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Abstract—The adoption and integration of drones in commu-
nication networks is becoming reality thanks to the deployment
of advanced solutions for IoT and cellular communication relay
schemes. However, using drones introduces new energy con-
straints and scheduling issues in the dynamic management of
the network topology, due to the need to call back and recharge,
or substitute, drones that run out of energy. In this paper, we
describe the design of a drone recharging scheme for realisti-
cally limited flight time of drones, and leverage the presence
of recharging stations. Indeed, drones need to be recharged
periodically, and maximizing the operational time of drones is
paramount to minimize the size of the fleet of drones to be devoted
to a drone mission, hence its cost. We design Homogeneous

Rotating Recharge (HRR), an optimal drone recharging
scheduling that extends the coverage of a cellular network. HRR
minimizes the number of back-up drones needed to guarantee a
fixed number of operational drones, so as to support the operation
of an underlying cellular network. Results show that operating a
network of drones with our scheme provides reliable and stable
performance over time.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), and lightweight drones

in particular, are becoming attractive for service providers

due to their ability to serve communication purposes and

extend the capabilities of their fixed infrastructure. Drones

can be useful in many situations (e.g., in case of planned

communication traffic surges due to massive meetings, disaster

recovery missions, military applications, etc.), and they have

played an important role during the COVID-19 pandemic to

deliver goods and to irrorate disinfectants [1]. There is also a

strong interest for drones in the IoT community, as they can

be flexibly used for generating data and for harvesting data

from fixed sensors. Therefore, many recent efforts tackle the

integration of UAV-carried network nodes in cellular networks,

either to control drone routes effectively or to experiment with

relay schemes freshly introduced with 5G [2].

With the current advances in communication technologies,

the bottleneck in the adoption of drones lays in the limited

energy that they can rely on. For this reason, flying several

drones in a real scenario requires the accurate planning and

monitoring of their energy consumption. With multiple drones

and limited stations where the drones can land to get refueled,

network designers need to solve new problems, and impose

new constraints to their resource management algorithms. For

instance, in a drone-based tactical communication network

or in a patrolling mission, drones have to be recharged

cyclically while guaranteeing service at all times. The problem

is threefold: (i) the need to recharge a drone (or change

its battery) affects the service provided by the network of

drones; therefore, (ii) the fleet of drones has to account for

redundancy, so that when a drone flies back to get fresh energy,

the operation of the remaining drones remains consistent with

the objectives of the mission; and (iii) unlike traditional

swapping schemes, the time during which a drone with low

energy goes offline to recharge is not negligible, since neither

charging times nor the time to fly back and forth are negligible.

Related Work: Most of the work on efficient energy man-

agement of drone-based technologies focuses on the Vehicle

Routing Problem [3]. Namely, the goal is to generate routes

for a team of agents leaving a starting location, visiting a

number of target locations, and returning back to the starting

location. Among the many variants of such a problem, there is

the possibility that the charging stations in which the drones

will be powered be either stationary or mobile [4]. A recently

considered problem is the management of a fleet of drones

that are performing a persistent monitoring task. In [5], the

authors consider minimizing the number of drones required

when providing a persistent non-stop service. They provide

two approximation algorithms: one with an approximation

factor upper bound of 1.5 (when all the locations are known

in advance) and the other with an average factor of 1.7 (for

the online version). They were followed by [6], who consider

minimizing the number of drones with multiple recharging

stations. In [7], the authors show that this problem is NP-hard,

even for a single spare drone (i.e., with just one back-up drone

needed to guarantee the service), and provide two approxima-

tion algorithms for solving the problem, outperforming [6].

Our work: In this paper, we consider a fleet of drones

that extend the coverage of a cellular network. We rely on

existing algorithms for what concerns the dynamic optimiza-

tion of drone positions in a 3D space [8]. Hence, our drones

have mobile targets, which is different from what considered

in the literature. In this scenario, we design Homogeneous

Rotating Recharge (HRR), an optimal strategy to schedule

the recharging of drones while maintaining a fixed number

of operational/active drones per recharging station, so as to

provide stable performance. We target the minimum possible

size of the fleet, which includes back-up drones. We show that

combining communication requirements with drone dynamics

is not an easy task. With the help of a simulator, we study



how realistic drone features impose extra costs for maintaining

the level of network coverage high—with respect to the ideal

case of unlimited flying time of drones—and evaluate the

robustness of our proposal under realistic settings.

