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Abstract—Nowadays, Location Based Services run over a net
of heterogeneous devices (mainly smartphones) with different
location capabilities thanks to, for instance, signals of opportunity
as Wi-Fi. In contrast to professional deployments in controlled
scenarios, the positioning error highly depends not only on the
environment but also on the location. Traditional metrics for
evaluating indoor positioning system may fail in obtaining lower-
level details on the reported results. This paper introduces a way
to perform a local-level analysis of the positioning errors. Our
approach is based on analyses of the position-wise variance of
positioning errors.

I. INTRODUCTION

In developed countries, people spend most of their time

indoors [1], [2]. As the whole world develops, this tendency

will expand to other countries. However, position estimation

indoors still lacks a generally applicable, low-cost solution

that allows location based services (LBS) tailored for indoor

scenarios. The golden IPS should ideally be used in the way

that GNSS (such as GPS) currently is used outdoors, but

adapted to indoor requirements and challenges. It would be

a technology, a technique, a method or their combination that

feature a set of traits that can be inferred from the goal of

obtaining the capabilities of GNSS for smartphones and from

several common evaluation metrics for IPS [3].

Errors in position estimations are common to (indoor)

positioning systems. Despite those errors may range from

within only a few centimeters for technologies like UWB or

Ultrasound, the most often used IPSs in wearable devices (e.g.,

smartphones) have error ranges of several meters.

The scenario where the positioning is performed may

determine the significance of the magnitude of errors. The

scenario usually influences the behavior of the IPS, as they

usually rely on measurements of a signal –e.g., Wi-Fi or

Bluetooth Low Energy in smartphone-based indoor positioning

– that are heavily affected by the characteristics of the indoor

environment. Moreover, the scenario is highly relevant given

that, commonly, the position is determined for a person using

a smartphone. Therefore, IPS evaluation is not only impor-

tant for performing straightforward comparisons to determine

which solution is the most adequate for a given application, but

also an integral part of the development of an IPS. The proper
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evaluation of IPS proposals is one of the main challenges for

indoor positioning, and the main subject of this work.

Previous works have shown that the positioning error might

be extremely large when dealing with smartphone-based in-

door positioning and Wi-Fi fingerprinting [4]. Despite Wi-Fi

fingerprinting provides low general positioning error on the

average case –within a few meters, as said before– it can reach

values above 10 meters and, exceptionally, above 100 meters

in very large testing environments [5].

The main metrics used to evaluate the indoor positioning

systems –mainly the mean, median and percentiles– are usu-

ally a descriptor of the general positioning error. However, they

are not able to tackle with smaller areas within the evaluation

environment. e.g., a corner with low Wi-Fi coverage. This

paper introduces a local-level analysis of positioning errors,

which studies the variance of position estimates provided for

the same test point and its behavior across an environment.

The empirical data has come from the position estimates of

the EvAAL-ETRI competition in 2015 [5] and the public

UJIIndoorLoc dataset [6]. Having open-data allows the re-

search community to rely on well-known datasets to assess

new algorithms and perform comprehensive analysis.

The remainder of this paper is organized as follows. Section

II describes the materials and methods used in this work.

Section III introduces the local effects of positions estimations.

Section IV discusses about the results on the study. Finally,

Section V introduces the main conclusions of this work.

II. MATERIALS AND METHODS

To ensure the independence on the study of the local effects

of position estimations, we rely on the publicly available

UJIIndoorLoc database [6] and the position estimates of the

EvAAL-ETRI competition in 2015 [5].

The UJIIndoorLoc database allows the evaluation of WiFi

fingerprinting solutions on a complex indoor environment. The

environment encompasses three buildings at UJI campus, each

having 4-5 floors (see Figure 1). The positioning based on Wi-

Fi fingerprinting is challenging. An access point (AP) seen

with the strongest intensity is not necessarily the closest one

as a result of intrinsic signal fluctuations and environment-

induced variations, including absorption by people. Moreover,

data was collected by crowd-sourced means by volunteers with

different devices. The UJIIndoorLoc includes training (around

20.000 samples) and validation (around 1.000 samples).



The UJIIndoorLoc database was used in the EvAAL-ETRI

competition to evaluate off-line Wi-Fi fingerprinting solutions

in 2015 [5]. For that purpose, they provided the competitors

with a new blind test set with more than 5.000 unlabelled

samples. The organizers of the competition allowed the com-

peting teams to submit up to five sets of position estimates

on the unlabelled test samples. Only the best set according

to the mean accuracy was selected for competing in the final

ranking.

