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Abstract: A subset B of a space X is said to be bounded (in X) if the restriction to B of every real-valued
continuous function on X is bounded. A real-valued function on X is called bf -continuous if its restriction
to each bounded subset of X has a continuous extension to the whole space X. bf -spaces are spaces such
that bf -continuous functions are continuous. We take advantage to the exponential map in the realm of bf -
spaces in order to study bf -extensions of bf -continuous functions. This allows us to improve several results
concerning the distribution of the functor of the Dieudonné completion. We also prove that a relative version
of the classical Glicksberg’s theorem characterizing the product of two pseudocompact spaces is valid for kr-
spaces. In the last section we show that bf -hemibounded groups are Moscow spaces and, consequently, they
are strong-PT-groups.
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1 Introduction
Glicksberg in [16] showed an elegant theorem on the distribution of the functor β of the Stone-Čech com-
pacti�cation reproved later by another method in [13] by Z. Frolík: For in�nite spaces X and Y, the equality
β(X × Y) = β(X) × β(Y) holds if and only if the product space X × Y is pseudocompact. The interest and impor-
tance of the Gliscksberg-Frolík theorem lies in the fact that the distribution of the functor β is characterized
by means of a topological property of the product space X × Y.

The attempt of obtaining a similar result for the functors υ and µ of the Hewitt realcompacti�cation and
of the Dieudonné completion, respectively, have been unsuccessful. Usually the assumptions on X and Y are
asymmetric (see, for example, the classic papers [9, 22, 23] by Comfort and Ohta). Moreover, Husěk proved in
[19] that there is no topological property characterizing the equality υ(X×Y) = υ(X)×υ(Y) (and, consequently,
the equality µ(X × Y) = µ(X) × µ(Y)). Thus, the problem of establishing implications, one of whose terms is
roughly of the form υ(X×Y) = υ(X)×υ(Y) (respectively, µ(X×Y) = µ(X)×µ(Y)), has attracted very considerable
attention.

It isworthnoting that the equality µ(X×Y) = µ(X)×µ(Y) has a strong relationshipwith aPestov-Tkachenko
question ([24, 34]): Let G be a topological group, and µG the Dieudonné completion of the space G. Can the
operations in G be extended to µ(G) in such a way that µ(G) becomes a topological group containing G as a
topological subgroup?
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Arhangel’skii answered this question in the negative in [2] and he found a relationship between a positive
answer to this problem and the distribution of the functor µ (see also [3, 4, 29, 30]). Arhangel’skii called PT-
groups the groups which provide a positive answer to the previous question.

The aim of this paper is to study the relationship between the exponential map and bf -continuous exten-
sions of bf -continuous functions to µ(X) × Y. The results applies to the equality µ(X × Y) = µ(X) × µ(Y). We
generalize several results on the theory by Arhangel’skii [3], Comfort [9], Noble [21] and Ohta [23]. We also ob-
tain a relative version of the classical Glicksberg’s theorem characterizing the product of two pseudocompact
spaces in the realm of kr-spaces. In the last section we present several results on PT-groups.

Throughout, all spaces are by default Tychono� and all topological groups are Hausdor�. A subset B of
a space X is said to be bounded (in X) if each real-valued continuous function on X is bounded on B. A space
is pseudocompact if it is bounded in itself. Locally pseudocompact spaces are spaces X such that each point
of X has a pseudocompact (equivalently, a bounded) neighborhood. We will denote by b the family of all
bounded subsets of a space X. A function f from a space X into a space Y is said to be bf -continuous if the
restriction of f to each member of b can be extended to a continuous function on the whole space X. A space
X is called a bf -space if every real-valued bf -continuous function on X (equivalently, if every bf -continuous
function from X into a Tychono� space Y) is continuous. Notice that locally pseudocompact spaces and kr-
spaces (spaces X where a real-valued function is continuous when its restriction to each compact subset of
X is continuous) are examples of bf -spaces. Thus, k-spaces (spaces X where a subset A is closed if and only
if A ∩ K is closed in K for every compact subset K of X), �rst countable (so metrizable) spaces are bf -spaces.
It is worth noting that a Σ-product of an arbitrary product of locally pseudocompact groups and an arbitrary
product of locally pseudocompact groups are also examples of bf -spaces which are not (in general) kr-spaces
(for details, see [25, Corollary 4.1, Theorem 4.3]). The image of a bf -space under an onto quotient map is a bf -
space [25, Lemma 4.2]. Thus, quotients of bf -groups are bf -spaces [25, Lemma 4.2]. More examples are given
in the last section.

