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Abstract—Gait speed (GS) is a crucial parameter in the
evolution and diagnosis of degenerative illnesses. Nowadays, it is
measured in clinical environments where it is impossible to keep
track of all patients due to the lack of resources. The development
of GS measurement systems for in-home environments could
solve this problem, but current methods present, at least, one of
these problems: they require expensive hardware, are intrusive
for the patient, or are imprecise. A novel method to measure
GS in these scenarios using Bluetooth Low Energy and smart
wearable devices is proposed in this work. The proposed system
is inexpensive, non-intrusive, and its precision is comparable
to the current state of the art methods. This system could be
commercialized as part of an in-home health monitoring system.

Index Terms—Bluetooth Low Energy; Gait Speed; Health
Monitoring

I. INTRODUCTION

Gait speed (GS) is a significant parameter, along with sex
and age, in predicting the appearance of degenerative illnesses
like Parkinson and Alzheimer [1]. Since the sooner these are
predicted and treated, the better the patient’s development,
it is essential to detect changes in it as soon as possible.
Usually, GS is only measured in clinical environments, where
specialized doctors measure GS and other kinematic param-
eters (posture, muscle contractions, and gait direction) using
an expert vision-based system.

Simultaneously, the population of people aged 65 or more
is expected to double in the next twenty years worldwide [2].
Since this group has more health-related issues than any other,
current health care systems must adapt to face this future
reality. In this context, the traditional GS measurement in
clinics and hospitals will not be able to track all their patients
simultaneously [3]. Therefore, the monitoring of GS in risk
patients should be carried in their residences. This change will
allow monitoring more people automatically while saving time
and effort in hospitals.

Despite all the recent technological developments in this
topic [4], there is no standard GS measurement system for
multi-resident environments. Current developments present
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several problems; high-precision systems are too expensive,
and therefore only used in clinical environments or specific re-
search projects [4]. The systems developed specifically for in-
home monitoring are intrusive, which has been proved to affect
the patient’s behavior while measuring [5]. The current non-
intrusive systems cannot distinguish between different persons,
which is crucial in correctly evaluating each patient’s evolution
[6]. Therefore, an affordable and non-intrusive technological
alternative is needed to monitor GS in a multi-resident home.

A new method to measure GS from the received signal
strength (RSSI) measurements from Bluetooth Low Energy
(BLE) beacons is proposed in this work. The Internet of
Things (IoT) orientation of BLE makes its design inexpensive
compared with other systems and non-intrusive because it
works with wearable commercial devices already familiar to
all users, like smartphones and smartwatches. Our method is
tested using the BLE-GSpeed database [7], which contains
BLE RSSI measurements from different smartwatches and per-
sons while walking through a straight walk. The experimental
data can be found in the Zenodo repository [8].

The remainder of this paper is organized as follows. In
section II, different works in the same field are described.
In section III, the proposed method and methodology are
presented. In section IV, the experimental set-up is described.
Results are detailed in Section V. A discussion about the key
elements in the method is presented in Section VI. Finally, the
conclusions and future works are summarized in section VII.

II. RELATED WORKS

The traditional approach to measure GS was to measure the
time the patient took to walk some distance with a stopwatch,
which, apart from the lack of precision, had become obsolete
when compared with current systems [9]. In clinical environ-
ments, where apart from the GS, more information is extracted
from the measurements, vision-based systems are commonly
used [10]. The Kinect system, developed by Microsoft, has
been used for this task by different health researches [11, 12].
Its precision requires training personal to operate it, and its
prices are very high. Similarly, depth-cameras have also been
used to estimate the GS [13].

More technologies have been tested when building GS
systems for in-home environments. For example, ultrasonic
sensors have been used estimating the time of flight [14].
Passive infrared sensors (PIR) are also used when working as
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presence sensors. A set of PIR sensors placed in the ceiling
alongside a hallway can record the detection times and use
the distance between sensors to estimate the GS. A complete
description of the mathematical steps of this method can
be found in [15]. The same architecture can be used with
any other technology when working as presence sensors, as
in [16], where the same idea is repeated using ultrasonic
sensors. Following the same procedure, Chapron et al. [6]
proposed an indoor BLE positioning system to determine
which patient is closest to the PIR sensors, correctly assigning
the measurements to each user.

