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Abstract
Road traffic casualties represent a hidden global epi-
demic, demanding evidence-based interventions. This
paper demonstrates a network lattice approach for iden-
tifying road segments of particular concern, based on
a case study of a major city (Leeds, UK), in which
5862 crashes of different severities were recorded over
an 8-year period (2011–2018). We consider a family
of Bayesian hierarchical models that include spatially
structured and unstructured random effects to capture
the dependencies between the severity levels. Results
highlight roads that are more prone to collisions, rela-
tive to estimated traffic volumes, in the north-west and
south of city centre. We analyse the modifiable areal unit
problem (MAUP), proposing a novel procedure to inves-
tigate the presence of MAUP on a network lattice. We
conclude that our methods enable a reliable estimation
of road safety levels to help identify ‘hotspots’ on the
road network and to inform effective local interventions.
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1 INTRODUCTION

Road casualties have been described as a global epidemic, representing the leading cause of death
among young people worldwide (see, e.g. MacKay 1972; Nantulya & Reich, 2002). Car crashes
and other types of collisions are responsible for more than 1 million deaths each year (1,250,000
in 2015, 17 deaths per 100,000 people), as reported by World Health Organization (2018). In
high-income nations, such as the United Kingdom (UK), the roads are safer than the global aver-
age, but car crashes are still the cause of untold suffering. According to the statistics published
by the UK’s Department for Transport (DfT) in the Annual report on Road Casualties in Great
Britain (Department for Transport, 2020), approximately 153,000 road traffic collisions resulting
in casualties were recorded in 2019, 5% lower than 2018 and the lowest level since records began,
in 1979. Nevertheless, the DfT estimates that approximately 33,648 people were killed or seriously
injured (KSI) in 2019, and while this number is slightly lower than in 2018, the decaying rate has
been getting lower and lower starting from 2010. These figures are worrisome considering that
car occupant fatality rates are particularly high in the 17–24 age band (Department for Transport,
2020, p. 17)

To tackle the flattening trend in the KSI rate over the past decades, a range of interventions
are needed, and analytical approaches can help prioritise them. This paper presents a statistical
model to identify street sections with anomalously high car crashes rates, and to support police
responses and cost-effective investments in traffic calming measures (PACTS, 2020).

Statistical models of road crashes have become more advanced over time. In the 1990s, models
tended to consider only the discrete and heterogeneous nature of the data (Miaou, 1994; Miaou
& Lum, 1993; Shankar et al., 1995), omitting spatial characteristics. More recent statistical mod-
els of crash data include consideration of crash location in two-dimensional space, with three
main advantages for road safety research (El-Basyouny & Sayed, 2009). First, consideration of
space allows estimating appropriate measures of risk (such as expected counts, rates or prob-
abilities) at different levels of resolution and the subsequent ranking of geographical areas to
support local interventions. Second, spatial dependence can be a surrogate for unknown, poten-
tially unmeasured (or unmeasurable) covariates; adjusting for geographical location can reduce
model misspecification (Cressie, 1993; Dubin, 1988). Third, the spatial dimension can be used to
take advantage of autocorrelation in the relevant variables, borrowing strength from neighbouring
sites and improving model parameter estimation.

Road crash data sets, which are typically available on a single accident basis, can be spatially
aggregated in two main ways: administrative zones (such as cantons, census wards or regions)
or street network features (either as contiguous segments or divided into corridors and intersec-
tions). In both cases, the spatial support is a lattice, that is a countable collection of geometrical
units (polygons or lines, respectively), possibly supplemented by a neighbourhood structure. Sev-
eral papers addressed the statistical modelling of crash frequencies at the areal level, based on
available zoning systems in the study region (see, e.g. Aguero-Valverde & Jovanis, 2006; Boulieri
et al., 2017; Miaou et al., 2003; Noland & Quddus, 2004). The second approach has gained in pop-
ularity in recent years, with a number of papers analysing road crash events aggregated to the
street level (see, e.g. Aguero-Valverde & Jovanis, 2008; Miaou & Song, 2005; Wang et al., 2009), as
detailed in several review papers (Lord & Mannering, 2010; Savolainen et al., 2011; Ziakopoulos
& Yannis, 2020). In reference to street level data, we note that there has been a recent surge of
research for spatial point patterns living on networks (Baddeley et al., 2021; Cronie et al., 2020;
Rakshit et al., 2019).

Both zone and network level approaches have advantages, notably computational require-
ments for the former and spatially disaggregated results for the latter. Given that computational
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resources are less of a constraint in the 2020s than they were in previous decades, and the fact that
it is the nature of roads (not zones) that is responsible for crashes, we argue that road segments
are the more appropriate aggregation units for the analysis of road crash data. Network analysis
can be used to bring attention to specific segments, and, for these reasons, the models presented
in the next sections were developed considering a network lattice.

Aggregation, for example number of crashes per road segment, enables comparison between
different road segments. However, spatial aggregation also leads to a well-known problem in geo-
graphical analysis, the modifiable areal unit problem (MAUP), first described in Openshaw and
Taylor (1981): the size of the spatial units impacts on the statistical analysis, influencing and possi-
bly biasing modelling choices and results. Hence, conclusions drawn at one scale of spatial aggre-
gation might not necessarily hold at another scale or be somehow different. The MAUP has been
mainly ignored in the road safety literature and, as reported by Xu et al. (2018) and Ziakopoulos
and Yannis (2020, p. 21), it is mentioned only in a handful of recent papers (Abdel-Aty et al., 2013;
Briz-Redón et al., 2019b; Ukkusuri et al., 2012; Zhai et al., 2019), which explore the impact of
changing the areal zoning system (e.g. TAZ, block groups and census tracts) on parameter esti-
mates, significance and hotspot detection. Only one early paper (Thomas, 1996) could be found
exploring the impact of MAUP on crash data at the street segment level, albeit only in terms of
summary statistics of aggregated counts. To assess the MAUP effect on network data modelling,
we employed an algorithm to modify the structure of a road network, merging contiguous seg-
ments in the same corridor while preserving the geometrical properties of the network (Padgham,
2019). Then, we compared the results obtained with the two different network configurations. To
the best of our knowledge, this is the first attempt at exploring and estimating the presence and
the magnitude of MAUP in models that consider a network lattice.

Finally, we note that systems of collision classification present a multivariate nature (Kirk
et al., 2020). The occurrences of different severity degrees can be correlated to each other, and
their spatial dynamics can be potentially interdependent. Hence, it is necessary to account for
correlations between crashes counts at different levels of severity. We consider two types of acci-
dents: slight and severe. The severe class is very sparse in the data set at hand, hence modelling
both types of accidents simultaneously allows to borrow strength from the existing correlations
and improves estimates. We underline that the methodology for classifying the severity level of
a car crash in the UK has been modified starting from 2016, adopting the injury-based systems
called CRASH and COPA (Braunholtz & Elliott, 2019). All police forces are gradually adopting
these new reporting systems in England, and the Office for National Statistics (ONS) developed a
logistic regression model to correct the severity levels between different years and classification
systems. The data used in this paper have been adjusted using the procedures developed by ONS
(Department for Transport, 2020, p. 38–41).

Following ideas introduced in Barua et al. (2014), we consider a range of competing mod-
els, developed in a full Bayesian hierarchical paradigm. This approach allows one to encompass
complex structures of spatial dependence in a quite natural way. Spatially structured random
effects are defined using both intrinsic multivariate conditional autoregressive (IMCAR) and
proper multivariate conditional autoregressive (PMCAR) priors (Besag, 1974; Mardia, 1988;
Martínez-Beneito & Botella-Rocamora, 2019; Palmí-Perales et al., 2021). Lord and Mannering
(2010), Savolainen et al. (2011), and Ziakopoulos and Yannis (2020) review other examples of
multivariate car crashes models on a network.