Our terminology and notation are standard. For instance,Nmeans the set of natural numbers,R the real
numbers and f|A the restriction of a function f to a subset A. We say that a space X is topologically complete
(o Dieudonné complete) if X is homeomorphic to a closed subspace of a product of metrizable spaces. It is a
well-known fact that for every space X there exists a unique topologically complete space µ(X), up to home-
omorphisms which leave X pointwise �xed, in which X is dense and every continuous function f from X into
a topologically complete space Z can be extended to a continuous function on µ(X). This space is called the
Dieudonné completion of X. It is clear that a space X is topologically complete if X = µ(X). It is worthmention-
ing that, by an outstanding result of Shirota [31], υX = µX if the cardinality of every closed discrete subspace
of µ(X) is a non-measurable cardinal number. Thus, our results apply to the Hewitt realcompacti�cation υ(X)
of X under the assumption that the cardinal of X is non-measurable. For notions and terminology which are
not explicitly de�ned here, the reader might consult [5, 12].

2 Preliminaries
Let F(M, Z) denote the set of all real-valued functions from a set M into a set Z. Our basic tool will be the
so-called exponential map, that is, the natural one-to-one correspondence γ between the set F(X × Y , Z) and
F(X, F(Y , Z)) which is de�ned as

γ(f )(x)(y) = f (x, y), f ∈ F(X × Y , Z).

The restriction of this map to subspaces will also denoted by γ. Given two spaces X and Z, bf C(X, Z)
stands for the set of all bf -continuous functions from X into Z. We write bf C(X) when the space Z is the space
Rof the real numbers endowedwith its usual topology. The exponentialmaphasbeenusedby several authors
for studying the relationship µ(X × Y) = µ(X) × µ(Y) in the realm of k-spaces (see, among others, [9, 19]). We
will follow this way in a more general setting, To do this, we take advantage of the following theorem:
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Theorem 2.1. [25, Theorem 3.2] Let Y be a bf -space. For each space X, the following assertions are equivalent:
(i) γ(bf C(X × Y , Z) = bf C(X, Cb(Y , Z)) for each topologically complete space Z.
(ii) clβ(X×Y)(A × B) = clβ(X)(A) × clβ(Y)(B) whenever A and B are bounded subsets of X and Y, respectively.

Note that we can consider condition (ii) as a relative version of the Glicksberg’s theorem. So, taking as a
stating point this fact, we say that a pair (X, Y) enjoys property (Gl) (in short, (X, Y) is a (Gl) pair) if X × Y
satis�es condition (ii) of Theorem 2.1. By a result of Hernández, Sanchis and Tkachenko [18], the condition
(ii) is satis�es if either X or Y is a topological group.

It is a well-known fact that the closure of a bounded subset of a topologically complete space is com-
pact. Therefore, if either X or Y are topologically complete, then (X, Y) is a (Gl) pair. Actually, we have a
more general result. We will denote byB the Frol’ik’s class of all pseudocompact spaces X such that X × Y is
pseudocompact for every pseudocompact space Y.

Theorem 2.2. Let X, Y two spaces. If A ⊆ X belongs toB, then clβ(X×Y)(A × B) = clβ(X)(A) × clβ(Y)(B) for every
bounded subset B of Y.

Proof. By Corollary 6 in [7], A × B in bounded in A × Y and, a posteriori, it is bounded in X × Y. Apply now
Theorem 2.8 of [15].

Corollary 2.3. A space X belongs to the classB if and only if (X, Y) is a (Gl) pair for every space Y.