More recently, radio-frequency signals have also been used
to measure GS. The Widar system, proposed in [17], uses
commercial Wi-Fi networks to estimate the subject’s speed
and orientation wearing a custom receiver. In [18], Zhang et
al. use the WiSpeed system that works using electromagnetic
waves’ statistical theory to establish a correlation between an
object’s speed and the measurements in the receptor’s physical
layer. Chenshu et al. [19] build the GaitWay system, which can
measure GS using a custom Wi-Fi transmitter and receiver to
analyze the multipath effect using the received signal. Despite
their promising results, these systems require extra specialized
and expensive hardware to operate.

GS can also be assessed using inertial sensors from wear-
able devices. In [20], a high-precision accelerometer is used
with orthogeriatric patients to study their responses to dif-
ferent treatments against Parkinson. A similar experiment is
presented in [21] using an accelerometer and a gyroscope
from a custom wearable device attached to the legs and belt
of participants. These systems require high-precision custom
wearables that the patients must actively use, interfering with
how they behave. The low-cost inertial sensors embedded in
smartwatches and smartphones provide very noisy measure-
ments, which lead to underestimations of the GS [22].

III. PROPOSED METHOD

The proposed method uses the Received Signal Strength
Indicator (RSSI) from a BLE beacon. RSSI is a magnitude
that measures the signal’s attenuation between transmitter and
receiver on a logarithmic scale. Fig. 1 shows a representation
of the experiment, with the distances that take part in it. Let
d be the distance between the receiver and the beacon at any
time, h the distance between the average height of the receiver
and the ceiling, and x the user’s position in the hallway with
respect to the vertical projection of the beacon over the floor.
It is assumed that h is constant for each walk and that d and
x are time-dependent. The dependence x = x(t) and d = d(t)
are considered implicitly in all equations. Equation (1) models
the dependence between the RSSI and the distance where α
is the path loss exponent, d0 is a reference distance (usually
taken as 1 m), and RSSI0 the RSSI measurement at that
distance.

RSSI = RSSI0 − 10α log10

(
d

d0

)
(1)

Fig. 1. Diagram with the transmitter, user’s position, and the distances
considered in the method.

To take into account the user’s position, the distance d can
be expressed as a function of h and x as d =

√
x2 + h2 which

transforms (1) into (2).

RSSI = RSSI0 − 10α log10

(√
x2 + h2

d0

)
(2)

The BLE beacon is placed in the center of a hallway.
Preferably, the beacon is in the ceiling facing toward the floor
to minimize the user’s shadowing effect while walking. The
receiver, a smartwatch or a smartphone, is carried by the user
with their Bluetooth capabilities activated. Along the user’s
walk, the device records the RSSI measurements taken at
different random times. The main idea is to use the RSSI rate
of change to estimate the user’s speed numerically. The time
derivative is taken in (2), which becomes (3).

d(RSSI)

dt
=
−10α
log(10)

x

(h2 + x2)

dx

dt
(3)

From this last equation the user’s speed can be estimated,
as shown in (4).

dx

dt
=
−log(10) (h2 + x2)

10αx

d(RSSI)

dt
(4)

If the user’s speed is constant, the right term of (4) must
be constant in the beacon’s proximity. Unfortunately, RSSI
measurements are very sparse due to the noise introduced by
different effects such as the switch from different channels in
the communication protocol and the multipath effects in com-
plex indoor environments [23]. A weighted moving average
filter is applied to smooth the raw RSSI values. The apply
filter is the convolution of the RSSI raw measurements with a
triangle signal. Let ri be the i-th RSSI measurement taken at
time ti. The filtered RSSI, fi, is given by (5), where th is the
half-time window average size. This value is taken as 15% of
the RSSI data size.

f [i] =
1

k=th∑
k=−th

w[k]

j=i+th∑
j=i−th

r[j]w[j − i] (5)
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Where wj are the weights given the normalize triangle
discrete signal with the same size that the moving average
window, as shown in (6).

w[k] =

{
1− |k|th |k| ≤ th
0 otherwise

(6)

Fig. 2 shows the evolution of the RSSI against time while
the users are walking along the hallway. The continuous blue
line is the predicted RSSI using (1), the red circles are the
raw RSSI measurements, and the black points are the filtered
RSSI.

Fig. 2. Raw measurements (red circles), theoretical prediction (blue), and
filtered RSSI (black line and points).

