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ABSTRACT

Deep metric learning has recently become a prominent tech­
nology for the semantic understanding of remote sensing (RS)
scenes due to its great potential for characterizing visual se­
mantics. However, state-of-the-art deep metric learning mod­
els are often constrained in RS by the use of single-label an­
notations, which eventually reduce their capacity to charac­
terize complex aerial scenes. Additionally, many of the exist­
ing works are specialized in particular RS applications which
constrains the study of their associated metric spaces from
a multi-task perspective. In this paper, we propose a new
unified deep metric learning approach for both single- and
multi-label RS scene characterization while also taking into
account different downstream RS applications. Specifically,
we extend the Scalable Neighborhood Component Analysis
(SNCA) to the multi-label case and propose its generalized
version, i.e., GSNCA. Extensive experiments on single- and
multi-label RS benchmark datasets have been conducted to
evaluate the effectiveness of the proposed method for RS im­
age classification, clustering and retrieval.

Index Terms- Deep metric learning, Neighbor embed­
ding, Single- Multi-labels, Scene categorization

1. INTRODUCTION

Remote sensing (RS) scene images have been widely applied
for numerous tasks, such as urban mapping, object detection,
and scene retrieval [1-5]. How to sufficiently interpret the se­
mantics of RS scenes is always an ongoing topic within the
community. Recently, with the public availability of large­
scale RS datasets, deep learning techniques have significantly
facilitated the development of effective algorithms on seman­
tic modeling of RS scenes. Most of the proposed methods
can be categorized into two types: 1) those for characterizing
single-label RS scenes [6-9]; and 2) others for RS scene char­
acterization with multiple annotations [10,11]. Normally, the
approaches designed for encoding RS scenes with single la­
bels cannot be easily adopted for the multi-label case and vice
versa. For example, the well-known triplet loss [12] utilized

Fig. 1: The proposed unified RS scene characterization
framework based on GSNCA loss.

for deep feature extraction based on modeling the semantic­
similar relationship among image triplets, while the image
triplets cannot be easily constructed through multi-labels. In
this paper, we propose a unified deep metric learning frame­
work for characterizing single-label and multi-label RS scene
images based on the proposed generalized scalable neighbor­
hood component analysis (GSNCA). Inspired by the scalable
neighborhood component analysis (SNCA) [13], we first in­
vestigate its loss function in the single-label case and extend
it for modeling the semantic-similarities among RS scene im­
ages with multiple annotations. The proposed framework in­
cludes two main parts: 1) a CNN architecture for learning
the image features; and 2) the proposed GSNCA loss func­
tion for both single-label and multi-label images. A graphical
illustration of the proposed framework is shown in Figure 1.
This work extends our previous research presented in [14] in
order to provide an unified single- and multi-label RS image
characterization scheme, while taking into account different
downstream applications.

2. METHODOLOGY

Let X = {Xl,"', XN} be a set of N RS scenes and
Y = {Yl,'" ,YN} their corresponding labels represented
by single/multi-label hot encoding vectors. In the single-label
case, the Yi label vector is represented by the single-label
one-hot vector, i.e., Yi E {O, I}C, where C is the number of
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classes. In the multi-label case, Yi is denoted by a multi-class
hot encoding vector, i.e., Yi E {-I, l}c. F(-; e) represents
a particular backbone CNN model (with the parameter set e),
which performs a nonlinear mapping between the original RS
image Xi and its corresponding feature embedding f i E JR D

on the unit sphere, i.e., Ilfi l1 2 = 1. From X, we assume that a
subset T is extracted for training purposes.

SNCA to uncover inherent image semantic relationships, es­
pecially with high intra-class variations, as it is often the case
in RS. Nonetheless, the SNCA loss (Equation (4» is limited to
single-label annotations, and this feature strongly constrains
the capacity of the model to effectively characterize complex
RS scenes for classification, clustering and retrieval.