In the next section we prove that, if X is a kr-space, then (X, Y) enjoys property (Gl) for each space Y. It seems
interesting to remark that the equality clβ(X×Y)(A × B) = clβ(X)(A) × clβ(Y)(B) implies that A × B is bounded in
X × Y. The question of whether the converse is true remains open (see [26, Chapter 4]).

Throughout what follows, we shall freely use without explicit mention the previous facts. More detailed
information about the equality clβ(X×Y)(A × B) = clβ(X)(A) × clβ(Y)(B) for bounded subset is available in [14],
[27] and in the survey [26, Chapter 4].

3 The exponential map and bf -continuous extensions
Given two spacesM and Z, C(M, Z) (respectively C(M)) stands for the family of all continuous functions from
M to Z (respectively, from M to the reals). Let Cb(M, Z) denote the space C(M, Z) equipped with the topol-
ogy of the uniform convergence on bounded subsets. The �rst result provides an extension theorem for bf -
continuous functions.

Theorem 3.1. Let X, Y be two bf -spaces. If (X, Y) is a (Gl) pair and Z is a topologically complete space, then
the following hold:
(i) Every bf -continuous function from X × Y into Z has a bf -continuous extension to µ(X) × Y.
(ii) Every bf -continuous function from X × Y into Z has a bf -continuous extension to X × µ(Y).

Proof. (i) Let f be a bf -continuous function on X × Y. By Theorem 2.1, γ(f ) belongs to bf C(X, Cb(Y , Z)). Being
X a bf -space, γ(f ) is a continuous function. Since Y is a bf -space, the function space Cb(Y , Z) is Dieudonné
complete (see [25, Lemma 3.1]) so that there exists a continuous extension, say g, of γ(f ) to µ(X).

Consider now the function γ−1(g) on µ(X)×Y. Since (µ(X), Y) is a (Gl) pair, by Theorem 2.1 again, we have

γ(bf C(µ(X) × Y , Z)) = bf C(µ(X), Cb(Y , Z))

which implies that γ−1(g) belongs to bf C(µ(X) × Y , Z). Note that the restriction to X × Y of γ−1(g) coincides
with f . This completes the proof of (i). The claim (ii) follows in a similar way.

For a bf -group G we understand a topological group which is a bf -space.
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Corollary 3.2. Let G be a bf -group and let Y be a bf -space. If Z is a topologically complete space, then the
following hold:
(i) Every bf -continuous function from G × Y into Z has a bf -continuous extension to µ(G) × Y.
(ii) Every bf -continuous function from G × Y into Z has a bf -continuous extension to G × µ(Y).

Observe that the previous results are valid when Z is a metric space (in particular the real line R). In fact,
Dickinson showed that paracompact spaces are topologically complete [11] and metric spaces are paracom-
pact [33]. As in the previous corollary, being every continuous function bf -continuous, Theorem 3.1 enables
us to obtain extension theorems for continuous functions when either the space µ(G)×X or the space G×µ(X)
is a bf -space. Moreover, our approach allows us to generalize several results obtained in the literature. As a
�avor of example, we present several applications.

Corollary 3.3. Let X be a bf -space. If µ(X) × Y is a bf -space and (X, Y) is a (Gl)-pair, then each continuous
function on X × Y into a topologically complete space Z has a continuous extension to µ(X) × Y.

We need the following result.

Theorem 3.4. [9, Corollary 2.2] If X is a locally compact topological complete space, then µ(X × Y) = X × µ(Y)
for each space Y.

Theorem 3.5. If µX is locally compact and Y is a bf -space such that (X, Y) is a (Gl)-pair, then the equality
µ(X × Y) = µ(X) × µ(Y) holds.

Proof. Since µ(X) is locally compact, X is locally pseudocompact and, consequently, a bf -space. Moreover,
µ(X) is locally in the class B so that, by Corollary 6 in [7], the space µ(X) × Y is a bf -space. Then, if Z is
a topologically complete space, Corollary 3.3 says us that every continuous function on X × Y into Z has a
continuous extension to µ(X)×Y. Now, bymeansof Theorem3.4, it is routine toprove that µ(X×Y) = µ(X)×µ(Y)
holds.