The case study is the metropolitan area of Leeds (population 800,000) in North England.
We accessed Ordnance Survey data on major roads (3661 segments, total length 450 km), creat-
ing a spatial network substantially larger than previous studies, many of which report findings
on only a few roads, with Borgoni et al. (2020) representing a notable exception albeit with a
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simpler spatial structure. We present results for an entire metropolitan area, approximating more
closely the level at which road policing activities and investments in road safety interventions
are prioritised. The scale of the case study presented several computational challenges, and, in
terms of Bayesian parameter estimation, we used the computationally efficient integrated nested
laplace approximation (INLA) approach instead of Markov chain Monte Carlo (MCMC) sampling
(Lindgren & Rue, 2015; Rue et al., 2017).

The rest of the paper is organised as follows. In Section 2, the data sources are described. In
Section 3, the statistical methodology adopted in this paper is discussed in detail. In Section 4, the
main results of the paper are presented whereas model criticism and further model discussion,
such as MAUP analysis, are provided in Section 5. Conclusions, in Section 6, end the paper.

2 DATA

The data sets analysed in this paper came from several different sources and required a number
of preprocessing steps before they could be made into a structure suitable for a statistical analysis.
The study region was defined as the middle super output area (MSOA) zones within the local
authority of Leeds. The City of Leeds was selected because it is a car-dependent city with a large
network of major roads that approach the city centre (the city was dubbed the ’motorway city of
the 70s’) and would therefore be expected to be a place where road safety could be improved. Leeds
is part of West Yorkshire and accounts for approximately 40% of all car crashes in the region.

Origin-destination data from the 2011 UK Census were used to estimate traffic volumes, to
provide an estimate of exposure, with traffic volumes used as part of the denominator of the sta-
tistical models presented in Section 3. The road network was obtained from Ordnance Survey,
covering all major roads in Leeds. We matched the network and the MSOAs using an overlay oper-
ation. We associated all car crashes that occurred in the city of Leeds from 2011 to 2018 with the
nearest point on the road network, counting the occurrences in each street segment. Finally, a set
of socio-economic variables obtained from 2011 UK Census data were included in the statistical
models as fixed effects.

2.1 MSOA zones

There are 6791 MSOAs in England, 299 of which belong to the West Yorkshire region and 107
of which constitute Leeds. These were accessed from the github-page1 of Propensity Cycle Tool
(Lovelace et al., 2017). The MSOAs represent the starting point for all the following steps, and
they are mapped in Figure 1 as grey polygons for the West-Yorkshire, and as dark-green polygons
for the City of Leeds. The inset map is used to locate the study-area in the British territory.

2.2 Traffic flow

The traffic flow data represent the commuting journeys from home to workplace using several
modes of transport, such as train, bus, bike and motorcycle. The data were collected during the
2011 Census at the individual level, and then aggregated at the MSOA level. The UK Data Service
shares the flow data through the WICID interface as cross-tables reporting the flows between all

1https://github.com/npct/pct-outputs-regional-R/tree/master/commute, last access on 06/2020.

https://github.com/npct/pct-outputs-regional-R/tree/master/commute
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F I G U R E 1 The grey polygons show the middle super output areas in West-Yorkshire region, while the
dark-green area highlights the city of Leeds. The inset map locates the position of the study-area with respect to
England

(a) (b)

F I G U R E 2 Raw and modified traffic flows in the area of Leeds. The map on the right highlights several
contiguous middle super output areas that correspond to the arterial thoroughfares that are used to reach the
City Centre

pairs of a predefined set of MSOAs (UK Data Service Census Support, 2014). We considered the
commuting flows in the region of Leeds for all possible modes of transport. Figure 2a shows a
random sample of 1000 traffic flows (out of 10,536 in total) between the centroids of the MSOAs
in Leeds, coloured according to the number of daily commuters.

Raw WICID data, however, ignore that people may travel to their workplace through several
MSOAs. For this reason, we calculated a new traffic measure using the following procedure. Start-
ing from the MSOAs, we defined a graph where the vertices are the centroids of each area, and the
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edges connect neighbouring areas. Then, we estimated the shortest path for all commuting jour-
neys downloaded from WICID and assigned to each MSOA a value that is equal to the number of
all raw traffic measures going through the area. These values represent the new traffic measures
and are displayed in Figure 2b. A similar approach was also adopted in Boulieri et al. (2017), and
we refer to the references therein for more details. The raw data flows and the MSOAs polygons
were downloaded using the R package pct (Lovelace & Hama, 2020).

2.3 Road network

The road network was built using data downloaded from Ordnance Survey (OS), an agency that
provides digital maps and other services for location-based products (Ordnance Survey, 2020).
We downloaded the Vector OpenMap Local data for a geographical region covering Leeds,
selected the Roads and Tunnels layers, and filtered the streets that belong to the city. Ordnance
Survey represents all the streets of a road network as the union of a finite set of segments, and it
includes additional fields such as the road name or the street type. These segments represent the
elementary units for the statistical analysis described in Section 3.

The road network downloaded from OS is composed of approximately 50,000 segments. The
OS network was simplified using the following procedure. We first selected only the major roads,
such as the Motorways, Primary Roads and A roads. They represent 3668 segments, that is less
than 10% of the total road network, but more than 50% of all car crashes registered during
2011–2018 occurred in their proximity. The output of this procedure is a road network composed
by a big cluster of connected streets, displayed in Figure 4a, and several isolated segments of small
groups of road segments (which are also called islands), created by the exclusion of their links to
the other roads. These small clusters can be problematic from a modelling perspective since they
produce a not-fully connected network (see Freni-Sterrantino et al., 2018; Hodges et al., 2003 and
the properties of ICAR and IMCAR distributions explained in Section 3), so we implemented an
algorithm to further simplify the road network and remove them. This algorithm is based on the
dual representation of a road network as a geographical entity, composed by points and lines, and
a graph object, with nodes and edges (Gilardi et al., 2020; Marshall et al., 2018; Porta et al., 2006).
More precisely, we created a graph whose vertices correspond to the street segments of the road
network, and we defined an edge for each pair of spatial units sharing a point at their bound-
aries. This graph uniquely determines a (sparse) adjacency matrix amongst the spatial units (i.e.
the road segments) that summarises the graph dimension of the road network. We sketched a toy
example in Figure 3, representing the idea behind the dual representation of a road network and
the definition of the adjacency matrix.

Using the graph and the adjacency matrix, we excluded all road segments that did not belong
to the main cluster. In particular, we dropped seven segments spread across different parts of the
city with a total length of approximately 380 m (out of 450 km). That also implied that we removed
from the analysis three car crashes that occurred in those segments (see below). However, given
the extremely small fraction of records discarded from the data set, we expect that excluding these
observations does not influence the final results. It should be stressed that this procedure creates
a fully connected network, which has relevant benefits on the rank-deficiency problem of the
ICAR models described in Section 3.