2.2. Generalized Scalable Neighborhood Component
Analysis

For extending SNCA to the use of multiple RS image annota­
tions, we initially need to reformulate the aforementioned Pi
probability as follows:

2.1. Scalable Neighborhood Component Analysis

SNCA [13] was presented to uncover CNN-based characteri­
zations where the semantic relationships among the input im­
ages can be preserved in the embedding space. That is, se­
mantically similar images are projected onto nearby locations
in the corresponding metric space, whereas dissimilar images
are separated. From a training set T, the similarity Sij be­
tween two images (Xi, Xj) can be computed by means of the
cosine similarity function as follows:

Pi = L 1L0Jj)Pij,
j

where the 1L 0i (j) function is given by:

(5)

where Sij E [-1,1] and larger values indicate a higher
similarity. Under SNCA assumptions, the probability Pij that,
given the Xi image, Xj is projected onto Xi neighborhood can
be defined as:

(1)
(6)

Note that, given the index set (Oi), the indicator function
(lL oi (j) controls the images that can be located as neighbors
of Xi in the metric space. Then, Pi can be computed as a
weighted sum of Pij probabilities over the training set, where
the final class decision for Xi depends on those RS scenes
that belong to the same semantic category. Following these
intuitions, we define the probability that Xi can be correctly
classified within a multi-label scheme as follows:

Pi = L WijPij,
j

(7)

where Oi = {jlYi = Yj} indicates those training sam­
ples that belong to the Xi class. Essentially, Pi is the proba­
bility that Xi is correctly classified and it increases with the
number of Xj neighbouring images that share the same class.
To achieve this goal, SNCA minimizes the expected negative
log-likelihood over T as:

with ITI being the number of training samples. In order to
optimize Equation (4), the similarities between Xi and other
images in the dataset should be calculated. For stochastically
training a CNN model via L SNCA , an off-line memory bank
B is constructed and updated to store the normalized features
of T during training. From a practical perspective, SNCA
pursues to learn each image nearest neighbors in the metric
space using a supervised scheme. Precisely, this fact allows

(8)

1 1
LCSNCA = -ITT Llog(Pi) = -ITT Llog(LWijPij).

~ ~ J
(9)

As it is possible to observe, Wij considers the inner prod­
uct between Yi and Yj and this relation generates that heavier
weights will be assigned to the Sij similarity term when Yi
and Yj become more similar. Note that we also introduce in
Equation (8) a normalization factor to adjust the value range
of (Yi, Yj) between 0 and 1. With all these considerations,
our overall objective function can be formulated as:

where Wij represents the weight of Pij' From Xi and its
corresponding multi-label annotations, our objective is based
on pulling in RS images that share more common labels and
pushing away other scenes. To meet this goal, we propose us­
ing the following expression to balance Wij weights in Equa­
tion (7) according to the number of common labels:

(3)

(4)

Pi = L Pij,
JEOi
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Table 1: K -NN classification accuracies (%) obtained by us­
ing different learning methods on single-label datasets, for
K= 10.

AID NWPU-RESISC45
D-CNN 93.75 91.48

Triplet 93.25 91.43
GSNCA 94.60 92.14

When compared to LSNCA, Wij can be replaced by 10i (j)
in the single-label case, and the proposed LCSNCA leads to
the original L SNCA . In other words, the proposed GSNCA
method provides a general framework that contains SNCA
while allowing the use of single- and multi-label annotations.

3. EXPERIMENTS

Table 2: K-NN classification micro Fl scores (%) obtained
by using different learning methods on multi-label datasets,
for K = 10.

UCM AID
BCE 87.76 88.31

GSNCA 88.47 89.13

Table 3: NMI scores of the feature embeddings of the test
sets produced by different learning methods.