It is well known that the Dieudonné completion of a locally pseudocompact group G is a locally compact
group: in fact, it coincides with the Weil completion of G. Then we obtain

Corollary 3.6. If G is a locally pseudocompact group and X is a bf -space (in particular, a bf -group), then the
equality µ(G × X) = µ(G) × µ(X) holds.

Comfort and Ross show that the product of two pseudocompact groups is a pseudocompact group [10].
Tkachenko [35] improves this result by proving that every pseudocompact group belongs toB. According to
Glicksberg’s theorem, Tkachenko’s result is equivalent to the fact that β(G × X) = β(X) × β(Y) when G is a
pseudocompact group and X is a pseudocompact space. Thus, Corollary 3.6 generalizes both outcomes.

Obviously, Corollary 3.6 holds if locally pseudocompact group is replaced by pseudocompact group. Thus,
as a consequence of the previous result, we have

Corollary 3.7. [3, Theorem 5.16] If G is a pseudocompact group and H is a k-group, then the equality µ(G×H) =
µ(G) × µ(H) holds.

Recall that a subset A is bounded in X if every countable locally �nite family of pairwise disjoint open sets
meeting A is �nite. Let p be a free ultra�lter on N (in symbols, p ∈ ω*). A subset A of a space X is said to
be p-bounded (in X) if for every sequence {Un}n∈N of pairwise disjoint open subsets of X meeting A, then
{n ∈ N : A ∩ Un ≠ ∅} ∈ p. Obviously, p-bounded subsets are bounded. It is apparent that a compact subset
of X is p-bounded for every p ∈ ω*. For the origins and applications of these concepts in bounded sets theory
see [26, Chpater 4].
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Itwas showedbyNoble [20] that every kr-pseudocompact spacebelongs to theFrolík’s classB. This result
was generalizes in [7] where the authors show that if X is a kr-space, then, for each space Y, A ×B is bounded
in X×Y for each bounded subset A of X and each bounded subset B of Y. By Corollary 4 and Corollary 6 of [7],
each locally pseudocompact kr-space is locally in the classB. The following theorem improves these results.

Theorem 3.8. If X is a kr-space, then (X, Y) is a (Gl) pair for every space Y.

Proof. LetA be a bounded subset of X. Consider a sequence {Un}n∈N of pairwise disjoint open setsmeetingA.
We prove that there is a compact subset of Xmeeting in�nitely many elements of {Un}n∈N. For this, suppose,
contrary we claim, that every compact subset of X meets �nitely many elements of {Un}n∈N. For each n ∈ N,
choose a point xn ∈ Un.

Next, for each n ∈ N, let fn be a continuous function on X with f (xn) = n and fn(X \ Un) = 0. De�ne a
function f on X as follows:

f (x) =
∑
n∈N

fn(x), x ∈ X.

Notice that, being the elements of the sequence {Un}n∈N pairwise disjoint, f is well de�ned. Moreover,
by our assumption, f is kr-continuous. But f|A is unbounded which contradicts that A is bounded in X. Thus,
there exists a compact subset K ⊆ X and a subsequence {nt}t∈N such that K ∩ Unt ≠ ∅ for every t ∈ N. Then,
since K is p-bounded for every p ∈ ω*, so also is A. The results now follows from [29, Corollary 13].

In the proof of the previous result, the following is implicit.

Corollary 3.9. Each point of a locally pseudocompact kr-space has a neighborhood that is p-bounded for every
p ∈ ω*.

Theorem 3.8, Theorem 3.1 and Theorem 3.5 permit us to generalize several results of the literature. The next
results improve Theorem 2.7 and Theorem 3.11 of [9] by Comfort and (1) =⇒ (2) of [23] by Ohta.

Corollary 3.10. Assume that both µ(X) × Y and µ(X) × µ(Y) are kr-space. Then µ(X × Y) = µ(X) × µ(Y).

