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FIRST EIGENVALUE OF THE LAPLACIAN OF A GEODESIC BALL

AND AREA–BASED SYMMETRIZATION OF ITS METRIC TENSOR

VICENT GIMENO AND ERIK SARRIÓN-PEDRALVA

(Communicated by M. Krnić)

Abstract. Given a Riemmanian manifold, we provide a new method to compute a sharp upper
bound for the first eigenvalue of the Laplacian for the Dirichlet problem on a geodesic ball of
radius less than the injectivity radius of the manifold. This upper bound is obtained by trans-
forming the metric tensor into a rotationally symmetric metric tensor that preserves the area of
the geodesic spheres. The provided upper bound can be computed using only the area function
of the geodesic spheres contained in the geodesic ball and it is sharp in the sense that the first
eigenvalue of geodesic ball coincides with our upper bound if and only if the mean curvature
pointed inward of each geodesic sphere is a radial function.

1. Introduction

Let (M,g) be a n -dimensional Riemannian manifold, and let Ω⊂M be a precom-
pact domain with smooth boundary ∂Ω . The first eigenvalue λ1,g(Ω) of the Laplacian
for the Dirichlet problem on Ω is the smallest λ ∈ R such that there exists a non trivial
associated eigenfunction φ satisfying{

Δgφ + λ φ = 0, on Ω,

φ = 0, on ∂Ω,

where Δg is the Laplacian operator with respect to the metric tensor g , i.e.,

Δg =
1√
detg

n

∑
i, j=1

∂
∂xi

(√
detggi j ∂

∂x j

)

in local coordinates (x1, · · · ,xn) . Upper and lower bounds for the first eigenvalue have
been widely studied in terms of geometric invariants of the domain Ω .
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In [8] and [7] Cheng obtained upper and lower bounds for the first eigenvalue of the
Laplacian for the Dirichlet problem on a geodesic ball as follows: If the Ricci curvatures
Ricg of M are bounded from below by the Ricci curvatures of a n -dimensional simply
connected real space form (Mn

κ ,gκ) of constant sectional curvature κ , i.e.,

Ricg � (n−1)κ ,

then the first eigenvalue λ1,g(BR(p)) of the Laplacian for the Dirichlet problem of a
geodesic ball BR(p) of radius R centered at p ∈ M is bounded from above by

λ1,g(BR(p)) � λ1(R,κ), (1.1)

where λ1(R,κ) is the first Dirichlet eigenvalue of a geodesic ball of radius R in Mn
κ .

Conversely, if the sectional curvatures of M are bounded from above by the sectional
curvature of (Mn

κ ,gκ) , i.e.,
secg � κ ,

then the first eigenvalue λ1,g(BR(p)) of the Laplacian for the Dirichlet problem of a
geodesic ball BR(p) of radius R < min{injg(p),π/

√
κ}1 is bounded from below by

λ1(BR(p)) � λ1(R,κ). (1.2)

Moreover, inequalities (1.1) and (1.2) are sharp because equality is attained in both
inequalities if and only if BR(p) is isometric to the geodesic ball of radius R in Mn

κ .
In [2], Bessa and Montenegro, have obtained the same upper and lower bounds for

the first eigenvalue of the geodesic ball BR(p) but assuming that the mean curvature of
the geodesic spheres of (M,g) centered at p∈M are bounded by the mean curvature of
the geodesic spheres in Mn

κ . In particular, if the mean curvature pointed inward HSt(p)
of the geodesic spheres St(p) of M are bounded from above (resp. from below) by the
mean curvature pointed inward H(t,κ) of the geodesic sphere with the same radius of
M

n
κ , i.e.,

HSt(p) � H(t,κ)
(

resp. HSt(p) � H(t,κ)
)

,

for all point in St(p) and for all t ∈ (0,R) , then

λ1,g(BR(p)) � λ1(R,κ)
(

resp. λ1,g(BR(p)) � λ1(R,κ)
)

. (1.3)

In this case, like in the case where is assumed lower bounds for the Ricci or upper
bounds for the sectional curvatures, inequality (1.3) is sharp. But now, instead of an
isometry between geodesic balls, equality is attained in (1.3) if and only if HSt(p) =
H(t,κ) for all t ∈ (0,R) . Observe that the conclusion of an equality between the
mean curvatures pointed inward of geodesic spheres is a weaker than the conclusion
of an isometry between geodesic balls. Indeed, in example 5.3 of [3] is shown a 4-
dimensional geodesic ball non-isometric to the geodesic ball of M4

κ , but with HSt(p) =
H(t,κ) for all t ∈ (0,R) .

1where injg(p) is the injectivity radius of p and π/
√

κ is replaced by +∞ if κ � 0 .
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To bound the sectional or Ricci curvatures, or to bound the mean curvature of the
geodesic spheres, imply to control the behavior of the isoperimetric quotients. An al-
ternative way to obtain bounds for the first eigenvalue of the Laplacian makes use of
the isoperimetric inequalities and the so-called symmetrizations. One of the most clas-
sical symmetrizations is the Schwarz symmetrization (see [1, 19, 15, 6]). The Schwarz
symmetrization of a compact open domain D⊆M is the unique geodesic ball Bκ

R(D) of

Mn
κ satisfying that vol(D) = vol

(
Bκ

R(D)

)
.