Specifically, the contributions of this paper are: (i) we

identify an optimal rotatory recharging schedule for the fleet

of drones, which allows to fly all available drones while

guaranteeing the participation of all but one drone in the

operation of the communication network at any point in time;

(ii) we prove the optimality of our scheduling algorithm; (iii)
we evaluate the impact of recharging schemes on the commu-

nication performance of the underlying cellular network.

II. REFERENCE SCENARIO

We consider a set of M drones that extend the coverage of a

cellular network. Hence, we interchangeably use terms drone

and aerial Base Station (aBS). The position of aBSs is re-

optimized every T time units with a mechanism that considers

as input the distribution of mobile users, the coverage provided

by ground Base Stations (gBSs) and the number of aBSs.

The specific mechanism that we consider in this paper is the

coverage framework of [8], which optimizes the position of

aBSs so as to maximize the number of users covered per time

slot by gBSs and aBSs. Coverage is defined as the existence

of a radio link between a base station and a mobile user, with

signal-to-noise-plus-interference ratio (SINR) above a target

threshold. What matters here is that the target positions of aBSs

change periodically because of user mobility.

As time passes by, drones consume energy. Thus, they

periodically need to meet a recharging station (RS) to recover

power. While aBSs fly towards the RS, get recharged, or fly

back to their target position, they do not operate, thus not

incurring interference with the other aBSs.

We consider a limited operational range around an RS, and

the time needed to reach RS is small but not negligible if

compared to the maximum flight time. Specifically, with

currently available drones, which can fly for about 30 minutes

and whose cruise speed can exceed 50 km/h, we consider that

drones can fly a few kilometers away from the RS. The RS

has a pool of charged batteries always available. When a drone

lands on the RS, an automatic mechanism can either replace

its battery so that the aBS can be fully operational in short

time [9], or recharge/refuel the drone, which takes longer time.

Homogeneous drones: For simplicity, we assume a fleet

composed by homogeneous aBSs (which is very reasonable in

our considered scenario). The maximum flying time of each

drone (i.e., the battery life) is f . The displacement time from

an aerial target position to the RS (or vice versa) is g. Hence,

the maximum service time of an aBS in between “pit stops”

is s=f−2g. The recharging time for the drone to be ready to

fly again is c.

The Drone Recharge Scheduling Problem: With the as-

sumptions detailed above, we aim to find the minimum number

of aBSs needed, namely M , and a recharge scheduling that

guarantees that at least N ≤ M aBSs provide service at each

time instant. Hence, the network optimization mechanism can

safely use N drones to optimize communication performance

at all times. The described problem is equivalent to the fol-

lowing one: Given a fleet of M drones, how many aBSs can be

guaranteed to extend the communication network at all times?

The recharge scheduling must instruct each aBS on when

to: head to the RS, take off, and provide service.

III. OPTIMAL DRONE RECHARGE SCHEDULING: HRR

In this section, we find the optimal drone recharge schedule

that minimizes the number of needed aBSs M to guarantee

that at least N of them are always providing service.

We present the optimal drone recharge scheduling in Al-

gorithm 1: Homogeneous Rotating Recharge (HRR); and

prove its optimality in Theorem 1. Note that at each time

interval of x time units (steps 3 and 4), the closest drone to

run out of power goes to recharge (regardless of whether or

not it is actually running out of power) and this is permanently

repeated. Note that in the first round, at instant Nx, the drone

instructed recharge has been flying for f−g time units, and

has a remaining flight time of g. Thus, it only disposes of

the next g time units until it runs out of energy. This is why

x = f−2g

N
. Finally, note that each time a drone ie is instructed

back to RS, we send a back-up drone ic to replace it (g time

units in advance). Drone ie, once recharged, is considered as

a back-up drone.

Algorithm 1 Homogeneous Rotating Recharge (HRR)

Require: N, f, g, c.

1: Obtain x = f−2g

N
.

2: Initially, N drones service in their aerial target positions.

3: After x−g time units, a fully charged back-up drone ic
takes off from the RS.

4: After g time units, the closest to drain drone ie is

instructed recharge and the back-up drone ic replaces ie.