Proof. Let Z be a topologically complete space. Being Y a kr-space, (X, Y) is a (Gl) pair by Theorem 3.8. Now
Theorem 3.1 says us that each continuous function on X × Y into Z can be continuously extended to µ(X) × Y.
Let f be a continuous function from µ(X) × Y into Z. Being µ(X) topologically complete, Theorem 3.1 applies
in order to obtain that γ(f ) ∈ bf C(Y , Cb(µ(X), Z). Since µ(X) and Y are kr-spaces, an argument similar to the
one used in the proof of Theorem 3.1 shows that f has a continuous extension to µ(X) × µ(Y). Thus, µ(X × Y) =
µ(X) × µ(Y).

Corollary 3.11. If µ(X) is locally compact and Y is a kr-space, then µ(X × Y) = µ(X) × µ(Y).

Corollary 3.12. [Compare [23, Theortem 2]] If X is locally pseudocompact and Y is a kr-space, then every con-
tinuous function f on X × Y into a topologically complete space Z has a continuous extension to X × µ(Y).

Proof. Being X locally pseudocompat, it su�ces to prove that f has a continuous extension to P × Y for each
pseudocompact subset P of X. By Teorema 3.8 and [7, Theorem 9], P × Y is a bf -space. The result now follows
from Theorem 3.8 and Theorem 3.1.

Remark 3.13. In Corollaries 3.10, 3.11 and 3.12 we can replaced kr-space by topological group. In fact, as we
have commented above, if G is a topological group, then (G, Y) enjoys the property (Gl) for every space Y.

Remark 3.14. For a family a of bounded subset of a space X, the de�nitions of af -space and af -continuous
function are self-explanatory. Then, if bdenotes the family of all subsets of a space X that belong to the Frolik’s
classB, a natural question is if each bf -space satis�es Corollaries 3.10, 3.11 and 3.12.
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Perhaps it is appropriate at this point to note that there exists pseudocompact spaces inBwhich are not
p-pseudocompact (that is, p-bounded in itself) for any p ∈ ω* ([28, Example 2.9]). Moreover, a bf -space need
not be pseudocompat: indeed, if X ∈ B, consider the disjoint union of countable many copies of X equipped
with its natural topology.

However the answer to the previous question is a�rmative. To see this, it su�ces to use the techniques
presented in this paper by applying Theorem 2.2 and the following result. It is possible to obtain it by simply
mimicking the proof of Theorem 2.1. All the details are left to the interesting reader.

Theorem 3.15. Let Y be a bf -space. If b × b stands for the family

b × b = {A × B : A ⊂ X, B ⊂ Y with A ∈ B},

then, for each space X, the following holds:
(i) γ((b × b)f C(X × Y , Z) = bf C(X, Cb(Y , Z)) for each topologically complete space Z.
Moreover, if X is a bf -space, we have
(ii) γ((b × b)f C(X × Y , Z) = C(Y , Cb(X, Z)) for each topologically complete space Z.

4 A note on PT-groups
In this section we take up a result on PT-groups. For this, we turn now a brief discussion of bf -hemibounded
groups (that is, groups that are bf -hemibounded spaces) and Moscow spaces.

Recall that a spaceX is calledhemibounded if there exists a countable family {Bn}n∈N of bounded subsets
such that, for every bounded subset B ⊆ X, there is a Bn such that B ⊆ Bn. An interesting example of bf -
hemibounded group is the free (abelian) topological group G(X) over a pseudocompact space X (see [17]).
bf -hemibounded spaces appear in a natural way in the theory of function spaces: Cb(X) is a Fréchet space if,
and only if, X is a bf -hemibounded space (see [6]). The de�nition of a hemicompact space is self-explanatory.

A stimulant result on bf -hemibounded spaces is

Theorem 4.1. [8] If X is a bf -hemibounded space, then µ(X) is a kr-hemicompact space. Moreover, every com-
pact subset of µ(X) is contained in the closure (in µ(X)) of a bounded subset of X.

The notion of a Moscow space was introduced by Arhangels’kii in [1]. A space X is called a Moscow space if
clXU is theunionofGδ-subsets ofX for eachopen subsetU ofX. EachMoscowgroupG is a PT-group.Actually,
G is a strong-PT-group, that is, every real-valued continuous function on G has a continuous extension to the
Gδ-closure ρωG of G in its Rajkov completion (see Theorem 1.5, Corollary 1.6 and Theorem 1.7 in [2]).