The numerical derivative, dri is computed using the dif-
ference between consecutive elements, as shown in (7). The-
oretically, there must only be measurements with the same
frequency as the BLE beacon’s transmission frequency; how-
ever, some consecutive measurements may have a minimal
increment in time. These measurements affect the numerical
derivative and are eliminated from the filtered data. Finally,
for the same reason, the numerical derivative is filtered again
using the same filtering process. Fig. 3 shows the RSSI
derivative, following the same filtering process used with the
raw measurements.

dr[i] =
f [i+ 1]− f [i]
t[i+ 1]− t[i]

(7)

The speed is calculated following the discrete-time variant
of (4) i.e. (8) where xi is the estimated position of the user at
time ti using the filtered RSSI and equation (2).

v[i] =
−log(10) (h2 + x[i]2)

10αx[i] dr[i]
(8)

The final estimation is approximately constant, as shown in
Fig. 4, therefore, the average value of all the estimations is
considered as the final GS.

Fig. 3. Derivative with respect to time of the RSSI along the walk. Red raw
estimation, blue theoretical prediction and black filtered approximation.

Fig. 4. GS estimation and real value in the beacon’s proximity.

IV. BLE-GSPEED DATABASE

To test the proposed method the BLE-GSpeed database [7]
is used. This database provides raw RSSI BLE measurements
from weareble devices and real time GS measurements. The
experimental set-up is explained in this section. The BLE
beacons used in the BLE-GSpeed were the IBKS Plus [24],
and the IBKS 105 [25], both by Accent Systems. These
beacons are designed to broadcast different signals (slots)
simultaneously, but only one per beacon was used for this
experiment. The emission parameters were configured to be
the same for all beacons, with their maximum possible trans-
mission power, +4 dBm, and smallest transmission frequency,
100ms. There were 23 beacons, but not all of them were used
in all the experiments. A total of 13 participants tested the
system by walking forward and backward along the hallway in
each experiment. Each participant wore four different Android
smartwatches, two in each arm. A custom Android application

673

Authorized licensed use limited to: Univ jaume I. Downloaded on July 18,2022 at 11:47:07 UTC from IEEE Xplore.  Restrictions apply. 



was developed to detect the BLE advertising signals, store
the RSSI values, and send them to a central server for later
analysis.

A set of ultrasonic detectors connected to an Arduino Uno
board was used as the ground truth system. The sensors were
placed in the walls and identified when the user was in front of
them. Five of these sensors were placed along the hallway, one
every 3.5m. The Arduino board recorded the measurements
of the sensors and sent the information to the central server.
Following the description of [15], the sensors’ position and the
detection times can be used to compute the user’s gait speed.
The hallway was more than 20 meters long, but the sensor area
was approximately 10 meters long. Users started and stopped
walking before and after the area covered by the sensors to
avoid the acceleration effects at the begin and end of the walk.
The GS estimation with this set of sensors is considered as the
real GS of each participant.

To select the parameters of (1) the RSSI measurements with
the same timestamp as the ultrasonic sensor detections and the
distances between the sensors and the beacons, depicted in Fig
of [7] were used. The before mentioned data was adjusted to
(1) using the least square error method. It was assumed that
since the configuration of all the beacons were the same, the
same parameters held for all the beacons. The values used for
parameters in (1) are α = 3.1 and RSSI0 = −49 dBm w. For
each set of measurements (user, walk, watch, and beacon), the
number of measurements varied from 20 to 80 measurements.

In [7], a method to determine the GS from RSSI BLE
measurements is proposed as a baseline to start using the
database. Their method detects the RSSIs’ highest value for
each beacon and associates it with the time in which the
user is right under the beacon. Combining all the beacons’
positions and the timestamp of their peaks, the user’s GS can
be calculated. The average error obtained with this method is
0.25 m.

V. RESULTS

Considering the walks in each direction as different exper-
iments, there is information from 764 walks. For each one,
there is data from 4 smartwatches and between 19 and 23
beacons, depending on the walk. Data from a single user in a
walk, and a single smartwatch and beacon pair, is considered
as the input of the system. Fig. 5 shows the cumulative
distribution function of the error when computing the GS with
the proposed method and comparing it with the estimation
obtained with the ultrasound system. Table I shows the mean
value of the error, the relative error, and the standard deviation
of the error for each smartwatch (SW).

TABLE I
MEAN ERROR, STANDARD DEVIATION AND MEAN RELATIVE ERROR FOR

ALL THE EXPERIMENTS AND EACH SMARTWATCH.

SW 1 SW 2 SW 3 SW 4 All
Error (m/s) 0.25 0.30 0.24 0.25 0.26
σ (m/s) 0.2 0.2 0.2 0.2 0.2

Relative Error(%) 26.8 32.1 32.3 27.5 28.6

Fig. 5. CDF of the error in the GS prediction with each smartwatch and all
of them combined.

