different stress combinations have already 516 

provided clues regarding key metabolites that could play a key role in the tolerance of 517 

plants growing under multiple stress conditions. An example could be GABA, which 518 

accumulate in response to different abiotic stresses and their combination in several plant 519 

species (Table 1). Interestingly, GABA is not considered a simple metabolite (Bouché 520 

and Fromm, 2004; Bown and Shelp, 2016), and it has been suggested to provide a direct 521 

link with the metabolic status of plant cells under stress conditions as a bypass of different 522 

reactions of the TCA cycle (Fait et al., 2008; Xu et al., 2021). In addition, GABA has 523 

recently been proposed to be a stomatal aperture regulatory signal of economic 524 

significance, since genetic manipulation of cell-type specific GABA metabolism could 525 

reduce water loss by fine-tuning stomatal aperture (Xu et al., 2021). GABA is therefore 526 

a good example for a primary metabolite that could be used for the improvement of plant 527 

stress resilience to multiple co-occurring environmental stress conditions. Other potential 528 

metabolites that may serve as candidates for crop improvement are secondary 529 

metabolites. These are known to have a role in protecting plants from oxidative stress 530 

caused by different abiotic stresses. Plant varieties containing high amounts of specific 531 

secondary metabolites could therefore provide new avenues for the development of crops 532 

with high tolerance to multiple abiotic stress combinations. However, due to the multiple 533 

functions secondary metabolites have in plant cells (e.g., flavonoids are developmental 534 

regulators, but also function in the response of higher plants to a wide range of abiotic 535 

stresses as antioxidants; Agati and Tattini, 2010), future research should focus on how 536 

secondary metabolites affect plant survival under multiple stresses, and how these effects 537 

are linked to plant development and growth. In addition to primary and secondary 538 

metabolites, hormones have been reported to play a key role in plant acclimation to 539 

several stress combinations (Table 2), making them potential candidates to improve the 540 

climate-resilience of crops. Although ABA has been reported as key metabolite for plant 541 

acclimation to a wide range of abiotic stress combinations (Suzuki et al., 2016; Zandalinas 542 

et al., 2016a; Jia et al., 2017; Balfagón et al., 2019b), its integration with other hormones 543 

and/or other signaling pathways including ROS regulatory systems might be different 544 

depending on the different stress combinations (Suzuki, 2016; Devireddy et al., 2020b). 545 
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Identifying essential master regulators that activate different hormone signaling pathways 546 

in response to different stress combinations could therefore provide an avenue to tailor 547 

responses of plants under multiple abiotic stress conditions. Further studies should be 548 

conducted to address this possibility. 549 

Finally, it is important to keep in mind that all metabolic studies of stress combination 550 

reported to date focused on metabolite changes in plants subjected to two or at most three 551 

co-occurring stress conditions. By contrast, no study has revealed how the different 552 

metabolic pathways will be affected by a higher number of different abiotic factors (i.e., 553 

multifactorial stress combination; Zandalinas et al., 2021b,a). Future climate scenarios 554 

may include the simultaneous or sequential exposure of crops to high temperature in 555 

combination with many other stresses including salinity, drought, flooding, nutrient 556 

deficiency, high CO2 and/or other biotic and abiotic stressors. It was recently reported in 557 

Arabidopsis that with the increasing number and complexity of multiple stress factors (up 558 

to 6 different stress factors) acting simultaneously, plant growth and survival declines, 559 

even though the individual level of each stress applied had a negligeable effect on plants 560 

(Zandalinas et al., 2021b). In this study it was also found that the molecular response of 561 

Arabidopsis to the different multifactorial stress combinations was unique and may 562 

involve pathways or metabolites not identified yet (Zandalinas et al., 2021b). In addition, 563 

biotic stressors can modify plant responses to abiotic stresses and vice versa (Rivero et 564 

al., 2022 and references therein), making the study of multifactorial stress combination a 565 

difficult challenge to overcome. Further studies addressing the identification of potential 566 

metabolites acting under multifactorial abiotic/biotic stress combination could therefore 567 

be key to mitigating the impact of global warming and climate change on crop 568 

productivity. 569 
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Tables 

Table 1. GABA levels are enhanced in different plant species in response to different 

abiotic stresses and their combination. C letter in references means experiments 

conducted under controlled conditions; SM letters in references mean experiments 

conducted under semi-controlled conditions; F letter in references means experiments 

conducted in the field. 