In the end, the road network is composed of 3661 units, and it is shown in Figure 4a, where
the segments are coloured according to their road types. The segments have different lengths,
ranging from 0.1 m to 2597 m, with an average value of 118 m (sd = 178 m). As explained in
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F I G U R E 3 Graphical example showing the dual nature of a road network. Left: map showing the
geographical dimension. Each segment is coloured and labelled using a different ID and colour respectively.
Right: adjacency matrix of the graph associated with the road network. Each vertex corresponds to a segment
whereas an edge connects two vertices if they share one boundary point. For example, segments 1 and 2 are not
neighbours since they do not share any point at the boundaries, even if they intersect each other. This situation
may occur at bridges or overpasses

(a) (b)

F I G U R E 4 The map on the left represents the road network in Leeds. Each segment is coloured according
to its OS classification. The black dots represent the car crashes. On the right, we report a choropleth map
displaying severe car crashes counts

the next Section, these lengths are used in the exposure parameter of the statistical models in
order to guarantee a comparable rate amongst the network units. Finally, since the street network
and the MSOAs are spatially misaligned, they were matched using an overlay operation: each
road segment was assigned to the MSOA that intersects the largest fraction of the segment. This
procedure allows us to assign a traffic estimate to each road segment, which will be used in the
exposure parameter (along with the segments’ lengths) in the statistical models considered below.
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2.4 Road traffic collision data

We analysed all road traffic collisions that occurred between 1 January 2011 and 31 December
2018 in the MSOAs pertaining to the City of Leeds, which involved at least one personal injury,
occurred on public roads and became known to the Police forces within thirty days of the occur-
rence. The geographical coordinates of the crashes are provided at 10m or less resolution in the
UK’s official coordinate reference system (the Ordnance Survey National Grid, EPSG code 27700)
depending upon the year to which the data refer to (Department for Transport, 2011). Hence, we
adopted this value as a threshold to account for the potential misalignment between the event
locations and the network and excluded all those events that occurred farther than ten meters
from the closest segment in the simplified road network since they might be related to other
streets. The data were downloaded from the UK’s official road traffic casualty database, called
STATS19, using the homonym R package (Lovelace et al., 2019).

STATS19 data also report the severity level of each casualty using one of three possible cate-
gories: fatal, serious or slight. In particular, a collision is classified as fatal if it involved a human
casualty whose injuries caused his death less than thirty days after the accident; severe if at least
one person was hospitalised after the accident or recorded a particular type of injury (like con-
cussions or severe cuts), and slight in all the other cases. We harmonised the severity levels for
different years and police forces using the CRASH methodology (Braunholtz & Elliott, 2019;
Department for Transport, 2020), and we decided to aggregate serious and fatal levels since fatal
crashes represent approximately 1% of the total number of car accidents. Henceforth, we will refer
to serious or fatal crashes as severe accidents.

As mentioned above, we focussed on car crashes that occurred in a public highway and
involved personal injuries. In general, however, there is no obligation for people to report all per-
sonal injury accidents to the police and, for this reason, a proportion of non-fatal and no-injury
casualties remain unknown to the police (Department for Transport, 2020). Hence, we acknowl-
edge that slight accidents counts considered hereinafter may suffer under-reporting to some
extent. We refer to Savolainen et al. (2011, section 2.1) and references therein for more details.

The final sample is composed of 5862 events, and they are reported as black dots in Figure 4a.
Then, we projected all crashes to the nearest point on the road network, and we counted the
number of slight or severe occurrences on all street segments. We decided to ignore the temporal
dimension since severe crashes counts present an extreme sparsity, with more than 80% of zero
counts during 2011–2018. Moreover, 40% of all segments registered no car crashes during the
study period, while another 40% reported two or more crashes. These numbers highlight a com-
mon temporal trend between the 8 years, and we refer the interested reader to the supplementary
material for a space-time representation. The map in Figure 4b shows the spatial distribution of
severe crashes counts.

2.5 Socio-economic covariates

The statistical models described in Sections 3 and 4 include two socio-economic covariates that
were obtained from the 2011 UK Census data and downloaded from Nomis website.2 In particular,
we consider the population density (given by the ratio of the number of inhabitants in a given
region and its area in squared metres) and the employment rate (given by the ratio of employed

2https://www.nomisweb.co.uk/. Last access: 06/2021.

https://www.nomisweb.co.uk/
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population between 16 and 64 and total population between 16 and 64). Both covariates were
obtained at the LSOA level (a more detailed aggregation level than MSOA) and, for the same
reasoning as before, they were matched with the street segments using an overlay operation.

3 STATISTICAL METHODOLOGY

We first focus on the definition of a three-level hierarchical model structure which is shared
among all the alternative specifications considered below. Then, we introduce two baseline
models that serve as benchmarks and starting points for the other specifications. Thereafter,
four different extensions to the baseline models are introduced. Finally, some techniques used
for model comparison are discussed. The common theme behind all the six alternatives is the
presence of spatially structured and unstructured multivariate random effects.

Let Yij, i = 1, … ,n, represent the number of car crashes that occurred in the i-th road seg-
ment with severity level j, j = 1, … , J. In this paper, we consider two possible severity levels, a
car crash being either severe, j = 1, or slight, j = 2.

In the first stage of the hierarchy, we assume that

Yij|𝜆ij ∼ Poisson
(

Ei𝜆ij
)
,

where Ei is an exposure parameter and 𝜆ij represents the car crashes rate in the ith road segment
for severity level j. As mentioned in the previous section, the exposure parameter, Ei, is given by
the product of two quantities (Wang et al., 2009): the segment’s length and the estimate of traffic
flow (see Section 2). The exposure accounts for the fact that a longer street segment has a higher
collision risk than a shorter one, guaranteeing that comparable rates amongst units (segments)
are preserved. At the same time, the traffic flow estimates allow different segments of the network
to be ‘weighted’ differently, being more exposed to accidents those segments with a higher traffic
flow, all the rest being fixed.

At the second stage of the hierarchical model, a log-linear structure on 𝜆ij is specified. We
assume that

log
(
𝜆ij
)
= 𝛽0j +

M∑
m=1

𝛽mjXijm + 𝜃ij + 𝜙ij,

where 𝛽0j represents a severity-specific intercept,
{
𝛽mj

}M
m=1 is a set of coefficients, (Xij1, … ,XijM)

is a collection of M covariates, 𝜙ij is a spatially structured random effect and 𝜃ij represents a
normally distributed error component. The third stage that completes the hierarchical model is
the specification of prior and hyperprior distributions. We assigned a vague N(0,1000) prior to
𝛽mj, m = 0, … M. The two random effects, namely 𝜃ij and 𝜙ij, represent the unstructured and
structured spatial components and are defined differently in different models as discussed below.
Hereafter, we follow the notation used in Martínez-Beneito and Botella-Rocamora (2019).

3.1 Baseline models: independent spatial and unstructured effects

The two baseline models are defined considering multivariate spatial and unstructured ran-
dom effects with independent components. More precisely, a bivariate Gaussian prior with
independent components is assigned to (𝜃i1, 𝜃i2) for both baseline models:
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(𝜃i1, 𝜃i2) ∼ N2

(
0,

[
𝜎2
𝜃1

0

0 𝜎2
𝜃2

])
, i = 1, … ,n. (1)

We assigned a Gamma hyperprior with parameters 1 (shape) and 0.00005 (inverse scale) to the
inverse of 𝜎2

𝜃1
and 𝜎2

𝜃2
, that is the precisions.

The spatially structured term in the first baseline model was defined using an independent
intrinsic multivariate conditional autoregressive (IIMCAR) prior, whereas, for the second model,
we adopted an independent proper multivariate conditional autoregressive (IPMCAR) prior. The
IIMCAR and IPMCAR distributions are briefly introduced hereafter, starting from their classical
univariate counterparts, namely the ICAR and PCAR distributions.