Our aim is to show that bf -hemiboundedgroups are strong-PT groups. Firstwehave the following general
result.

Theorem 4.2. Let G be a topological group. If µ(G × G) = µ(G) × µ(G), then G is a PT-group.

Proof. Denote by ◦ the operation on G and consider the function α : G × G → µ(G) de�ned as

α(g1, g2) = g1 ◦ g2, g1, g2 ∈ G.

Being µ(G) topologically complete, there is a continuous extension, say α̃, of the function α to µ(G × G). By
our hypothesis, µ(G × G) = µ(G) × µ(G).

Next we prove that the operation ◦̃ de�ned on µ(G) as

◦̃ : µ(G) × µ(G) → µ(G)
(h1, h1) → α̃(h1, h1)
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makes µ(G) a topological group containing G as a dense subgroup. It is apparent that ◦̃ is continuous. First
we show that (µ(G), ◦̃) satis�es the associative property. De�ne the continuous functions f1,f2 : µ(G) × µ(G) ×
µ(G)→ µ(G) by the rule

f1(h1, h2, h3) = α̃(h1, α̃(h2, h3)) and f2(h1, h2, h3) = α̃(α̃(h1, h2), h3).

As G is a topological group, f1|G×G×G = f2|G×G×G. Since G × G × G is dense in µ(G) × µ(G) × µ(G), we conclude
that f1 = f2, which means exactly that the operation ◦̃ is associative.

Next we show that (µ(G), ◦̃) has a neutral element. Let e be the neutral element of G. If h ∈ µ(G) \ G, by
density, there exists a net {gβ}β∈I in G converging to h. Since α̃ is continuous, the net {gβ , e}β∈I converges to
(h, e). But, for each β ∈ I, we have gβ = gβ ◦ e = α̃(gβ , e). Then,

h = lim
β∈I

gβ = lim
β∈I

α̃(gβ , e) = α̃(h, e) = h◦̃e.

In a similar way we can prove that h = e◦̃h. Thus, e is a neutral element of (G, ◦̃). Now, consider the function
η : G → µ(G) de�ned as η(g) = g−1 for each g ∈ Gwith g−1 the inverse of g. Let η̃ be the continuous extension
of η to µ(G). Given h ∈ µ(G) \ G and a net {gβ}β∈I in G with limβ∈I gβ = h, let h* the limit of {η̃(gβ)}β∈I . We
show that e = h◦̃h*. Indeed, we have

e = lim
β∈I

(gβ , g−1β ) = lim
β∈I

α̃(gβ , g−1β ) = α̃(h, h*) = h◦̃h*.

An argument similar to the previous one shows that e = h*◦̃h. Thus, h* is the inverse of h. This completes the
proof.

Remark 4.3. Topological groups containing a dense abelian group are abelian. So, under the hypothesis of
the previous theorem, if G is abelian, so is µ(G).

If G is a bf -hemibounded group and X is a bf -hemibounded space, then µ(G × X) = µ(G) × µ(X) ([17, Theo-
rem 2.6]). Moreover, kr-hemicompact spaces are (normal) k-spaces (see Lemma 5.1 of [32]).

Theorem 4.4. bf -hemibounded groups are Moscou spaces.

Proof. Let G be a bf -hemibounded group. By the previous theorem, µ(G) is a k-group (that is, a topological
group which is a k-space). According to [3, Theorem 2.16], µ(G) is a Moscou space. Since dense subsets of
Moscow spaces are Moscow ([3, Proposition 1.1]), G is Moscow.

Applying Theorem 1.7 of [2], we obtain

Corollary 4.5. If G is a bf -hemibounded group, then G is a strong-PT-group.

As a consequence of the previous corollary, we have

Corollary 4.6. The (abelian) free topological group G(X) over a pseudocompact space is a strong-PT group.

The following result is a consequence of Theorem 2.7 in [17] and Theorem 5.6 in [3].

Theorem 4.7. The product of two bf -hemibounded groups is a PT-group. In particular, if X is a pseudocompact
space, G(X) × G is a PT-group for every bf -hemibounded group G.
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