Drone ie will be considered as a back-up drone after g+c

time units, i.e., once ie lands and gets fully charged.

5: Go back to Step 3.

HRR assumes that there is always a back-up drone ready to

replace that drone that at some instant is instructed recharge.

In the following lemma we prove that the minimum number

of back-up drones so that HRR is feasible is
⌈

c+2g

f−2g
N
⌉

.

Lemma 1. Assume a fleet of homogeneous drones character-

ized by a common f , c and g. The minimum and sufficient

number of drones necessary by HRR to guarantee that N of

them will be always providing service is M = N +
⌈

c+2g

f−2g
N
⌉

.

Proof. According to Algorithm 1, at some time instant kx, for

some k∈N, one drone ie is instructed recharge and heads the

RS while a back-up drone ic takes off at kx−g to replace it at

instant kx. While ie gets ready, other n drones are instructed

recharge. The time needed by drone ie to be able to replace

another drone is c+2g. Hence, there must be a number of n

back-up drones ready to replace the n drones that are arriving

during this period such that nx ≥ c+2g. The minimum n that

accomplishes this is n =
⌈

c+2g

x

⌉

, where x = f−2g

N
.



Hence, with the scheduling of HRR, M =N+
⌈

c+2g

x

⌉

is the

minimum number of drones needed to guarantee that N of

them are always providing service.

Observation 1. HRR ensures that, if x>2g+c, only one back-

up drone is needed: the instructed drone ie is substituted by

the back-up drone ic, and once ie is recharged, it becomes

the back-up drone, and the process repeats with the rest of

drones. This is possible since the new back-up drone will be

ready before the next drone is instructed recharge.

In the following theorem we prove that HRR is optimal as

it requires the minimum number of available drones in the

system. I.e., there is no alternative drone recharge scheduling

that requires a lower number of available drones.

Theorem 1. Assume a fleet of homogeneous drones charac-

terized by a common f , c and g. The minimum and sufficient

number of drones necessary to guarantee that N of them will

be always providing service is M = N +
⌈

c+2g

f−2g
N
⌉

.

Proof. Consider any feasible scheduling in which there are at

least N drones providing service at all time instant. Drone iL
that is instructed last to recharge for the first time must be

instructed before all its energy drains, i.e., before f−2g time

units. Let A be the minimum number of back-up drones to

accomplish the given feasible schedule before iL is re-called

for the first time. As A back-up drones are needed, there exists

one drone i0 that satisfies the following: there is a time instant

at which i0 is instructed recharge and there are A−1 more

drones that are instructed recharge before i0 is ready.

Let A be the set of such A− 1 drones jointly with i0.

According to the given scheduling, each drone i ∈ A is

instructed recharge every xi time units (xi represents the time

difference between the instant at which an active drone i is

instructed and the previous instructed drone). Drone i0 exists

but might not be unique. Hence, we take i0 such that
∑

i∈A

xi is

minimum among the possible sets A built in this way.

Drones in A are instructed before i0 gets ready, hence:

c+ 2g ≤
∑

i∈A

xi, (1)

since i0 needs c + 2g time units to be ready to replace an

active drone. In particular,

c+ 2g

A
≤ Avg(xi)

i∈A

, (2)

where Avg(·) represents the average value.

Moreover, the sum of all xj of each of the drones that were

initially active cannot exceed f −2g, in order to avoid that

drone iL runs out of energy:
∑

j∈N

xj ≤ f − 2g, (3)

where N is the set of all initially active drones.

Let PN ={A1, . . . ,AK} be the sorted partition of N such

that all the drones of any set Ak have been simultaneously

inactive at some instant (hence, Ak = |Ak| ≤A, ∀1≤ k≤K)

while no back-up drone was instructed to do a replacement

(hence, A ∈ PN ). Note that if Ak = A for some k, then

Avg(xi)
i∈A

≤Avg(xi)
i∈Ak

due to the election of A. Also, if Ak <A,

note that while drones in Ak where active, there were needed

only Ak back-up drones and hence, Avg(xi)
i∈A

≤ Avg(xi)
i∈Ak

. Oth-

erwise, drones in Ak would be on average less spaced in

time than drones in A with only Ak back-up drones. Then,

additional back-up drones would be needed (as for those more

spaced drones from A there were needed more back-up drones,

A, under this reductio ad absurdum assumption).