In [9, 13], Faber and Krahn showed that if for all open sets D⊆M , consisting in a
disjoint union of regular domains, the volume of the perimeter of D is greater than the
volume of the perimeter of its Schwarz symmetrization Bκ

R(D) , i.e., if

vol(∂D) � vol
(

∂Bκ
R(D)

)
,

then, for all precompact domain Ω ⊂ M ,

λ1(Ω) � λ1 (R(Ω),κ) . (1.4)

Like in the results of Cheng, inequality (1.4) is sharp in the sense that equality is attained
if and only if Ω is isometric to Bκ

R(Ω) .
Instead of bounding the first eigenvalue assuming certain geometric hypothesis

on the underlying Riemannian manifold, the first eigenvalue can be computed directly
using the so-called Poisson hierarchy (see [15, 16, 12]). Let (M,g) be a Riemannian
manifold, the tower of moments of Ω ⊂ M is the family of functions {uk}∞

k=0 , defined
inductively as the following sequence of solutions to a hierarchy of boundary value
problems in Ω ⊂ M :

Let us define
u0 = 1 on Ω,

and for k � 1, {
Δguk + kuk−1 = 0, on Ω,

uk = 0, on ∂Ω.

Moreover, the moment spectrum of Ω is defined as the family of integrals

Ak(Ω) =
∫

Ω
uk dVg.

In [17], McDonald and Meyers proved that the moment spectrum of Ω can be used to
compute the first eigenvalue of the Laplacian for the Dirichlet problem on Ω by

λ1,g(Ω) = sup

{
η � 0 : lim

k→∞
sup
(η

2

)k Ak(Ω)
Γ(k+1)

< ∞
}

.

More recently, in [3], Bessa, Jorge and the first author have proved that

λ1,g(Ω) = lim
k→∞

(k+1)
‖uk‖2

‖uk+1‖2
, (1.5)
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where ‖·‖2 denotes the L2 -norm on Ω . In the particular case when the domain is
a geodesic ball Bw

R of radius R in a Riemannian model Mn
w , see section 2.2 for the

definition of a Riemannian model, in [12] is proved that

λ1,gw(Bw
R) = lim

k→∞

kuk−1(0)
uk(0)

= lim
k→∞

kAk−1(Bw
R)

Ak(Bw
R)

. (1.6)

In this paper we prove that an upper bound for the first eigenvalue of the Laplacian
for the Dirichlet problem of a geodesic ball BR(p) can be computed using only the area
function of the geodesic spheres,

Ag(t) := volg(St(p)),

and the following family of functions {Tk}∞
k=0 , constructed recursively from the area

function, where
T0(t) = 1

and for k � 1,

Tk(t) =
∫ R

t

∫ σ
0 Tk−1(s)Ag(s)ds

Ag(σ)
dσ . (1.7)

Our upper bound for the first eigenvalue of BR(p) , obtained using the above family of
functions {Tk} , is stated in the following

THEOREM 1. Let (M,g) be a Riemannian manifold, let p ∈ M be a point of M
with injectivity radius injg(p) , and let BR(p) be the geodesic ball of radius R centered
at p. Suppose that R < injg(p) , then the first eigenvalue λ1,g(BR(p)) of the Laplacian
for the Dirichlet problem on BR(p) is bounded by

λ1,g(BR(p)) � lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

. (1.8)

Furthermore, equality is attained in (1.8) if and only if, for any t ∈ (0,R) , the mean
curvature pointed inward HSt(p) of the geodesic sphere St(p) of radius t centered at
p is a radial function. Namely, equality in (1.8) is attained if and only if there exists a
smooth function h(t) such that

HSt(p) = h(t) for any 0 < t < R.

In this work instead of use the Schwarz symmetrization (as Faber and Krahn in
[9, 13]), we will construct a rotationally symmetric metric tensor g̃ for the geodesic
ball BR(p) with respect to the metric tensor g , such that the volume of the geodesic
spheres of (BR(p), g̃) will coincide with the volume of the geodesic spheres with the
same radius of (BR(p),g) . Namely,

Ag(t) = Ag̃(t).
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This rotationally symmetric metric tensor allows us to find a comparison for the first
eigenvalue of the Laplacian for the Dirichlet problem but without using an isoperimetric
inequality as hypothesis as in Faber and Krahn Theorem.

The family of functions (1.7) are related with the moment functions of the Poisson
hierarchy {ũk} associated to g̃ . In fact, in [3], is proved that since g̃ is a rotationally
symmetric metric tensor

ũk(q) = k!Tk(distg̃(p,q)), ‖ũk‖2 = k!