Univariate spatial random effects are traditionally modelled using a prior that belongs to the
family of conditional autoregressive (CAR) distributions (Besag, 1974). Given a random vector
𝝓 = (𝜙1, … , 𝜙n), the intrinsic conditional autoregressive (ICAR) distribution, which is a particular
case of the CAR family, is usually defined through a set of conditional distributions (Besag &
Kooperberg, 1995):

𝜙i|{𝜙i′ , i′ ∈ 𝜕i}; 𝜎2 ∼ N

(
m−1

i

∑
i′∈𝜕i

𝜙i′ ,
𝜎2

mi

)
, i = 1, … ,n, (2)

where 𝜕i and mi denote, respectively, the indices and the cardinality of the set of neighbours for
spatial unit i. These quantities are defined through a sparse binary symmetric neighbourhood
matrix W with dimensions n × n that summarises the spatial relationships in the region of study.
We built it taking advantage of the dual representation of a road network as a spatial and a graph
object (see Porta et al. (2006) and Section 2). More precisely, W is the adjacency matrix of a graph
whose vertices correspond to the street segments of the road network and the edges identify a
shared point at the boundaries of two spatial units. This procedure defines a first-order neigh-
bourhood matrix. Second- and third-order neighbourhood matrices are defined iteratively in the
same way.

It is possible to prove that the prior defined by Equation (2) suffers from rank-deficiency prob-
lems, that are usually fixed by imposing a set of sum-to-zero constraints on the vector 𝝓, one for
each group of connected segments in the graph of the road network (Hodges et al., 2003). In this
paper, we deal with a fully connected road network (see the pre-processing procedures detailed
in Section 2), so we always had to fix only one set of constraints.

The proper conditional autoregressive (PCAR) distribution is another member of the CAR
family and it is usually defined as follows:

𝜙i|{𝜙i′ , i′ ∈ 𝜕i}; 𝜎2, 𝜌 ∼ N

(
𝜌

(
m−1

i

∑
i′∈𝜕i

𝜙i′

)
,
𝜎2

mi

)
, i = 1, … ,n, (3)

where 𝜕i and mi are defined as for the ICAR distribution and 𝜌 is a parameter controlling the
strength of spatial dependence, usually called spatial autoregression coefficient (Cressie, 1993). It
is possible to prove that the joint distribution defined by Equation (3) is proper if |𝜌| < 1, hence
there is no need to set any sum-to-zero constraint in this case. The ICAR prior can be seen as a limit
case of the PCAR distribution with 𝜌→ 1, analogously to the relationship between autoregressive
and random-walk models in time series models (Botella-Rocamora et al., 2013).
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The family of multivariate conditional autoregressive (MCAR) distributions was firstly intro-
duced by Mardia (1988), extending the ideas of Besag (1974) to the multivariate case. Given a
random matrix 𝚽 = (𝜙ij), which is defined for i = 1, … , n units and j = 1, … , J levels, the
intrinsic multivariate conditional autoregressive (IMCAR) distribution is a particular case of the
MCAR family, defined through a set of multivariate conditional distributions (Martínez-Beneito
& Botella-Rocamora, 2019):

𝚽i⋅|vec (𝚽−i⋅) ; Ω ∼ NJ

(
m−1

i

∑
i′∈𝜕i

𝚽T
i′⋅;m−1

i Ω−1

)
. (4)

The terms𝚽i⋅ and𝚽−i⋅ denote, respectively, the ith row of𝚽 and the matrix obtained by excluding
the ith row from 𝚽. The vec operator is used for row-binding the columns of a matrix, meaning
that vec (𝚽−i⋅) =

(
𝚽T

−i1, … ,𝚽T
−iJ

)T . The elements mi and 𝜕i are defined as before, through the
adjacency matrix W of the graph associated to the road network, and they represent the spatial
dimension of the IMCAR distribution. The J × J precision matrix Ω is used to model the associ-
ations between pairs of levels in the same road segment i, and it acts as a multivariate extension
of the parameter 𝜎2 in Equation (2).

This distribution suffers from the same rank-deficiency problems as its univariate counter-
part, which are usually solved by imposing appropriate sum-to-zero constraints. The number of
restrictions is equal to the number of clusters in the graph of the road network times the num-
ber of levels in the multivariate setting. The pre-processing operations that we performed on the
network data (see Section 2) imply that we always have to set only J sum-to-zero constraints.

The IIMCAR distribution is a particular case of (4), which is obtained by setting Ω−1 =
diag(𝜎2

𝜙1
, … , 𝜎2

𝜙J
). More precisely, if we assume J = 2 as we do in this paper, then IIMCAR is

defined by the following set of multivariate conditional distributions:

𝚽i⋅|vec (𝚽−i⋅) ; 𝜎2
𝜙1
, 𝜎2

𝜙2
∼ N2

(
m−1

i

∑
i′∈𝜕i

𝚽T
i′⋅;m−1

i

[
𝜎2
𝜙1

0

0 𝜎2
𝜙2

])
. (5)

In Equation (5), we are assuming independence between the 2 levels, and this implies that the
IIMCAR distribution is equivalent to two independent ICAR distributions, one for each level.

Analogously to the univariate case, the proper multivariate conditional autoregressive
(PMCAR) distribution is a particular case of the MCAR family characterised by the following set
of multivariate conditional distributions:

𝚽i⋅|vec (𝚽−i⋅) ; 𝜌,Ω ∼ NJ

(
m−1

i 𝜌
∑
i′∈𝜕i

𝚽T
i′⋅;m−1

i Ω−1

)
. (6)

The strength of the spatial dependence is controlled by 𝜌 (as for the univariate PCAR distribution)
and all the other parameters are defined as before. It can be proved that the joint distribution
defined by Equation (6) is proper if |𝜌| < 1, although we restricted ourself to 𝜌 ∈ (0, 1) to avoid
some counter-intuitive behaviour of the PMCAR distribution (Miaou & Song, 2005; Wall, 2004).

The IPMCAR distribution is defined as a particular case of Equation (6) with Ω−1 =
diag(𝜎2

𝜙1
, … , 𝜎2

𝜙J
). More precisely, if we assume J = 2, then IPMCAR is defined through the

following set of multivariate conditional distribution:
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𝚽i⋅|vec (𝚽−i⋅) ; 𝜌, 𝜎2
𝜙1
, 𝜎2

𝜙2
∼ N2

(
m−1

i 𝜌
∑
i′∈𝜕i

𝚽T
i′⋅;m−1

i

[
𝜎2
𝜙1

0

0 𝜎2
𝜙2

])
. (7)

For the same reasoning as in Equation (5), the IPMCAR distribution is equivalent to J indepen-
dent PCAR distributions.

Now we can characterise the random effects for the two baseline models. The first model was
defined by considering unstructured random effects with a bivariate independent Gaussian prior
(1), and spatial random effects with an IIMCAR prior (5). The second one was defined analogously
to the first baseline model, but assuming an IPMCAR distribution for the spatial random effects
(7). These models assume independence between the two levels both in the spatial and unstruc-
tured components, so they were used as benchmarks. In the next sections, we will also refer to
the two baseline models using, respectively, the codes (A) and (B). We assigned an improper prior
to 𝜎2

1 and 𝜎2
2 , the variances in Ω, defined on R+, and a Uniform(0,1) prior to 𝜌.

Hereafter we introduce two increasingly complex sets of extensions that generalise the base-
line models. The first one is characterised by the removal of the independence assumption from
the spatially structured random effects, whereas in the second set of extensions, we also relax the
independence assumption from the unstructured random effects.