Fig. 1: 3D areal view, from Google Earth, of the three

buildings considered in this section’s experiments. From left

to right, the buildings are identified as TI, TD and TC.

A total of four teams participated in the competition,

namely “RTLSUM” [7], “HFTS” [8], “ICSL” [9], and “MO-

SAIC” [10]. The main statistics for the competition, mean po-

sitioning error and third quartile (75th percentile), are provided

in Table I.

TABLE I: Team evaluation results, using best set of estima-

tions according to the mean value of EvAAL error.

Team EvAAL Mean (m) EvAAL 3rd quartile (m)

RTLSUM 6.20 8.34

ICSL 7.67 10.87

HFTS 8.49 11.60

MOSAIC 11.64 10.65

Table I shows the competition results with an evaluation

procedure based on the mean positioning error as in the

EvAAL competition. The best set and the results use the mean

positioning error as main evaluation metric, because it is a

metric commonly used to evaluate indoor positioning systems

as suggested in the ISO/IEC 18305:2016 International Stan-

dard [11]. The table also shows the results using a evaluation

procedure based on the third quartile (or 75th percentile) of

the positioning error. In this later case, the best set and the

results use the third quartile as it is the main metric used in

the IPIN competition [12].

For both metrics, the positioning error was computed as the

2D Euclidean distance between the positions of the ground

truth and estimated positions, with penalties added for floor

error and building error of 4 m and 50 m, respectively. The

positioning error was computed with the following equation:

error = ‖PR −PE‖+ pf · |fR − fE |+ pb · (bR! = bE) (1)

Where:

• PR are the 2D coordinates of the evaluation point;

• PE are the 2D coordinates estimated by the competitor;

• ‖PR −PE‖ is the horizontal positioning errors and it is

computed as the Euclidean distance between the location

of the evaluation point and the estimated position;

• pf is the floor penalty – pf = 4;

• |fR − fE | is the absolute difference between the floor

number of the evaluation point and the estimated floor

number provided;

• pb is the building penalty – pb = 50;

• (bR! = bE) is 0 if the estimated building identifier

matches the evaluation point, otherwise (in case of a

wrong building identification) it is 1.

According to the results shown in Table I, the rankings

provided by both metrics are not equivalent despite agreeing in

the best method. The evaluation based on averaged values is

more sensitive to extreme –either low or large– positioning

errors. “MOSAIC” team provided locations in the wrong

building for a very few cases, which largely penalized the

averaged error. Thus, the selection of the accuracy metric for

evaluation is very important. The local analysis selects the best

set according to the mean error as done in the competition.

III. LOCAL EFFECTS OF POSITION ESTIMATIONS

As shown in the previous section, the evaluation metric is

of special relevance. One popular option for characterizing the

general accuracy of an IPS is a CDF plot. CDF plots are very

useful for determining the variability of the positioning errors

of an IPS [13]. Also, they allow an easy determination of

the number, or percentage, of position measurements that are

below a given error. However, the CDF and related metrics like

the mean, percentiles and ranges are broad descriptions for a

large environment. It is difficult to directly translate that broad

description to a smaller area given that IPS are commonly

affected by the (local) environment characteristics.

The ISO/IEC 18305:2016 International Standard [11] de-

fines two metrics to measure IPS accuracy at a more local level

than that provided by the CDF plot: the circular error 95 and

the coverage. The circular error 95 indicates the radius of the

circle that, given a center position, contains 95% of position

estimates. Instead of considering a whole environment, it can

be applied individually to separate areas or individually to each

test point if they contain several samples. The coverage metric

indicates the ratio of evaluation points that meet a minimum

performance requirement. The performance requirement is met

for a test point having several samples if the maximum value

of the error measurements for that point is below or equal to

some non-negative value defined for the IPS.

This work addresses local analyses of errors measured for

IPS. The IPS are those that participated in the EvAAL-ERTI

competition in 2015. For the analyses, fingerprints and position

estimates corresponding to some target reference points in the

test set were selected. The targeted reference points are those

where 5 or more fingerprints were collected. The targeted

reference points accounted for 654 out of the 723 unique



positions found in the private test set of the UJIIndoorLoc

dataset. The circular error 95 was not computed given that the

number of samples per reference point may be as low as 5

samples, i.e., a selection for 95% of estimates would mean a

selection for the 100% of estimates. The computation of the

coverage metric followed an adaptation from the definition of

the ISO/IEC 18305:2016 to consider the black box, off-line

evaluation procedure followed in the competition.