(∫ R

0
T 2
k (t)Ag(t)dt

)1/2

.

Hence by (1.5),

λ1,g̃(BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

.

Then, inequality (1.8) can be rewritten as

λ1,g(BR(p)) � λ1,g̃(BR(p)).

Notice that in the statement of the Theorem 1 there are no conditions on the Ricci or
sectional curvatures (as in the hypothesis of Cheng in [8] and [7]), neither on the mean
curvature of the geodesic spheres (as in the hypothesis of Bessa and Montenegro in [2]).
But the geodesic spheres, in the critical metric tensor where equality in (1.8) is attained,
have radial mean curvature as in the result of Bessa and Montenegro.

Since (BR, g̃) is a Riemannian model of radius R we can apply (1.6) and hence

λ1,g(BR(p)) � λ1,g̃(BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

= lim
k→∞

Tk−1(0)
Tk(0)

= lim
k→∞

∫ R
0 Tk−1(t)Ag(t)dt∫ R
0 Tk(t)Ag(t)dt

·
(1.9)

We must remark here that in the classical symmetrization results, the symmetrizated
domain minimizes the first eigenvalue but in our result the ball with the rotationally
symmetric metric tensor maximizes the first eigenvalue. Moreover, in the following
example we show that our upper bounds can not be obtained from the classical com-
parison with the Ricci curvature neither from the comparison with the mean curvature.

EXAMPLE 1. Let (r,θ ) be polar coordinates in R2 around�0 ∈ R2 . Let us endow
R2 with the following metric

g = dr⊗dr+(r+ ϕ(r)cos(θ ))2 dθ ⊗dθ ,

with

ϕ : [0,∞) → [0,∞), t 	→ ϕ(t) :=

⎧⎨⎩0, if t � 2,

e
− 1

(t−2)2 , if t > 2.
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Hence,

Ag(t) =
∫ 2π

0
(t + ϕ(t)cos(θ ))dθ = 2πt.

By using the Theorem 1 we conclude that, for the geodesic disc of radius R ,

λ1,g(BR(�0)) � λ1,gcan(BR(�0)) =
j20
R2 ≈ 5,78319

R2 , (1.10)

where gcan is the canonical metric tensor in R2 , gcan = dr⊗dr+ r2dθ ⊗dθ , and j0 is
the first zero of the Bessel function J0 .

On the other hand, since the Ricci curvature is given by

K(g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for r � 2,

2(3(r−4)r+10)cos(θ )

(r−2)6

(
cos(θ )+ e

1
(r−2)2 r

) , for r > 2,

for r > 2, there are regions where K(g) < 0. Hence, for a geodesic ball of radius R > 2,
the bound (1.10) can not be obtained by using the comparison of Cheng with the Ricci
curvature (where it is needed K(g) � 0). Moreover, since the mean curvature H(t,θ )
pointing inward of the geodesic sphere St(�0) is given by

H(t,θ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/t, for t � 2,

1/t− (t−4)((t−2)t +2)cos(θ )

(t−2)3t

(
cos(θ )+ e

1
(t−2)2 t

) , for t > 2,

for t > 2 there are points in the sphere St(�0) where H(t,θ ) > 1/t . Hence, for a
geodesic ball of radius R > 2, the bound (1.10) can not be obtained by using the com-
parison of Bessa and Montenegro with the mean curvature of the geodesic spheres
(where it is needed H(t,θ ) � 1/t ). Notice that, since for R > 2 the mean curvature
pointed inward of the geodesic spheres St(�0) is not a radial function for any t ∈ (2,R) ,
then equality in (1.10) can not be obtained, namely

λ1,g(BR(�0)) < λ1,gcan(BR(�0)) for R > 2. (1.11)

The above inequality allows us to state that in (R2,g) there exists a domain Ω with
symmetrizated radius R(Ω) > 0 with respect to the Euclidean space (R2,gcan) , i.e.,
with

volg(Ω) = volgcan(BR(Ω)(�0)) = πR2(Ω)

such that
volg(∂Ω) < volgcan(∂BR(Ω)(�0)) = 2πR(Ω).

Because otherwise, if for any domain Ω , volg(∂Ω) � 2πR(Ω) , then by Faber-Krahn
Theorem λ1,g(BR(�0)) should be greater or equal to λ1,gcan(BR(�0)) but this is a contra-
diction with inequality (1.11).
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From Theorem 1 we can compare the first eigenvalue of a geodesic ball of (M,g)
with the first eigenvalue of a geodesic ball of a real space form Mn

κ assuming certain
behavior of the area function Ag(t) as follows

THEOREM 2. Let (M,g) be a Riemannian manifold, let p ∈ M be a point of M
with injectivity radius injg(p) . Let Aκ(t) be the area function of the geodesic sphere
of radius t in Mn

κ . Suppose that R < injg(p) and that for any t < R the function

t 	→ Ag(t)
Aκ(t)

is a decreasing function. Then, the first eigenvalue λ1,g(BR(p)) of the Laplacian for
the Dirichlet problem on the geodesic ball BR(p) of radius R centered at p is bounded
by

λ1,g(BR(p)) � λ1(R,κ), (1.12)

with equality in (1.12) if and only if, for any t ∈ (0,R) , the mean curvature pointed
inward HSt(p) of the geodesic sphere St(p) is equal to the mean curvature pointed
inward of the geodesic sphere of radius t in M

n
κ , namely

HSt(p) = (n−1)
S′κ(t)
Sκ(t)

, for all 0 < t < R,

where

Sκ(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin(
√

κt)√
κ

, if κ > 0,

t, if κ = 0,

sinh(
√−κt)√−κ

, if κ < 0.