As a result, the fact that PN is a partition of N jointly with

Eq. (3), it holds that:
K
∑

k=1

Ak · Avg(xi)
i∈Ak

=

K
∑

k=1

∑

i∈Ak

xi =
∑

j∈N

xj ≤ f − 2g. (4)

Moreover, as Avg(xi)
i∈A

≤ Avg(xi)
i∈Ak

, ∀1≤k≤K, it holds that:

f − 2g ≥

(

K
∑

k=1

Ak

)

· Avg(xi)
i∈A

= N · Avg(xi)
i∈A

. (5)

And particularly:

f − 2g ≥ N · Avg(xi)
i∈A

. (6)

Finally, Eqs. (2) and (6) lead to:

c+ 2g

A
N ≤ N · Avg(xi)

i∈A

≤ f − 2g, (7)

which leads to the fact that

A ≥
c+ 2g

f − 2g
N. (8)

Hence, the number of back-up drones is A ≥

⌈

c+2g

f−2g
N
⌉

.

Since we have found in HRR a feasible schedule that needs

exactly
⌈

c+2g

f−2g
N
⌉

back-up drones (see Lemma 1), the minimum

number of total available drones needed to guarantee that at

each time instant at least N of them are providing service is:

M = N +

⌈

c+ 2g

f − 2g
N

⌉

. (9)

Hence, the theorem follows.

Intuitively, by using any scheduling, if we want to guarantee

that during each time interval the minimum number of drones

go to recharge, we need that they go as widely spaced in

time as possible, considering that if we increase the time

distance between two of them, then we will decrease the time

distance between two other drones. That is, one drone will go

to recharge each x = f−2g

N
time units.

Lemma 2. HRR satisfies that any drone i is instructed

recharge for the k-th time at time instant:

tki =

(

i+ (k−1)N + (k−1)

⌈

2g+c

x

⌉)

x, (10)

where x = f−2g

N
.

Proof. We prove the lemma by induction. Take k = 1. Without

loss of generality, drone i is the i-th drone to be instructed in

the 1st round (otherwise, drones can be resorted). Then:

t1i = ix, (11)

which satisfies the lemma.



Figure 1: Optimal drone recharge scheduling with M = 4, N = 3, f = 45 min, g = 5 min, c = 15 s.

Assume the lemma is true for a given k. We prove that then

the lemma is also true for k+1.

According to the inductive hypothesis, drone i is instructed

for the k-th time at:

tki =

(

i+ (k−1)N + (k−1)

⌈

2g+c

x

⌉)

x. (12)

Then, drone i lands at tki +g and takes off at tki +g+c (i.e.,

after i is fully recharged). This means that i can replace a

drone at tki +2g+c or later.

Following the scheduling, i will replace another drone at

instant jx, for some j∈N. Concretely, at the minimum instant

jx such that jx≥ tki +2g+c. Hence, j≥
(

tki +2g+c
)

/x, i.e.:

j=

⌈

tki + 2g + c

x

⌉

=

⌈

i+ (k−1)N+(k−1)

⌈

2g + c

x

⌉

+
2g + c

x

⌉

= i+ (k−1)N + (k−1)

⌈

2g + c

x

⌉

+

⌈

2g + c

x

⌉

= i+ (k−1)N + k

⌈

2g + c

x

⌉

. (13)

Then, Nx time units later, drone i will be instructed again

for the (k+1)-th time at time instant:

tk+1

i = jx+Nx =

(

i+ (k − 1)N + k

⌈

2g + c

x

⌉)

x+Nx

=

(

i+ kN + k

⌈

2g + c

x

⌉)

x. (14)

Hence, the lemma follows.

Corollary 1. HRR satisfies that any drone i is instructed

recharge every
(

N+
⌈

2g+c

x

⌉)

x time units.

Proof. The difference between two consecutive times k and

k+1 in which a drone i is instructed recharge is:

tk+1

i − tki =

(

i+ kN + k

⌈

2g + c

x

⌉)

x −

(

i+ (k−1)N

+ (k−1)

⌈

2g + c

x

⌉)

x =

(

N +

⌈

2g + c

x

⌉)

x. (15)

Hence, the corollary follows.