AID NWPU-RESISC45
D-CNN 88.83 85.30

Triplet 89.87 88.14
GSNCA 92.96 90.20

Fig. 2: 2D projection of the feature embeddings on the AID
test set using t-SNE: (a) D-CNN; (b) Triplet; and (c) GSNCA.

considered single/multi-label test sets in Table 1 and Table 2,
respectively. Compared with the other methods, the proposed
method can achieve the best classification performance on the
considered benchmark archives. For example, in the single­
label case, GSNCA can improve the K -NN accuracy in about
1% more than D-CNN and Triplet. The proposed approach
allows finding image similarities beyond the current mini­
batch which eventually enhances the model generalization ca­
pability along the training process. In contrast, D-CNN sam­
ples the required negative and positive image pairs from each
mini-batch, leading to an under-complete model optimiza­
tion, especially with highly complex RS data. In the case
of the triplet loss, we can also find additional problems, since
building sufficient similarity and dissimilarity image triplets
for training may be impossible in scalable RS datasets. Note
that data complexity and volume are both important factors
in RS and building a representative training set with about
O(ITI 3 ) may easily become unaffordable. Precisely, these
limitations on the contrastive and triplet loss schemes may
lead to the fact that some complex RS scenes may not be well
separated in the resulting metric space. Table 3 presents the
corresponding NMI scores which are obtained by applying
the K -means clustering algorithm to the feature embeddings
of the test sets. As it is possible to observe, GSNCA provides
the best matching between ground-truth labels and clusters,
being such improvement higher than 3% with respect to D­
CNN and Triplet. To better analyze the generated feature em-

In this paper, three RS benchmark datasets, including UCM,
AID and NWPU-RESISC45 [15-17], are utilized to validate
the performance of the proposed method. More specifically,
we use the single-label annotations of AID and NWPU­
RESISC45 and the multi-label versions of UCM and AID
[18,19]. In the single-label case, we consider two different
downstream applications for evaluating the effectiveness of
the proposed method: 1) RS scene classification based on the
K-NN classifier; and 2) RS image clustering. In the multi­
label case, we conduct experiments including: 1) K-NN RS
image classification; and 3) RS image retrieval. For these
experiments, we randomly select 70% of the data for train­
ing, 10% for validation, and 20% for testing purposes. The
clustering task is performed over the test feature embeddings
generated by the learned CNN model. In the case of the
image retrieval task, training and test sets serve as archive
and query samples, respectively. The proposed method is
implemented in PyTorch. For the sake of simplicity, we use
ResNetl8 [20] as the backbone CNN architecture for all the
experiments. Nonetheless, other CNN architectures (e.g.,
ResNet50) could also be applied to the proposed approach.
All the images are resized to 256 x 256 pixels. Besides, three
data augmentation mechanisms are adopted during training:
1) RandomGrayscale, 2) ColorJitter, and 3) RandomHor­
izontalFlip. Regarding the parameter selection, we set D
and (J to 128 and 0.1, respectively. The Stochastic Gradient
Descent (SGD) optimizer is used for training, with an initial
learning rate of 0.01 together with a 30-epoch decay. Finally,
the batch size is set to 256 and the model is trained for 100
epochs. Regarding the experimental comparison, we compare
the proposed approach to three different state-of-the-art deep
metric learning methods: 1) D-CNN [6] (single-label case);
2) deep metric learning based on triplet loss (single-label
case); and 3) BCE loss (multi-label case).

We report the overall accuracy of all the methods on the
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Table 4: Image retrieval performances, evaluated with MAP
(%), by the BCE and GSNCA on the test sets.

UCM AID

BCE 97.70 97.36
GSNCA 99.64 99.67

beddings, we use the t-distributed stochastic neighbor embed­
ding (t-SNE) to show their corresponding projections in a 2-D
plane. As shown in Figure 2, the proposed approach provides
the most compact intra-class features and the most isolated
inter-class features. Finally, Table 4 presents the quantitative
retrieval results obtained by BCE and GSNCA. The proposed
method can achieve higher retrieval accuracy when compared
with BCE. This fact indicates that GSNCA is able to learn a
metric space that allows for the retrieval of more semantically
relevant images.

4. CONCLUSION

In this paper, we propose a novel deep metric learning method
based on GSNCA for characterizing both single- and multi­
label RS scene images. The proposed approach pursues to
pull the most semantically similar RS images closer in the
metric space when they share more classes in common, from a
multi-label perspective. Extensive experiments on single- and
multi-label RS benchmark datasets have been conducted to
evaluate the effectiveness of our method, which outperforms
other state-of-the-art approaches.
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