Observe that when the Ricci curvatures of M are bounded from below by the Ricci
curvatures of Mn

κ , i.e., Ricg � (n−1)κ (as the hypothesis of Cheng in [8]) the function

t 	→ Ag(t)
Aκ(t)

is a decreasing function for any t < injg(p) (for more details see [5]). Hence, our hy-
pothesis about the behavior of the above quotient is weaker than the original hypothesis
of Cheng but only up to the injectivity radius injg(p) . Moreover, to characterize the
equality, Cheng shows that the equality is attained if and only if the ball BR(p) of M is
isometric to the ball with the same radius of Mn

κ . But, with our hypothesis, equality is

attained if and only if the mean curvature of the geodesic sphere St(p) is (n−1) S′κ (t)
Sκ (t)

for all t < R .
Theorem 2 is a particular case of Theorem 4.1 of Section 4 obtained by using our

Theorem 1. Indeed, the general case is obtained when

t 	→ Ag(t)
AW (t)
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is decreasing where AW (t) is the volume of the geodesic sphere of radius t in some
Riemannian model.

Acknowledgements. The authors are grateful to professor Vicente Palmer for his
valuable help and for his useful comments and suggestions during the preparation of
the present paper.

2. Volume-based rotational symmetrization of the metric tensor

The main tool of this paper consists in the transformation of the metric tensor g of
a Riemannian manifold (M,g) to a metric tensor g̃ such that (BR(p), g̃) is rotationally
symmetric and the volume of the geodesic spheres of (BR(p), g̃) coincides with the
volume of geodesic spheres of (BR(p),g) . In this section we show in Theorem 2.2 that
this new metric tensor g̃ is smooth, in Proposition 2.3 we compare the behavior of the
distance function with respect g and g̃ , as well as the area function for geodesic spheres
and the expression of the Laplacian with respect to the new metric tensor g̃ . Finally, in
Corollary 2.6 we characterize the first eigenfunction and first eigenvalue of (BR(p), g̃) .

2.1. Definition and smoothness of the rotationally symmetric metric tensor
of comparison

Let (M,g) be a Riemannian manifold, let p ∈ M be a point in M , let BR(p) be
the geodesic ball of M centered at p of radius R < injg(p) , and let us denote by

BR(�0) :=
{
v ∈ TpM : g(v,v) < R2} .

The exponential map expp : TpM → M induces a diffeomorphism from BR(�0) to
BR(p) . Let {Ei}n

i=1 be an orthonormal basis of TpM and let us denote by x1, . . . ,xn the
normal coordinate functions associated to the orthonormal basis {Ei}n

i=1 with respect
to g given by xi(q) := g(Ei,exp−1

p (q)) . Then the map

ζ : BR(p) → DR(�0), q 	→ ζ (q) :=
(
x1(q), . . . ,xn(q)

)
(2.1)

is a diffeomorphism from BR(p) to the open Euclidean ball DR(�0) ,

DR(�0) :=
{
x ∈ R

n : (x1)2 + · · ·+(xn)2 < R2} .

Since ζ = (x1, . . . ,xn) : BR(p) → DR(�0) is a coordinate system (or chart) in BR(p)
then, for any q ∈ BR(p) , the coordinate vectors{

∂
∂x1

∣∣∣∣
q
, . . . ,

∂
∂xn

∣∣∣∣
q

}

form a basis for the tangent space Tq(BR(p)) (see for instance Theorem 12 of [18]).

For each 1 � i � n the vector field ∂
∂xi on BR(p) sending each q to ∂

∂xi

∣∣∣
q

is called the



FIRST EIGENVALUE OF THE LAPLACIAN OF A GEODESIC BALL 379

i th coordinate vector field and the one-forms

{
dx1, . . . ,dxn} given by dxi

(
∂

∂x j

)
= δi j

are called coordinate one-forms. Moreover, for any smooth function f : BR(p) → R ,
the one-form d f can be obtained as

d f =
n

∑
i=1

∂ f
∂xi dxi.

Let us introduce the following functions r and π associated ζ

r : BR(p) → R, q 	→ r(q) :=
√

(x1(q))2 + · · ·+(xn(q))2,

π : BR(p)−{p}→ S
n−1
1 , q 	→ π(q) :=

ζ (q)
r(q)

.
(2.2)

In the following definition we introduce the rotationally symmetric metric tensor of
comparison by using the above functions.