3.2 Model extensions

3.2.1 First set of extensions

Starting from the baselines, we defined two new models replacing the IIMCAR and IPMCAR
priors with their non-independent multivariate counterparts, the generic IMCAR and PMCAR
defined above. If we assume J = 2, then the variance-covariance matrix Ω−1 in (4) and (6) can be
written as

Ω−1 =

[
𝜎2
𝜙1

𝜌𝜙𝜎𝜙1𝜎𝜙2

𝜌𝜙𝜎𝜙1𝜎𝜙2 𝜎2
𝜙2

]

where 𝜎2
1 and 𝜎2

2 represent the conditional variances and 𝜌𝜙 represents the correlation coefficient
between the two levels in the same spatial unit. These models represent a generalisation of the
baselines since we are now taking into account the correlations between different levels in the
same road segment. We will also refer to them using, respectively, the codes (C) and (D). Following
Palmí-Perales et al. (2021), we assigned a Wishart hyperprior to Ω−1 with parameters 2 and I2,
that is the identity matrix of size two. The prior distributions on the unstructured random effects
were left unchanged with respect to the baselines.

3.2.2 Second set of extensions

In these models, the independence assumption of the spatially unstructured random effects is
removed. More precisely, assuming J = 2, we assign a generic bivariate Gaussian prior to the
unstructured random effects:

(𝜃i1, 𝜃i2) ∼ N2

(
0,

[
𝜎2
𝜃1

𝜌𝜃𝜎𝜃1𝜎𝜃2

𝜌𝜃𝜎𝜃1𝜎𝜃2 𝜎2
𝜃2

])
.
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T A B L E 1 Summary of the prior distributions assigned to the random effects in the models introduced in
Section 3

ID Model Unstructured effect Spatial effect

(A) Baseline 1 Independent Gaussian Independent IMCAR

(B) Baseline 2 Independent Gaussian Independent PMCAR

(C) Extension 1 - Model 1 Independent Gaussian IMCAR

(D) Extension 1 - Model 2 Independent Gaussian PMCAR

(E) Extension 2 - Model 1 Correlated Gaussian IMCAR

(F) Extension 2 - Model 2 Correlated Gaussian PMCAR

Parameters 𝜎2
𝜃1

and 𝜎2
𝜃2

represent the marginal variances of the unstructured random error,
whereas 𝜌𝜃 represents their correlation. These models will also be identified using the codes (E)
and (F). We assigned a Wishart hyperprior to the variance-covariance matrix with parameters 2
and I2.

Finally, following the ideas introduced in Gelfand and Vounatsou (2003), we also tested
an extension of model (F), named model (G), which is characterised by a generalisation
of the PMCAR distribution that introduces a separate spatial autoregression coefficient, 𝜌j,
for each level in 𝚽. We found that this extension did not improve over model (F). Hence,
we will not add more details here and refer the interested reader to the supplementary
materials.

The prior distributions adopted for the random effects in the two baselines and their exten-
sions are summarised in Table 1. We also included the IDs that will be used to identify each model
in subsequent Tables and Sections.

3.3 Model comparison

The models proposed in the previous paragraphs were compared using Deviance information
criterion (DIC) (Spiegelhalter et al., 2002) and Watanabe-Akaike information criterion (WAIC)
(Gelman et al., 2014; Watanabe, 2010). These criteria represent a measure for the adequacy of a
model, penalised by the number of effective parameters. In both cases, the lower is the value of
the index, the better is the fitting of the model.

4 RESULTS

We estimated the models previously described using the software INLA (Gómez-Rubio, 2020;
Lindgren & Rue, 2015; Rue et al., 2017), interfaced through the homonymous R package
(R Core Team, 2020). We used the simplified Laplace strategy for approximating the posterior
marginals and the central composite design strategy for determining the integration points. The
code behind the definition of multivariate ICAR and PCAR random effects is defined in the
package INLAMSM (Palmí-Perales et al., 2021). It took approximately 30–45 min to estimate
each model using a virtual machine with an Intel Xeon E5-2690 v3 processor, six cores, and
32GB of RAM.
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4.1 Fixed effects

The models listed in Table 1 share a common structure for the fixed effect component, with a
severity-specific intercept and a set of covariates representing some social and physical character-
istics of the road segments. In particular, we considered five severity-specific covariates, namely
the two socio-economic variables mentioned in Section 2, a dummy variable recording whether
a road segment lays in a dual carriageway street or not, the road type (either Motorway, Primary
Road or A Road, according to OS definition), and the edge betweenness centrality measure, which
reflects the number of shortest paths traversing each segment (Kolaczyk & Csárdi, 2014). The last
covariate can be considered as a proxy for the average vehicle miles travelled (VMT) (Briz-Redón
et al., 2019a), whereas the employment rates may represent an indirect measure of local eco-
nomic activities level. Finally, to improve the stability of INLA algorithms, we scaled all numerical
variables to zero mean and unit variance.

Table 2 shows the posterior means and standard deviations for the fixed effects. We first notice
that the estimates are stable among the models. The intercept for severe car crashes, 𝛽01, is found
slightly smaller than 𝛽02. This is not surprising since severe accidents are rarer than the slight
ones. The coefficients of edge betweenness centrality measures are found close to zero for all mod-
els, and their 95% credible interval (not reported in the table) always include the value zero. The
Road type parameters represent relative differences with respect to the reference category (i.e. A
Roads), hence Motorways are found less prone to severe and slight car crashes than A roads. A
similar finding was also reported by Boulieri et al. (2017) for UK data. An analogous interpre-
tation applies to Primary Roads. In agreement with other studies (see, e.g. Huang et al. (2017)
and references therein), we found that population density significantly correlates to both slight
and severe accidents, although its effect is stronger for the former type. On the other hand, the
second socio-economic variable was not found significant in any of the outcomes considered in
this paper. Unfortunately, more direct measures for local economic activity are not available and
are difficult to construct at such detailed spatial resolution. More work is needed to assess the
relationship between road safety and local economic levels. Finally, dual carriageway roads have
been found significantly less prone to slight car accidents, whereas no impact has been found for
severe car crashes. An analogous result was also reported by Castle and Lynam (2008).

4.2 Random effects

The posterior means and standard deviations for all hyperparameters are reported in Table 3,
which reflects the models’ nested structure, also summarised in Table 1. We started from two
baselines, (A) and (B), with independent random effects, and generalised them until model (F),
that presents multiple autocorrelation parameters between the two severity levels.

Models from (A) to (D), which assume independent unstructured random effects, exhibit a
degenerate posterior distribution of 𝜎2

𝜃1
, that is the variance of severe random component, and

this is possibly due to the severe car crashes sparseness. This problem gets mitigated once the
correlation parameter between the two severity levels is included in the model, suggesting that the
estimation procedure benefits from the inclusion of a multivariate structure that allows borrowing
strength from less rare events.