In Figure 1, we show an illustrative example of how the

HRR algorithm works. As it can be seen, at each time instant

some drones are actively providing network service and, when

needed, they are dynamically replaced by a fully charged

back-up drone. Since it is assumed that the network operator

disposes of M = 4 drones, then Theorem 1 guarantees that

N =3 drones will always be giving service (as derived from

Corollary 1, each drone will give service for 35 min). Every

x=11.6 minutes one active drone is instructed recharge at the

RS, and g=5 min in advance a fully charged back-up drone is

also instructed take off (from the RS) and replace that drone.

HRR guarantees that such replacement will be performed at

the same instant when the active drone goes to be recharged,

so back-up drones need to wait during an idle slot at the RS.

Thus, the number of active drones remains constant.

IV. SIMULATION RESULTS

In this section, we assess the performance of our proposed

scheme: HRR. First, we numerically validate, by means of sim-

ulations, the obtained results in Section III (i.e., the minimum

number of drones that are guaranteed to be always giving

service). Furthermore, we integrate that scheme into a wireless

network framework that maximizes the coverage of ground

users by means of aBSs combined with gBSs [8]. By means

of simulations over the real topology of an operational network

deployed in a dense city (Madrid, Spain), we show that it is

possible to guarantee a stable network service at all times.

A. Dynamic of the drones

In this section, we analyze how the system performance (as

the number of servicing drones) is affected by the displace-

ment times g, the flying times f and the recharging times c.

a) Displacement times: In Figure 2, we show several

scenarios with different values of g. The scenario with g=1
min represents the case where drones (with an average speed

of 25 m/s) fly close to the RS (e.g., 1.5 km). As pointed

in Observation 1, only 1 back-up drone is needed (since

x > 2g+ c), which explains why we observe an increasing

straight line. When g = 5 min, the condition x > 2g+ c is

still preserved provided the number of active drones is small

(i.e., only 1 back-up drone is enough), but when the number

of active drones needs to exceed 3, additional back-up drones

need to be used. This behavior is more pronounced when we

still increase g, so that several back-up drones are needed,

even when the required number of active drones is small.

At this point, we are aware that, in a realistic scenario, the

values of g may not be completely accurate. Thus, we have
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Figure 5: Drone-aided cellular network of Madrid.

also validated our proposal by varying, in a random manner,

the above-mentioned values of g by ±1 min. As observed,

there are no relevant differences from our predicted behavior.

b) Flying times: In Figure 3, we analyze what happens

when the maximum flying time f varies. As expected, we

observe that the higher the value of f , the lower the required

number of back-up drones (see Theorem 1). Observe that, in

some cases, there is no scheme capable of guaranteeing a given

constant number of active drones (e.g., when M=2 or 3).

c) Recharging times: In Figure 4, we have compared the

effect of replacing the exhausted batteries (e.g., c= 15 s, as

stated in [9]) against recharging them (e.g., c=30 or 60 min).

Clearly, the replacement of batteries provides very significant

benefits over battery charging, which makes it advisable for

network operators to opt for the use of battery replacement.

B. Network performance over time

We assess the communications performance in the network

of Figure 5: we consider a simplified map of the center of

Madrid, Spain, and consider a dense network environment on

those zones of main affluence of people. The RS is located

in the center of the network. Drones are able to service over

periods of f=45 min, have flying speeds that allow to reach

the RS from any position in the network in a few minutes (we

consider g values that span from 1 to 10 minutes), and need

to stay at the RS for either a few seconds to swap their battery

(c=15 s) or several minutes to get their battery fully recharged

(c=30 min). We have also tested other configurations, whose

results are not shown here due to space constraints.

The network is composed by 10 gBSs, 1000 randomly lo-

cated users moving according to the random way-point model

and M aBSs, N of which offer service. Their target position

is updated every minute with the algorithm proposed in [8].

Upon each update, aBSs move to the new positions without

interrupting the service. M is an input of the experiment, while

N depends on the recharge schedule. In particular, we evaluate

HRR and a greedy drone recharging schedule (Greedy) in

which all M aBSs stay active except when they need a pit stop

to recharge. I.e., with Greedy, aBSs head to the RS when they

strictly need to, and take off as soon as they are recharged.