DEFINITION 2.1. (Rotationally symmetric metric tensor of comparison) Let (M,g)
be a n -dimensional Riemannian manifold. Let BR(p) be the geodesic ball of radius R
centered at p∈ M . Suppose that R < injg(p) . Let {Ei}n

i=1 be an orthonormal basis

of TpM and let ζ = (x1, . . . ,xn) : BR(p) → DR(�0) be the normal coordinate functions
associated to {Ei}n

i=1 . The rotationally symmetric metric tensor of comparison g̃ as-
sociated to g is the metric tensor given by

g̃ =

⎧⎪⎨⎪⎩
dr⊗dr+(ω2

g ◦ r)π∗g
S

n−1
1

, on BR(p)−{p},
n

∑
i=1

dxi ⊗dxi, on p,
(2.3)

where r,π are given by (2.2), π∗g
S

n−1
1

is the pullback by π of the canonical metric

tensor g
S

n−1
1

of S
n−1
1 , 2 and ωg : [0,R) → R+ is the positive function given by

t 	→ ωg(t) :=

(
Ag(t)

vol
(
S

n−1
1

)) 1
n−1

(2.4)

where Ag(t) is the volume of the sphere St(p) of radius t centered at p , i.e.,

Ag(t) := volg(St(p)).

2Recall that the canonical metric tensor g
S

n−1
1

of S
n−1
1 is the metric tensor that inherits S

n−1
1 := {x ∈Rn :

∑n
i=1(x

i)2 = 1} when is considered as a submanifold of Rn with the canonical metric tensor ∑n
i=1 dxi ⊗dxi .
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The main result of this section is to show that the metric tensor g̃ is well defined.
Indeed, in the following Theorem we will prove the smoothness of this new metric
tensor.

THEOREM 2.2. Let (M,g) be a n-dimensional Riemannian manifold. Let BR(p)
be the geodesic ball of radius R centered at p∈ M. Suppose that R < injg(p) . Then,
the rotationally symmetric metric tensor of comparison g̃ associated to g is smooth in
BR(p) .

Proof. First, we are proving that ωg(t) can be rewritten as

ωg(t) = t
(
1+ t2ϕ(t2)

)
with some positive smooth function ϕ . The area function Ag(t) is a smooth function
up to its injectivy radius (see [5]) and it has Taylor expansion about t = 0 given by (see
Theorem 3.1 of [10])

Ag(t) = a0t
n−1 +a2t

n+1 +a4t
n+3 + · · ·

for some constants a2k ∈ R , k ∈ N , with a0 = vol
(
S

n−1
1

)
. In particular, Ag(0) = 0,

the derivatives A(k)
g (0) = 0 for k = 1, . . . ,n−2, and the derivatives A(n+2k)

g (0) = 0 for
k ∈ Z . Since every derivative of Ag(t) vanishes up to n− 1 order and since Ag(t) is
a smooth function up to t = injg(p) , then we can use for all t ∈ [0, injg(p)] the Taylor
expansion with integral form of the remainder (see [20] for instance) and we can rewrite
Ag(t) as

Ag(t) =
1

(n−2)!

∫ t

0
(t− x)n−2A(n−1)

g (x)dx.

By using the change of variable x = st in the above expression, we can express

Ag(t) = a0 tn−1 f (t), f (t) :=
1

a0(n−2)!

∫ 1

0
(1− s)n−2A(n−1)

g (st)ds.

The function f (t) is a positive smooth function with

f (k)(t) =
1

a0(n−2)!

∫ 1

0
(1− s)n−2skA(n−1+k)

g (st)ds.

In particular, f (0) = 1 and, since A(n+2k)
g (0) = 0 for k ∈ Z , the odd order derivatives

of f (t) vanish at 0 . In fact,

f (2k+1)(0) =
1

a0(n−2)!

∫ 1

0
(1− s)n−2skA(n+2k)

g (0)ds = 0

for all k ∈ N . Then f can be extended to a smooth even function f̃ (t) with f̃ (0) = 1,
given by

f̃ (t) :=

{
f (t), if t � 0,

f (−t), if t < 0.
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Since f̃ is a smooth even function, it can be expressed as (see [21])

f̃ (t) = h(t2)

with a positive smooth function h . Notice that h(0) = f (0) = 1. We can therefore
express the area function as

Ag(t) = a0 tn−1h(t2) = vol
(
S

n−1
1

)
tn−1h(t2). (2.5)

Now we define the function F(t) := (h(t))
1

n−1 . Then, since h(t) > 0 on 0 � t < injg(p)
and h(0) = 1, then F is smooth with F(0) = 1. Hence, from (2.4), we obtain that

ωg(t) = tF(t2).