The estimates of 𝜎2
𝜃2

and 𝜌𝜃 are stable among the models, and the correlation parameter is
estimated as high as 0.40, suggesting a positive and mildly strong relationship between the two
random components. The posterior means for hyperparameters 𝜌 in models (B), (D), and (F),
always very close to one, which is not uncommon for this type of models (Carlin & Banerjee, 2003).
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T A B L E 3 Estimates for the posterior means and standard deviations, in round brackets, of
hyperparameters included in the models described in Table 1

ID 𝝈2
𝜽1

𝝈2
𝜽2

𝝆𝜽 𝝆 𝝈2
𝝓1

𝝈2
𝝓2

𝝆𝝓

(A) 0.0001 0.759 0.152 0.127

(0.0003) (0.049) (0.028) (0.019)

(B) 0.0001 0.578 0.996 0.373 0.347

(0.0003) (0.047) (0.0008) (0.052) (0.045)

(C) 0.0001 0.594 0.308 0.249 0.898

(0.0003) (0.048) (0.047) (0.035) (0.021)

(D) 0.0001 0.376 0.986 0.747 0.690 0.904

(0.0003) (0.054) (0.005) (0.121) (0.108) (0.019)

(E) 0.589 0.752 0.413 0.132 0.134 0.789

(0.081) (0.046) (0.013) (0.020) (0.017) (0.042)

(F) 0.484 0.643 0.405 0.997 0.276 0.269 0.829

(0.081) (0.046) (0.016) (0.001) (0.038) (0.033) (0.030)

The estimates of the posterior distributions for the two conditional variances, 𝜎2
𝜙1

and 𝜎2
𝜙2

, are
found less stable compared to the unstructured errors. The credible intervals of the two hyper-
parameters overlap in all models, indicating a similar spatial structure between the two kinds of
severities. The posterior mean of 𝜌𝜙, the correlation coefficient between the two severity levels, is
found approximately equal to 0.9 (models C and D) and 0.8 (models E and F), indicating a strong
multivariate nature for the spatial random component.

These results suggest that car crash data have a complex latent structure being the sever-
ity levels strongly correlated, and the spatially structured and unstructured effects statistically
relevant.

4.3 Model comparisons

We compared the models listed in Table 1 using DIC and WAIC criteria. The results are reported
in Table 4. We first notice that PMCAR models (i.e. (B), (D) and (F)) are found to perform always
better than their Intrinsic counterparts in terms of goodness of fit. They are somewhat unexplored
in the road safety literature on spatial networks, Miaou and Song (2005) being the only paper we
found that analyse the importance of a spatial autocorrelation parameter. However, our results
suggest that the PCAR distribution and its generalisations should deserve more attention.

Moving from (A) to (F) the model performance improves, indicating one more time the
benefits of considering a correlated multivariate structure for the spatial and the unstructured
components. In particular, model (F) is the best one according to both criteria; hence, hereafter,
we focus on this model.

4.4 Car crashes rates

Figure 5 displays the posterior means of car accident rates, 𝜆ij, estimated using model (F) both
for severe and slight crashes. The colours of the road segments were generated by dividing the
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T A B L E 4 Estimates of deviance information criterion (DIC) and Watanabe-Akaike information criterion
(WAIC) values for the models described in Section 3. The columns balanced accuracy—severe and balanced
accuracy—slight will be explained in Section 5

ID DIC WAIC
Balanced
accuracy—severe

Balanced
accuracy—slight

(A) 14462.56 14474.89 0.631 0.718

(B) 14408.06 14433.77 0.635 0.716

(C) 14269.79 14296.06 0.645 0.718

(D) 14154.09 14167.64 0.661 0.717

(E) 14122.46 14106.69 0.662 0.720

(F) 14103.44 14086.46 0.675 0.720

predicted values of each severity level into ten classes based on a set of quantiles ranging from
red (highest quantile) to blue (lowest quantiles). In both cases, the highest values correspond to,
approximately, one severe or ten slight car crashes every kilometre and every thousand of daily
commuters (i.e. the two quantities that define the offset). Moreover, the inset maps highlight a
few roads close to Leeds city centre (denoted by a black star).

The four maps show similar patterns, but some roads in the southern part of the city (especially
M621) look more prone to severe car crashes. The city of Leeds appeared to be divided into several
areas. The northern and north-eastern part of the city are associated with lower car accident rates
compared to other suburbs. The areas located in north-west, east and south of the city centre
seem to be associated with the highest levels of car crashes rates, especially severe ones. This is
probably linked with some congested arterial thoroughfares reaching the centre. Finally, we note
that the roads closer to the city centre are the safest part of the city network, as it is clearly shown
by the two inset maps in Figure 5.

5 MODEL CRITICISM AND SENSITIVITY ANALYSIS

Deviance information criterion and WAIC criteria were never intended to be absolute measures
of model fit, and they cannot be used for Model Criticism. Hence, we tested the adequacy of model
(F) using two strategies.

5.1 First strategy for criticism

The classical criterion for criticism of a Bayesian hierarchical model is the probability integral
transform (Held et al., 2010; Marshall & Spiegelhalter, 2003), typically adjusted in case of a discrete
response variable (such as car crashes counts) using a continuity correction. Unfortunately, these
adjustments do not seem to work appropriately when modelling sparse count data, such as severe
crashes, since the correction is not adequate. We refer the interested reader to the supplementary
material for more details.

Therefore, hereafter, we followed a different strategy. We binned the observed and predicted
counts into two classes: Zero and One or more car crashes. Then, we built a confusion matrix and
evaluated the model performance via some accuracy measures that are summarised in Table 5. A
similar procedure for sparse count data was also presented in Ma et al. (2017). We decided to adopt
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(a)

(b)

F I G U R E 5 Maps representing the posterior means for severe and slight car crashes rates, estimated using
model (F). The colours go from red (higher quantiles) to blue (lower quantiles). The black star indicates the city
centre, while the inset maps highlight the road network in its proximity

one as a threshold to dichotomise the variables since more than 80% of road segments registered
no severe car crash during 2011–2018. However, the algorithm proposed here can be extended to
three or more classes, defined using a set of different thresholds (such as Zero, One, and Two or
more road crashes).

The accuracy measure, usually adopted for evaluating the predictive performance of a model,
is typically biased and overly optimistic in case of unbalanced classes (such as Zero and One or
more severe car crashes per road segment), since, even in the worst case, it is as high as the percent-
age of observations in the more frequent class (Brodersen et al., 2010). The balanced accuracy, first
introduced by Brodersen et al. (2010), is defined as the average of sensitivity and specificity, and
it overcomes this drawback since it represents an average between the predictive performances
on each class.

The output of a Bayesian hierarchical model is an estimate of the posterior distribution of
predicted values, while the procedure reported in the previous paragraph can only be applied to
binary data. For this reason, we simulated n Poisson random variables (one for each road segment)
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T A B L E 5 The first two rows sketch a confusion matrix between observed and predicted counts after
binning them into two classes. The other rows define a few measures that can be used to evaluate the
predictive fit

Zero One or more

Zero A B

One or more C D

Sensitivity = A
A+B

Specificity = D
C+D

Accuracy = A+D
A+B+C+D

Balanced accuracy = 1
2

(
A

A+B
+ D

C+D

)

(a) (b)

F I G U R E 6 Distribution of balanced accuracy for severe crashes (left) and slight crashes (right), considering
a binary classification using the posterior mean and a set of quantiles. The red curve represents the mean

with mean equal to the mean of each posterior distribution. Then, we binned the observed and
sampled counts into two classes, that is Zero and one or more car crashes, and we compared the
two values, obtaining a single estimate of balanced accuracy. The distribution of the balanced
accuracy measure was finally approximated by repeating this procedure N = 5000 times.

Moreover, we calculated several quantiles of the posterior distribution of each predicted value,
and we run the same steps as before, sampling from a Poisson distribution with mean equal
to each of those quantiles. Lastly, being severe and slight car crashes potentially quite different
processes, this algorithm was applied independently for the two severity levels. We reported in
the supplementary material the pseudo-code for running this procedure, whereas results are dis-
played in Figure 6a (severe cashes) and Figure 6b (slight crashes). In both cases, the red curve
represents the distribution of balance accuracy obtained by a binary classification based on the
posterior means, whereas the other curves represent the same distribution obtained using the set
of quantiles.