We use a custom simulator for the mobility of users and

drones and for the evaluation of coverage, measured as the

number of mobile users per time unit that receive signal from

either gBSs or aBSs above a given SINR threshold, which we

fix to 10.9 dB. Transmission powers and fading/shadowing

coefficients are like in the experiments presented in [8]. The

maximum operational height of drones is fixed to 600 m.

We simulate each scenario a thousand times to gather the

average coverage results of Figure 6, which shows the number

of users under aerial coverage when HRR is used. When

g = 1 min, the aerial coverage initially increases with the

number of available drones until M = 6, while larger fleets

incur coverage decays. This behavior was observed in [8]

for always active infinite-powered drones: the higher drones

density, the higher interference they mutually cause, which

eventually reduces user’s SINR more than proximity to aBSs

can increase. We also unveil that, in some scenarios like with

displacement time g of 5 or 10 minutes, it is possible that

different fleet sizes achieve equal performance with HRR. For

instance, the aerial coverage with M = 4 does not change

when a fifth drone is added: this is because the value of N

that can be guaranteed with either M = 4 or M = 5 is 3, as

previously shown in Figure 2. This situation is more frequent

when g increases (e.g., g=10 min).

Using HRR, the number of active aBSs is constant, yet not

maximal. Instead, Greedy can operate all available aBSs. This

results in a variable number of active aBSs over time. To

assess the differences between both approaches, with the same

drone positioning scheme in both cases, we re-run the above

discussed simulation scenarios with Greedy. Due to space

constraints, we only show a coverage comparison between
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HRR and Greedy for a fleet of M =5 aBSs, with maximum

flying time of f=45 min and displacement time g=1 min.

In Figure 7, we consider the case of recharging time c=15 s,

i.e., here the battery is swapped. In this scenario, HRR finds

that a maximum of 4 aBSs can constantly provide coverage, so

we use exactly 4 aBSs. Greedy, instead, uses 5 aBSs, except

when one drone needs a pit stop. Both schemes permit to

increase coverage by a factor 2 or more, with respect to the

ground coverage shown in the figure. As all aBSs will try to pit

stop at about the same time with Greedy, this strategy results

in frequent intervals with low coverage, of the order of a few

minutes. The rest of the time, Greedy offers a better coverage

than HRR, with a margin of about 15% over HRR. In Figure 8,

we instead consider the case of c = 30 min, i.e., here the

battery is recharged. In this scenario, HRR can only guarantee 3
active aBSs, which reduces coverage from about 800 to about

690 users with respect to the case with c = 15 s. Greedy,

with the 5 available aBSs, suffers very long-lasting coverage

drops and, in practice, the coverage oscillates between peaks

of about 880 users and long intervals (about 40% of the time)

with only 470 users covered, which is what can be covered

by the ground base stations. Different scenarios, not illustrated

here due to space constraints, show similar results, except the

coverage with more aBSs is not guaranteed to be better than

with less aBSs, as commented above. Therefore, the limitation

of a greedy approach is two-fold: (i) it can force the operation

of an unnecessarily high number of aBSs, and (ii) coverage

is unstable and the network incurs long periods in which the

offered service is poor. The performance drops of Greedy are

extreme and lead to periods in which no aBS is available,

because all of them are either swapping/charging the battery

or waiting for their turn to do so at the RS. This behavior

could be certainly obviated by, e.g., using batteries with non-

homogeneous charge levels or by introducing a phase shift

in the operation of aBSs. However, what cannot be easily

prevented is that the service level varies over time. In contrast,

HRR offers a simple solution that enables a stable number of

active aBSs, so that operators can guarantee a stable network

service at all times.

V. CONCLUSIONS

We derived HRR to recharge drones that assist the operations

of a cellular network, with the specific example of network

coverage. HRR is optimal, as proven in the paper, in the

sense that it solves the problem of finding how many back-up

drones are needed to guarantee stable network performance

or, equivalently, how many drones can serve as active aBSs

at all times when the operators dispose of a fixed number

of drones. Our result is paramount to correctly dimension a

network of relay drones with realistic drone energy constraints,

at minimal cost. Having an optimal strategy that guarantees a

constant number of servicing drones results to be crucial to

guarantee the maximum stable network service at all times, in

comparison to suboptimal recharging strategies.
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