On the other hand, since F is a positive smooth function with F(0) = 1 then we can
express F as

F(t) = 1+
∫ t

0
F ′(x)dx = 1+ t

∫ 1

0
F ′(st)ds

Thus, we can rewrite F as

F(t) = 1+ tϕ(t), ϕ(t) :=
∫ 1

0
F ′(st)ds.

This implies that F(t2) = 1+ t2ϕ(t2) and

ωg(t) = t
(
1+ t2ϕ(t2)

)
. (2.6)

Finally, to prove the smoothness of the rotationally symmetric metric tensor of compar-
ison observe that since on BR(p)−{p}

n

∑
i=1

dxi ⊗dxi = dr⊗dr+ r2π∗g
S

n−1
1

and dr =
n

∑
i=1

xi

r
dxi,

the metric tensor of comparison g̃ can be expressed in normal coordinates with respect
to any orthonormal basis {Ei}n

i=1 as

g̃ =
n

∑
i, j=1

(
δi j +

ω2
g (r)− r2

r4

(
r2δi j − xix j))dxi ⊗dx j. (2.7)

Then, applying equation (2.6),

g̃ =
n

∑
i, j=1

(
δi j +

r2
(
1+ r2ϕ(r2)

)2− r2

r4

(
r2δi j − xix j))dxi ⊗dx j

=
n

∑
i, j=1

(
δi j +

(
2ϕ(r2)+ r2ϕ2(r2)

)(
r2δi j − xix j))dxi ⊗dx j.

(2.8)
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Since xi,r2 are smooth functions from BR(p) to R and ϕ is a smooth function of R+
the Theorem follows. �

Observe from the proof of Theorem that what is proved is that ωg(t) = tF(t2)
with F(t) being a smooth function satisfying F(0) = 1. Moreover in the proof of the
Theorem is proved that any metric tensor on BR(p)−{p} of the form

dr⊗dr+(ω2 ◦ r)π∗g
S

n−1
1

(2.9)

with positive warping function ω(t) , can be extended to a smooth metric tensor in
BR(p) if there exists a smooth function F(t) with F(0) = 1 such that ω(t) = tF(t2) .
This is equivalent to the classical condition on the warping function ω , which is

ω(0) = 0, ω ′(0) = 1 and ω(2k)(0) = 0 for all k ∈ N
∗, (2.10)

where ω(2k) denotes all the even derivatives of ω . Indeed, assuming ω(t) = tF(t2)
with F(0) = 1 it is easy to check that ω satisfies (2.10). In the other direction, if
ω satisfies condition (2.10) we can construct an even smooth function f : R → R+
such that ω(t) = t f (t) and then, using [21] as in the proof of Theorem 2.2, we obtain
f (t) = F(t2) .

2.2. Properties of the rotationally symmetric metric tensor of comparison

In this subsection of the paper we show some properties of the rotationally sym-
metric metric tensor of comparison g̃ . First of all, we will clarify in which sense the
metric tensor g̃ is rotationally symmetric. The Orthogonal group O(n) = {R∈GL(n) :
RT R = RRT = 1n} acts on DR(�0) by

O(n)×DR(�0) → DR(�0), (R,x) 	→ Rx.

By using the diffeomorphism ζ : BR(p) → DR(�0) , defined in (2.1), we can define the
action of O(n) on BR(p) , by

O(n)×BR(p) → BR(p), (R,q) 	→ ζ−1(Rζ (q)).

When BR(p) is endowed with the metric tensor g̃ , the group O(n) acts by isometries.
Since g̃ remains invariant under the action of the Orthogonal group we will say that the
metric tensor g̃ is rotationally symmetric.

In [11] is defined an n -dimensional Riemannian manifold (M,g) as a Riemannian
model if the following conditions are satisfied:

1. There is a chart of M that covers all M , and the image of this chart in Rn is a
ball DR0 of radius R0 ∈ (0,+∞] .

2. The metric tensor g in the polar coordinates (r,θ ) in the above chart has the form
given by (2.9) with ω a positive function.
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The number R0 is called the radius of the model M . Observe that given a Riemannian
model (M,g) the metric tensor g is rotationally symmetric in any geodesic ball of
radius R < R0 . On the other hand, given a Riemannian manifold (M,g) , the geodesic
ball (BR(p), g̃) of radius R < injg(p) endowed with the rotationally symmetric metric
tensor of comparison g̃ associated to g is a Riemannian model of radius R .