Fig. 2: Histogram of samples per reference point in the private

test set of the UJIIndoorLoc dataset.

The number of reference points that have exactly five

samples account for less than half of the total reference points,

as presented in Figure 2. Thus, instead of using exactly five

samples per point, five or more were used to increase the

number of reference points available for the analysis and

to avoid sampling randomness. Table II shows the results

of computing the coverage metric for each team. For the

minimum performance requirement, we choose the value 10 m,

since it is the psychological barrier for a few meters.

TABLE II: Coverage metric adapted to the black box, off-line

evaluation. The minimum performance requirement is 10 m.

RTLSUM ICSL HFTS MOSAIC

0.62 0.50 0.58 0.46

In general, the coverage results indicate the presence of

large errors (at least one case where the error is higher than

10 m) in about half of the reference points for most teams. The

team RTLSUM is appreciatively the best performing according

to coverage. The team HFTS performed better than the ICSL.

The visualization of the coverage metric results can provide

insights into the areas which insufficient IPS performance.

Such visualization, despite it is recommended, is not provided

here to maintain the privacy restrictions of the UJIIndoorLoc’s

evaluation set.

The coverage metric exposed that a notable number of

reference points have large errors. Such fact is significant

given that almost 75% of errors should be lower than the

chosen value for the minimum performance requirement. Thus,

uncertainty in positioning accuracy should exist for many

reference points. The uncertainty in measurements is some-

times addressed using sensibility analysis. Wi-Fi fingerprinting

models have a large number of input variables. Also, for large

environments, some of the variables may strongly influence

the position measurement in an area while being unimportant

for other areas. Thus, the sensibility analysis should be done at

a local scale, i.e., individually at small areas or each reference

point. However, the black box, offline evaluation approach

addressed in this section imposes hard constraints upon the

IPS responses for the input variables. The addressed evaluation

approach rules out the possibility of getting new position

estimates for selected variations in the fingerprints.

Thus, instead of performing a sensibility analysis, the

relation between the variation of error magnitudes and the

variation of the RSS was studied. The variation of error

magnitudes was computed as the standard deviation of errors

at each reference point. The variation of the RSS (input

signals) was computed as the maximum value of the distances

among the fingerprints from each reference point. The chosen

distance between two fingerprints was the Euclidean distance

in the fingerprint space, which is a measure that is commonly

applied as a similarity metric for Wi-Fi or BLE deterministic

fingerprinting. The maximum fingerprint distance at each

reference point ranged from 4.24 dBm to 163.8 dBm. The latter

value is indicative of large variability in the input signals. The

standard deviation of errors at each reference point ranged

from 0 to 224.57 meters. The former value suggest a consistent

estimation while the latter is indicative of very large and very

low errors provided for the same reference point. Table III

shows the rho values of the Pearson correlation test applied

to the previous two measures. The p-values were not shown

as they were significant (p < 0.05) for the team RTLSUM and

very significant (p ≪ 0.05) for the other teams.

TABLE III: Pearson correlation ρ values between standard

deviation of errors and maximum fingerprint distance.

RTLSUM ICSL HFTS MOSAIC

0.16 0.37 0.24 0.16

The correlation between the standard deviation of errors

and maximum fingerprint distance is always positive, i.e., the

larger the fingerprint distances are, the larger the error standard

deviations are. Moreover, despite the correlation is weak for

the RTLSUM and MOSAIC teams (both with 0.16), it is

notable for the ICSL team (0.37). Although the ICSL team

provided the lower floor detection rate in the competition [5],

they applied deep learning models for feature selection. A

large correlation may hint at a large susceptibility of a given

IPS to variations in the input signals.



To further study the effect of variations of fingerprint

distances on the position estimates, the standard deviation

of error magnitudes was computed and later presented in

Table IV for two cases. The first case was called “All RPs”.

In this case, the standard deviation of error magnitudes of

all reference points was considered and the median of those

values is presented in the Table. We selected the median as

it is less affected by outliers, i.e. extremely large positioning

errors. The second case was called “Sel RPs”. In this case,

only the values from selected references points are considered.