Species Stress References 

Individual stresses 

Agrostis stolonifera Heat CLi et al., 2016b 

Arabidopsis thaliana Salinity CKempa et al., 2008; CRenault et al., 2010; CAllan et al., 2008 
 Flooding CAllan et al., 2008 
 Cold CAllan et al., 2008 
 Heat CAllan et al., 2008 
 Drought CMekonnen et al., 2016; CAllan et al., 2008; CXu et al., 2021 
 Hypoxia CMiyashita and Good, 2008; CWu et al., 2021 
 Wounding CScholz et al., 2017 

Camellia sinensis Anoxia CMei et al., 2016 

Glycine max Salinity CXing et al., 2007 

Nicotiana sylvestris Salinity CAkçay et al., 2012 

Nicotiana tabacum Flooding CAllan et al., 2008 
 Zinc CDaş et al., 2016 

Oryza Sativa Heat CNayyar et al., 2014 

Piper nigrum Osmotic stress CVijayakumar and Puthur, 2016 

Prunus Hypoxia SCSalvatierra et al., 2016 

Sesamum indicum Osmotic stress CBor et al., 2008 
 Salinity CBor et al., 2008 
 Selenium CBor et al., 2008 
 Heat CBor et al., 2008 

Vigna radiata Heat SCPriya et al., 2019 

Zea mays Salinity CWang et al., 2017 
 Drought FObata et al., 2015 
 Heat FObata et al., 2015 

Combined stresses 

Arabidopsis thaliana High light + Heat CBalfagón et al., 2022a 

Brachypodium 
distachyon 

Salinity + Heat CShaar-Moshe et al., 2019 

 Salinity + Drought CShaar-Moshe et al., 2019 
 Salinity + Drought + Heat CShaar-Moshe et al., 2019 

Camellia sinensis Anoxia + Wounding CMei et al., 2016 

Citrus sinensis Drought + Heat CBalfagón et al., 2022b 

Zea mays Drought + Heat FObata et al., 2015 
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Table 2. Involvement of different hormones in plant responses to different abiotic stress 

combinations under controlled conditions. 

Hormone Species Combined stress Hormone involvement References 

ABA 

Arabidopsis Salinity + Heat Regulation of gene expression Suzuki et al., 2016 

Citrus Salinity + Heat Increased ABA accumulation Balfagón et al., 2019b 

Poplar Salinity + Heat Increased ABA accumulation Jia et al., 2017 

Tomato Salinity + Drought Stomatal closure Xue et al., 2021 

Arabidopsis Drought + Heat Induction of acclimation proteins Zandalinas et al., 2016a 

JA 
Arabidopsis High light + Heat Regulation of gene expression Balfagón et al., 2019a; Zandalinas et al., 2020a 

Citrus Cold + Wounding Increased JA accumulation Balfagón et al., 2019b 

SA 
Citrus Drought + Heat Increased SA accumulation Zandalinas et al., 2016b 

Citrus Heat + Wounding Increased SA accumulation Balfagón et al., 2019b 
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Figure legends 

Fig. 1. Changes in primary metabolism of Arabidopsis plants subjected to different 

individual or combined stresses. Over- or under-accumulation of different sugars, amino 

acids, TCA cycle-derived metabolites and other metabolites, in response to single abiotic 

stresses and selected stress combinations, are shown. Yellow squares represent 

contradictory results depending on different experimental designs. References used: 

Rizhsky et al., 2004; Kaplan et al., 2004; Nishizawa et al., 2008; Maruyama et al., 2009; 

Wulff-Zottele et al., 2010; Kusano et al., 2011; Schmitz et al., 2014; Mekonnen et al., 

2016; Zinta et al., 2018; Weiszmann et al., 2018; Fàbregas and Fernie, 2019; Balfagón et 

al., 2022a. Abbreviations: e[CO2], elevated CO2; S, sulfur; TCA, tricarboxylic acid. 

Fig. 2. Multiple stress factors, including environmental, biotic and/or anthropogenic 

stresses may simultaneously impact plants in the field. Plants respond by reprograming 

their metabolic networks, accumulating specific primary and secondary metabolites, as 

well as different hormones. The integration of different metabolic and hormonal pathways 

(dotted arrows) allows plants to adjust their growth and adopt a survival, escape, 

acclimation and/or defense strategies. 
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Fig. 1. Changes in primary metabolism of Arabidopsis plants subjected to
different individual or combined stresses. Over- or under-accumulation of
different sugars, amino acids, TCA cycle-derived metabolites and other
metabolites, in response to single abiotic stresses and selected stress
combinations, are shown. Yellow squares represent contradictory results
depending on different experimental designs. References used: Rizhsky et
al., 2004; Kaplan et al., 2004; Nishizawa et al., 2008; Maruyama et al.,
2009; Wulff-Zottele et al., 2010; Kusano et al., 2011; Schmitz et al., 2014;
Mekonnen et al., 2016; Zinta et al., 2018; Weiszmann et al., 2018;
Fàbregas and Fernie, 2019; Balfagón et al., 2022a. Abbreviations: e[CO2],
elevated CO2; S, sulfur; TCA, tricarboxylic acid.
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Fig. 2. Multiple stress factors, including environmental, biotic and/or anthropogenic
stresses may simultaneously impact plants in the field. Plants respond by reprograming
their metabolic networks, accumulating specific primary and secondary metabolites, as
well as different hormones. The integration of different metabolic and hormonal
pathways (dotted arrows) allows plants to adjust their growth and adopt a survival,
escape, acclimation and/or defense strategies.
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