The expression of the distance function, area function, and Laplacian of functions
with respect to g and g̃ are given in the following

PROPOSITION 2.3. Let (M,g) be a n-dimensional Riemannian manifold. Let
BR(p) be the geodesic ball of radius R < injg(p) centered at p∈ M, let expp : TpM →
M be the exponential map associated to g, let g̃ be the rotationally symmetric metric
tensor of comparison associated to g. Then for any q ∈ BR(p) ,

1. ∇r(q) = ∇̃r(q) = ∂ r(q) =
n

∑
i=1

xi(q)
r(q)

∂
∂xi

∣∣∣∣
q
,

2. r(q) := ‖exp−1(q)‖ = distg(p,q) = distg̃(p,q) ,

3. g(∇r(q),∇r(q)) = g̃(∇̃r(q), ∇̃r(q)) = 1 ,

4. Ag̃(t) = volg̃(St(p)) = vol
(
S

n−1
1

)
ωn−1

g (t) = Ag(t) ,

5. For any smooth function f : BR(p) → R ,

Δg̃ f = (n−1)
ω ′

g(r)
ωg(r)

∂ f
∂ r

+
∂ 2 f
∂ r2 +

1
ω2

g (r)
Δ

S
n−1
1

( f ◦π−1)◦π , (2.11)

where ∇ and ∇̃ denote the gradient with respect to g and g̃ respectively and Δ
S

n−1
1

denotes the Laplacian of the (n−1)-dimensional usual unit sphere.

Since (BR(p), g̃) is a Riemannian model, before to prove the Theorem 1 we will
need the following consideration about first eigenfunction and the first eigenvalue for
the Dirichlet problem in a geodesic ball of a Riemannian model.

PROPOSITION 2.4. Let (M,gω ) be a n-dimensional Riemannianmodel, let BR(p)
be a geodesic ball centered at p∈M with radius R < injg(p) . Suppose that the smooth
metric tensor on BR(p)−{p} is given by

gω = dr⊗dr+(ω2 ◦ r)π∗g
S

n−1
1

with ω : [0,R) → R+ a positive function. Then, any positive first eigenfunction φ1 of
the Laplacian Δgω for the Dirichlet problem on BR(p) is radial, φ1(q) = f1(r(q)) with
f1 a smooth function such that

f ′1(0) = 0 and f ′1(t) < 0 for t ∈ (0,R].
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Proof. If φ1 is any positive first eigenfunction of the Laplacian Δgω for the Dirich-
let problem on a rotationally symmetric geodesic ball BR(p) then, since gw is rotation-
ally symmetric, φ1 is a radial function, i.e., we can rewrite, for all q ∈ BR(p) , the first
eigenfunction as φ1(q) = f1(r(q)) where f1 is a positive real valued smooth function.
Moreover, an easy computation leads to

Δgwφ1(q) = (n−1)
ω ′(r(q))
ω(r(q))

f ′1(r(q))+ f ′′1 (r(q)) = −λ1 (BR(p)) f1(r(q)),

where λ1 (BR(p)) > 0 is the first eigenvalue of the Laplacian for the Dirichlet problem
in BR(p) . Hence, for any t ∈ [0,R] ,

(n−1)
ω ′(t)
ω(t)

f ′1(t)+ f ′′1 (t) = −λ1 (BR(p)) f1(t). (2.12)

By using that φ1 is a radial function it is know that f ′1(0) = 0 (see [4] for instance).
On the other hand, from (2.12) we know that all the critical points of f1 are relative
maximums. Since for a real valued smooth function between two relative maximums
there is at least one relative minimum, therefore f1 can only have one maximum in
[0,R) . Thus, 0 is the only critical point of f1 and then, f1 is a decreasing function in
(0,R) . Namely, f ′1(t) < 0 for all t ∈ (0,R) . �

THEOREM 2.5. ([3]) Let (M,gω ) be a n-dimensional Riemannianmodel, let BR(p)
be a geodesic ball centered at p with radius R < injgω (p) . Suppose that the smooth
metric tensor on BR(p)−{p} is given by

gω = dr⊗dr+(ω2 ◦ r)π∗g
S

n−1
1

(2.13)

with ω : [0,R) → R+ a positive function. Then, the first eigenvalue λ1,gω (BR(p)) of
the Laplacian Δgω for the Dirichlet problem on BR(p) is given by

λ1,gω (BR(p)) = lim
k→∞

‖Tk(t)‖2

‖Tk+1(t)‖2
,

where ‖·‖2 denotes the L2 -norm on BR(p) and with⎧⎪⎨⎪⎩
T0(t) = 1,

Tk(t) =
∫ R

t

∫ σ
0 Tk−1(s)ωn−1(s)ds

ωn−1(σ)
dσ .

Since (BR(p), g̃) is a particular case of Riemannian model with ω = ωg , from
Proposition 2.4 and Theorem 2.5, we can state the following

COROLLARY 2.6. Let (M,g) be a n-dimensional Riemannianmanifold. Let BR(p)
be the geodesic ball of radius R < injg(p) centered at p ∈ M, let g̃ be the rotation-
ally symmetric metric tensor of comparison associated to g. Then, any positive first
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eigenfunction φ1 of the Laplacian Δg̃ for the Dirichlet problem on BR(p) is radial,
φ1(q) = f1(r(q)) , with f1 a positive smooth function such that

f ′1(0) = 0 and f ′1(t) < 0 for t ∈ (0,R] (2.14)

and moreover, the first eigenvalue is given by

λ1,g̃(BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

with ⎧⎪⎨⎪⎩
T0(t) = 1,

Tk(t) =
∫ R

t

∫ σ
0 Tk−1(s)Ag(s)ds

Ag(σ)
dσ .