It looks like the optimal threshold for binary classification of severe car crashes is given by
the 0.975-quantile, where the balanced accuracy distribution is concentrated around 0.675. The
optimal threshold for binary classification of slight car crashes is given by the median, and the dis-
tribution of balanced accuracy is centred around 0.72. These plots remark the differences between
the two severity levels in terms of sparsity, suggesting the adoption of a higher quantile for the pre-
diction of the more sparse events. However, using the appropriate cut-off(s), Model (F) seems to
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perform reasonably well in both cases with slightly better performance for slight car crashes. We
also explored the goodness of fit of model (F) estimating the balanced accuracy measure separately
for the three road classes and the two road carriageway types. We always obtained results simi-
lar to Figure 6. Moreover, we did not observe any relevant difference among the road typologies,
highlighting that model (F) successfully predicts traffic collisions in all tested situations.

The third column in Table 4 summarises the estimates of Balanced Accuracy obtained for
each model in Table 1 under the best scenario (i.e. the optimal quantile) for severe crashes, while
the fourth column summarises the same quantities for slight crashes. We notice that the accuracy
improves every time a new correlation term is included into a model, particularly for severe car
accidents, which is the rarer car crash typology. In fact, considering that improving risk estimation
of very rare events is one of the main reasons why one may want to adopt a multivariate model in
the first place, our results seem to suggest that the approach proposed in this paper represents a
reasonable way to investigate road collision dynamics.

5.2 Second strategy for criticism

Following the results illustrated before, we estimated the 0.975-quantile of 𝜆i1 (severe crashes)
and the median of 𝜆i2 (slight crashes), and we multiplied them by the corresponding offset values,
that is Ei. Then, we created a sequence of histograms of predicted values, grouped by the observed
counts categorised in four levels: 0, 1, 2 and 3 or more. The results are summarised in Figure 7.
Both graphs show a good agreement between predicted and observed number of crashes, since
the distributions corresponding to higher observed counts progressively move more and more to
the right. Moreover, Figure 7a shows the importance of our previous analysis and the pitfalls of
predicting severe car crashes counts using the posterior means.

5.3 Sensitivity analysis and the modifiable areal unit problem

Finally, we performed a sensitivity analysis evaluating the robustness of model (F) under different
specifications for (a) the hyperprior distributions, (b) the adjacency matrix and (c) the definition
of the segments in the road network.

(a) (b)

F I G U R E 7 Histogram of posterior 0.975-quantile (left) and posterior median (right), grouped by the
corresponding observed counts. Other means ‘Three or more’
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The models described in Section 3 considered a Wishart hyperprior for the precision matrix
𝛀 with rank equal to 2 and scale matrix equal to I2. We repeated the analysis using more
vague and more informative Wishart distributions, setting the scale matrix equal to diag(2, 2)
and diag(0.5, 0.5). We did not find any noticeable differences amongst alternative specifications.
Hence results are not reported hereafter, but we refer the interested readers to the supplementary
material.

We compared different definitions for the adjacency matrix W , testing second and third
order neighbours and distance-based spatial neighbours, considering the first order neighbours
in case two adjacent road segments were longer than the given threshold. Also in this case,
we did not find any noticeable differences as far as the estimation of the fixed effects is con-
cerned, whereas only small differences were found in the posterior distributions of the random
effects (especially for 𝜎2

𝜙1
and 𝜎2

𝜙2
when we considered a spatial adjacency matrix with a threshold

equal to 500m). However, worse DIC and WAIC values were found for models using alternative
definitions of W matrix, and we refer to the supplementary material for more details. Simi-
lar findings are also reported by Aguero-Valverde and Jovanis (2008), Wang et al. (2016) and
Alarifi et al. (2018).

Finally, we explored the influence of a particular configuration of the network segments on
our results. In fact, the location of the vertices (and, hence, the edges) in a road network cre-
ated with OS data is essentially arbitrary (although some minimal consistency requirements must
be satisfied, see Karduni et al. (2016) and Gilardi et al. (2020)), which implies that there is no
unique and unambiguous way of defining the lengths and relative positions of the road segments.
We, therefore, considered an alternative network configuration reshaping and contracting the
road network using an algorithm implemented in Padgham (2019). This algorithm manipulates
a network by excluding all redundant vertices, that is those vertices that connect two contiguous
segments without any other intersection (Padgham, 2019).

A toy example representing the ideas behind the contraction of a road network is sketched
in Figure 8. The red dots in Figure 8a represent redundant vertices since they can be removed
without tampering the shape or the routability of the network, meaning that excluding those
vertices does not add any new cluster to the graph structure. The goal is to remove all redundant
vertices and merge the corresponding edges, creating a graph which looks identical to the original
one but with fewer edges. Figure 8b shows the results of the contraction operations applied to
the toy network sketched in Figure 8a. We can see that the redundant vertices were removed,
combining the road segments that touched them.

Applying this algorithm produced a contracted road network with, approximately, 2700 seg-
ments (instead of the original 3661). Following the same procedures detailed in Sections 2 and
4, we calculated the number of severe and slight car crashes that occurred in each road seg-
ment, the traffic volumes (which are used as an offset), the edge betweenness centrality measures,
and the socio-economic covariates. The road type and the dual-carriageway dummy variables
were automatically determined since the algorithm did not merge two road segments with dif-
ferent classifications. Finally, we estimated model (F) and reported a summary of means and
standard errors of the posterior distributions of fixed and random effects in Tables 6 and 7,
respectively.

As far as the fixed effects are concerned, the new network configuration influences results
quite mildly, since the estimates of the coefficients did not change in sign, order of magnitude or
significance. As one could expect, the impact of the reshaping is slightly more pronounced for
the random effects, in particular for 𝜎2

𝜙1
and 𝜎2

𝜙2
, two of the four hyperparameters in the PMCAR

prior. The model trained on the contracted network presents a greater spatial uncertainty than
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(a) (b)

F I G U R E 8 Sketching of the algorithm used for contracting the road network. Red points on the left
represent redundant vertices

T A B L E 6 Means and standard deviations for the posterior distributions of the fixed effects in the model
estimated after contracting the road network

𝜷0 Betw Motorways Prim. Roads Ratio Empl. Pop. Dens. Dual Carr.

Severe: −15.187 0.015 −0.886 0.397 −0.015 0.218 −0.055

(0.303) (0.058) (0.186) (0.143) (0.070) (0.064) (0.120)

Slight: −13.521 0.029 −0.201 0.533 0.014 0.276 −0.321

(0.306) (0.038) (0.130) (0.114) (0.056) (0.050) (0.085)

T A B L E 7 Means and standard deviations for the posterior distributions of the hyperparameters in the
model estimated after contracting the road network

𝝈2
𝜽1

𝝈2
𝜽2

𝝆𝜽 𝝆 𝝈2
𝝓1

𝝈2
𝝓2

𝝆𝝓

mean: 0.331 0.500 0.374 0.997 3.543 3.978 0.938

sd: (0.108) (0.114) (0.032) (0.002) (0.645) (0.645) (0.021)

model (F), but similar posterior distributions for car crashes rates. We refer the interested readers
to the supplementary material, where we also reported the maps of car crashes rates using the
new network configuration.