The relation between the error in the estimations and the
real speeds is now studied. Fig. 6 shows the average relative
error of the BLE estimation for each velocity detected with
the ultrasonic sensors. This figure shows that the relative
error range increases with speed computed with the ultrasound
system (ground truth).

Fig. 6. GS measures with the ultrasound system (ground truth), and the
relative error for each estimation with the BLE system.

The results of the method are studied for different users
and beacons. Fig. 7 and Fig. 8 show the error distribution for
each user and beacon respectively. In these plots, the standard
deviation for each subset is indicated with the errorbars. In
both cases, no significant statistical differences can be found.

Until now, only the information of one beacon has been
considered for the GS estimation. The estimation of all the
beacons within the hallway can be merged to improve the GS
estimation. The average of the estimations from all beacons in
each walk is taken as the merge estimation. Fig. 9 shows the
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Fig. 7. Average error in GS estimation for each user. The errorbars indicate
the standard deviation for each subset.

Fig. 8. Average error in GS estimation for each beacon. The errorbars indicate
the standard deviation for each subset.

error of the single estimation (orange line) and the ensemble
estimation (blue line). The results show that merging different
estimations can significantly improve the system’s accuracy.
The average error of the ensemble estimation is 0.16 m/s with
a relative average error of 17%, which is an improvement of
more than 25% from a single estimation.

During the data analysis phase, it was noted that the amount
of data for each series was significantly different. The larger
the dataset, the more information it contains, but also the
noisier it usually is. The average error for series with a given
size is depicted in Fig. 10 along with its standard deviation,
marked with error bars. The average error is approximately
constant along all the sizes, however, the standard deviation
decrease as the size gets larger.

Fig. 9. CDF of the error using each beacon individually (orange) and
combining the estimation of all the beacons in each walk (blue).

Fig. 10. Evolution of the error with the size of each RSSI data. Errorbars
indicate the standard deviation for each subset.

VI. DISCUSSION

The proposed method is based on filtering the RSSI mea-
surements, which is a complex task due to the random noise.
A moving average filter can offer a solution to approximate
the actual values, but the filtering parameters must be adapted
beforehand for a general situation. The time window length of
the moving filter is an important parameter in this method. The
maximum of the RSSI or the zero in its derivative are critical
features with few points in their surroundings. A large time
window could cover these relevant points, shadowing their
effects; on the other hand, a small time-window is not enough
to reduce the noise, which leads to imprecise estimations. A
weighted average is a good trade-off between the different
elements, but the filtering process could be improved by
testing different kinds of weights. The same is applied to the
estimation of the derivative.

Other critical parameters in the system are those of (1),
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and model the signal’s propagation. In this work, the same
parameters are assumed to hold for all beacons, but this
is not necessarily true. Besides, these parameters must be
calculated again if the experiments are repeated in a different
environment. In future works, the method’s dependency from
these parameters will be studied using multi-slot beacons.
The GS estimation is done using only information from one
pair transmitter-receiver, but the method can be improved by
merging information from different transmitters placed in the
same hallway, as has been proved in Fig. 9.

Compared with previous similar works, our method per-
forms similarly that the work presented in [7] but only needs
one beacon to provide a GS estimation. Since these methods
are based on the RSSI measured from each beacon, the lost
packages, and the series’ size are crucial; therefore, future
work must also diminish these two factors’ importance. As
shown in Fig. 9, the use of more beacons within the same
walk can significantly improve the estimation, which is an
improvement of over 25 % in precision, when compared with
single beacon approach.

VII. CONCLUSION

In this work, a new system to measure Gait Speed (GS)
using a Bluetooth Low Energy (BLE) beacon for in-home
environments is proposed. Since the early stages of certain de-
generative illnesses are associated with a sudden decay in GS,
this system could monitor patients in their residences, detect-
ing these illnesses as soon as possible, significantly reducing
the hospitals’ work in health monitoring and prevention. The
beacon signals are detected by a wearable smartwatch device
placed on the user’s wrist. The GS is estimated using the
numerical derivative of the filtered raw RSSI with respect to
time. The proposed system was tested using the BLE-GSpeed
database, which provides experiments with 23 beacons, 4
smartwatches, and more than 10 users through different test
walks. Final results showed an average error of 0.26 m/s
compared with the ultrasound sensors’ estimation used as
ground truth. The proposed system is non-intrusive since it
works with a device already familiar to the user. Besides, it
is inexpensive compared with similar current developments,
and because of the characteristics of the BLE, it is energy
efficient. The algorithm will be improved in future works using
multi-slot BLE beacons and the signal propagation model to
optimize the filtering algorithm.
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