The selection is performed attending to maximum fingerprint

distance computed for each reference point. A reference point

was selected if its maximum fingerprint distance was above a

threshold value. The threshold was set as the median of the

maximum fingerprint distances of all reference points. Thus, in

the second case, we provide the the standard deviation of the

reference points with the largest fingerprint variability. Finally,

the relative difference between them is shown in the last row

as their ratio to compare the different solutions provided by

the competitors.

TABLE IV: Standard deviation of error magnitudes when

considering all reference points (All RP) and when considering

only those with large – above the median – standard deviation

values of fingerprint distance (Sel RP).

Selection RTLSUM ICSL HFTS MOSAIC

All RPs 1.46 1.95 0.97 0.78

Sel RPs 1.67 2.43 1.19 1.87

Ratio 1.14 1.25 1.23 2.40

The values presented for the case “Sel RPs” are consistently

larger than those for the case “All RPs”. The increase is

particularly notable for the MOSAIC team, having increases

larger than twice of those of the “All RPs” case. A likely

reason for the MOSAIC team’s notable increase is that the

selected reference points should be those where building miss-

identification occurred, which are the ones that have the

largest estimation errors. The second most notable increase

corresponds to the ICSL team, which is the team that showed a

larger correlation in Table III. The team with the least increase

is RTLSUM, which had the smallest correlation in Table III

and which was the one that provided best overall results across

the error accuracy and coverage metrics.

IV. DISCUSSION

The results from Table III and Table IV suggest that the

IPS from the RTLSUM team may be more robust to nominal

changes in the input signals, i.e., changes related to short-term

signal variations resulting from multi-path, device movement,

or collection orientation, for example. Also, the results sup-

port a notion that is known for WiFi or BLE fingerprinting

positioning: estimates corresponding to the same ground truth

usually jump around its positions. Also, the results indicate

that the instability of those jumps – random error and not bias

– is related to distances among the operational fingerprints.

Reducing the magnitude of errors leads an IPS to perform

better in any of the analyses explored in this section, as

showed for the RTLSUM team. However, general metrics, like

percentiles or their related CDF plot may hide local behaviors

and are insufficient for analysing the robustness of a system.

The ISO/IEC 18305:2016 defines several conditions on the

collection of test points for IPS evaluation, including for ex-

ample the number or reference points. However, none of those

recommendations can assure to cover the whole spectrum of

nominal cases of signal readings, at least for fingerprinting-

based systems. Therefore, further research efforts on IPS eval-

uation may dig into conditions on the evaluation data like, e.g.,

signal variations bounds applicable for a given environment

and application. A dataset meeting such conditions may be

used for evaluation instead of lots of other test data.

V. CONCLUSIONS

This work addressed the evaluation of Indoor Positioning

Systems. In particular, it presented a local-level analysis of

positioning errors that studied the variance of position esti-

mates provided for the same test point and its behavior across

an environment. For that purpose, we have used a large public

dataset and the position estimates provided by four teams

that participated in the EvAAL-ETRI Competition in 2015.

Therefore, raw data and the Indoor Positioning Systems are

completely independent to the research performed. i.e. the

research questions has not influence the way to calibrate and

build up the different positioning solutions.

In general, the common metrics and CDF plots might hinder

(including the average and median positioning error) some

local behaviours as they summarize all positioning errors or

visualize them without a connection with the location. The

side-effect of this locality is that they might be insufficient

for analysis the robustness of a particular indoor positioning

system. As most of Wi-Fi fingerprinting solutions rely on a

external wireless network infrastructure, locality is relevant to

identify if the systems has a good general behavior as, in some

scenarios, the reliability in all the operational area is a must.

Our recommendation is to ensure the quality of the eval-

uation data and, at the same time, stress the positioning

solutions with, for instance, signal variations that mimic the

real given environment. A comprehensive evaluation should

not only consider the presence of corner cases (cases with

low probability to happen but with large positioning errors)

but also the procedures to detect them during the evaluation.

The database stressed the evaluation by using a radio map built

with more than 20 devices for the evaluation. Moreover, the

geometry, the purpose and the APs distribution is completely

heterogeneous in the three buildings represented in the dataset,

so a single metric summarizing the positioning error does not

represent the local characteristics across the operational area.

This work has opened a new research line on evaluation. As

future work, we will work on defining additional metrics and

procedures to have more detailed evaluation of the robustness

and reliability of indoor positioning systems based on Wi-Fi

(and, even, other positioning technologies) fingerprinting.
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