Network reshaping and contraction is a network readaptation of the classical modifiable area
unit problem (MAUP), only recently explored by a handful of authors in the literature of road
safety models for areal data (see, for example, Xu et al. (2018) for an introduction, and Briz-Redón
et al. (2019b) for an extensive application). The main conclusion of these papers is that MAUP
severely impacts car crashes models, affecting the magnitude and significance of the estimates
for both fixed and random effects, hence it should never be ignored for a reliable road safety
analysis.

Our results tell a somewhat different story. The statistical analysis is found quite robust to
MAUP when carried out on a network lattice, possibly because the road network has a physical
geometrical meaning and, hence, a lower degree of arbitrariness than administrative boundaries.
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Hence, we suggest not to ignore the network structure of the data whenever it is available when
analysing car crashes data or other phenomena that naturally occur on a network. The only paper
that performs a descriptive analysis of the influence of road segment configurations on car crashes
counts is Thomas (1996), and, to the best of our knowledge, this is the first attempt to explore the
robustness of a statistical model for lattice network data to MAUP.

6 DISCUSSION AND CONCLUSIONS

This paper investigated the spatial distribution of road crashes in a major city using Bayesian
methods for road network analysis. The relationships between crashes of different severity lev-
els, either slight or severe, were modelled using a range of multivariate models to explore their
spatial dynamics. Key to the approach was constraining crash locations to the city’s road net-
work, a one-dimensional linear network composed of segments representing a spatial lattice. We
tested a range of multivariate hierarchical models with different random effects, and we found
that the best model (according to DIC, WAIC and balanced accuracy criteria) includes a multivari-
ate spatially unstructured random effect and a multivariate spatially structured PMCAR random
effect.

The physical and social environment of the street segments were considered in the model
specification. Our results, summarised in Tables 2 and 3, suggest that population density is posi-
tively correlated with severe and slight crashes, although the effect is stronger for the latter case.
On the other hand, the employment rate does not seem related with car crash occurrences, high-
lighting the importance of testing alternative proxies for local economic levels. As far as street
category is concerned, Primary roads have been found safer than A roads both for severe and
slight car crashes, whereas Motorways are significantly less prone to severe car accidents than A
roads. No significant effect is found for slight accidents. The betweenness centrality does not seem
to influence slight or severe accidents; this is an unexpected result which may deserve further
investigation, possibly with alternative proxies to measure the VMT. Finally, dual carriageway
roads have been found significantly less prone to slight car accidents, whereas no impact has been
found for severe car crashes. Other potentially relevant physical characteristics might be the traf-
fic speed, the line width, the presence of speed limits or junctions, the slope and the curvature
of the road segments. Unfortunately, these variables were not available to us at the time when
this paper was written. However, given the detailed network adopted in this paper, which is com-
posed of thousands of short segments, we believe that some of those variables may be of limited
relevance due to the short length of many segments. These unmeasured effects are accounted, to
some extent, by the second order parameters of the random effects included in our models.

Concerning this last point, we underline that the unstructured random effects are supposed
to reflect the uncertainty due to scarce sampling information (which may occur in small spatial
domains like road segments) as well as the differences among the segments, such as faults in
the pavements, crosses or junctions. These characteristics act as local shocks on the car crash
occurrences and, although unrelated in space, they act both on severe and slight car accidents.
Hence, the corresponding random effects are expected to be correlated and the parameter 𝜌𝜃 is
meant to measure this correlation.

Similarly, spatially structured random effects are expected to account for the impact of
unmeasured variables that have regularities is space (i.e. meteorological conditions or structural
characteristics of the roads not available in our analysis). These variables act both on severe and
slight car accidents and parameter 𝜌𝜙 is expected to measure the correlation between spatially
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structured random effects due to these components. Both correlations are found relevant in our
data, although the correlation between spatially structured effects is found stronger than the
other. Hence, we argue they both should be considered when modelling car crashes data. The
relevant interactions between the two severity levels allow one level to borrow strength from the
other and improve the estimation of the risk associated with each piece of the city road network,
especially for the rarer event.

We evaluated the sensitivity of our modelling approach to different hyperprior specifications
and adjacency configurations of the components of the lattice network, showing that the statis-
tical model presents substantial robustness in this respect. We finally considered the impact of
MAUP when modelling data collected on a spatial network. An algorithm was proposed in the
paper to assess the magnitude of MAUP effect in the estimates and model predictions. As men-
tioned above, differently from several previous studies that considered the MAUP for various areal
partitions of the spatial region of interest, we found that our results are quite robust under an alter-
native configuration of the road network. This can be related to the fact that road networks have
a physical meaning, hence they are expected to suffer MAUP less. Nevertheless, further research,
possibly in different fields, is definitely necessary to better understand the impact of MAUP on
network lattice data.

Finally, we remark that using areal units as spatial support ignores the fact that car crashes
cannot occur outside the road network, and ascribes an estimated risk to all the streets in that poly-
gon, whether or not they are actually exposed to it. Differently, using a lattice based on a network
structure draws attention to limited and specific parts of the spatial support. Hence, adopting a
more appropriate spatial disaggregation can be fundamental for local authorities to plan actions
(such as to install a new traffic light, add or remove roundabouts or enforce police control) to
mitigate this risk where it is found too high.

The ideas presented in this paper could be extended in several directions. A first step forward
could be focused towards the development of a spatiotemporal extension of model (F), following
the suggestions in Miaou and Song (2005), Wang et al. (2011), Boulieri et al. (2017) and Ma et al.
(2017). We point out, however, that this is not straightforward (and, to the best of our knowledge,
it was pursued only by Ma et al. (2017) using a single road divided into a few segments) given
the extreme sparse spatiotemporal nature of severe car crashes on a metropolitan road network.
Indeed, for the data set at hand, more than 95% of all car crashes registered no fatal or serious car
accident for any given year, something that could require a different methodological approach.
The procedure for MAUP detection could also be improved by developing new routines for test-
ing alternative algorithms for network reshaping and contraction, which were first developed for
areal data in the field of geography (see, e.g. Xu et al. (2018) and references therein).

An additional improvement to the approach could involve the development of spatial or
spatio-temporal theoretical point pattern models for car crashes on networks (Baddeley et al.,
2021). This approach represents a flexible and powerful way to investigate the spatial dynamics
of random events on a graph support and may provide a tool that largely circumvents the MAUP
problem. However, whereas it is moderately straightforward to include covariates in the bivariate
lattice models suggested in this paper, the theory of bivariate point pattern models on networks
and the inclusion of spatial covariates in this framework would require substantial methodolog-
ical development. In addition, most of the work in point pattern modelling is non-parametric
or semiparametric in nature, whereas the approach adopted in the present paper and, to same
extent, in the analysis spatial lattice data, is grounded in the Bayesian framework. In this sense,
the two approaches are complementary when modelling spatial or spatio-temporal dynamics
of crash data. A bridge between the two would be the log-Gaussian Cox processes, where a
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stochastic component is included in the intensity function to deal with the unexplained spatial
variation (Møller et al., 1998). Dealing with an intensity function governed by a spatial random
field, however, raises challenging methodological problems since defining a proper covariance
function on graph spatial support is not straightforward. Considering this issue is beyond the
scope of the present paper; hence, we do not discuss it further and leave it for future research.

It is clear that more research is needed to evaluate the full range of possible models for iden-
tifying crash ‘hot spots’ and highlight segments on the network. The approach presented in this
paper demonstrates the potential of network-based approaches to work at city scales for flexible
and robust estimates of crash rates, down to the road segment level, providing a foundation for
further work in the field.
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