3. Proof of the Theorem 1

In this section we will prove Theorem 1. Indeed, in this section we will prove
Theorem 3.1 which is nothing else than Theorem 1 but showing in (3.1) the comparison
of the first eigenvalues λ1,g (BR(p)) and λ1,g̃ (BR(p)) and the equality

λ1,g̃ (BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

,

given in Corollary 2.6.

THEOREM 3.1. Let (M,g) be a n-dimensional Riemannian manifold, let p ∈ M
be a point of M with injectivity radius injg(p) , and let BR(p) be the geodesic ball of
radius R centered at p. Suppose R < injg(p) , then the first eigenvalue λ1,g (BR(p)) of
the Laplacian for the Dirichlet problem on BR(p) is bounded by

λ1,g (BR(p)) � λ1,g̃ (BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

, (3.1)

where g̃ is the rotationally symmetric metric tensor of comparison associated to g.
Futhermore, equality is attained in (3.1) if and only if, for any t ∈ (0,R) , the mean
curvature pointed inward HSt(p) of the geodesic sphere St(p) of radius t centered at
p is a radial function. Namely, equality in (3.1) is attained if and only if there exists a
smooth function h(t) such that

HSt(p) = h(t) for any 0 < t < R.

Proof. To obtain upper bounds for the first eigenvalue we compute the Rayleigh
quotient (see [4] for more information about the Rayleigh quotient) with respect to
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(BR(p),g) of the first eigenfunction on (BR(p), g̃) , where g̃ is the rotationally sym-
metric metric tensor of comparison defined in Section 2.

Since R < injg(p) , the exponential map expp : BR(�0) → BR(p) induces a diffeo-

morphism ζ : BR(p) → DR(�0) (see Section 2 for the definition of the diffeomorphism
ζ ). The metric tensor g in BR(p)−{p} can be expressed as

g = dr⊗dr+
n−1

∑
i, j=1

Gi, j(r,θ )dθ i ⊗dθ j,

for some positive definite matrix Gi, j , where we have used the coordinate system

q 	→ (r(q),θ 1(q), · · ·θ n−1(q)) := (r(q), θ̃ 1(π(q)), · · · , θ̃ n−1(π(q)))

with the maps q 	→ r(q) = ‖ζ (q)‖ and q 	→ π(q) = ζ (q)
r(q) and {θ̃ i}n−1

i=1 being a system of

local coordinates on the sphere S
n−1
1 . Using this coordinates, the Riemannian volume

element can be obtained as

dVg =
√

det(G(r,θ ))dr∧dθ 1∧·· ·∧dθ n−1.

The area function of the geodesic sphere St(p) of radius t centered at p is

Ag(t) =
∫

S
n−1
1

√
det(G(t,θ ))dθ 1∧·· ·∧dθ n−1

and the mean curvature vector field of the geodesic sphere St(p) of radius t centered
at p can be expressed as

�HSt(p) = − ∂
∂ s

ln
√

det(G(s,θ ))
∣∣∣∣
s=t

∂ r.

Now, we will make use of the rotationally symmetric metric tensor of comparison g̃

associated to g using the warping function ωg(t) =
(

Ag(t)
vol(S

n−1
1 )

) 1
n−1

, as

g̃ =

⎧⎪⎨⎪⎩
dr⊗dr+(ω2

g ◦ r)π∗g
S

n−1
1

, on BR(p)−{p},
n

∑
i=1

dxi ⊗dxi, on p.
(3.2)

The first positive eigenfunction φ1 and the first eigenvalue λ1,g̃(BR(p)) of the Lapla-
cian Δg̃ for the Dirichlet problem on BR(p) are related by the Rayleigh quotient with
respect to g̃

λ1,g̃(BR(p)) =

∫
BR(p) g̃(∇̃φ1(q), ∇̃φ1(q))dVg̃(q)∫

BR(p) φ2
1 (q)dVg̃(q)

. (3.3)
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Our upper bound for λ1,g(BR(p)) in (3.1) is obtained by using the Rayleigh quotient
with respect to g of the first eigenfunction φ1 with respect to g̃ , i.e.,

λ1,g(BR(p)) �
∫
BR(p) g(∇φ1(q),∇φ1(q))dVg(q)∫

BR(p) φ2
1 (q)dVg(q)

. (3.4)

But, the right hand side of the above inequality can be expressed as∫
BR(p) g(∇φ1(q),∇φ1(q))dVg(q)∫

BR(p) φ2
1 (q)dVg(q)

=

∫
BR(p) g̃(∇̃φ1(q), ∇̃φ1(q))dVg̃(q)∫

BR(p) φ2
1 (q)dVg̃(q)

(3.5)

because taking into account that φ1(q) = f1(r(q)) is a decreasing radial function (see
Corollary 2.6) and by using the co-area formula (see [4]) and Proposition 2.3∫

BR(p)
φ2

1 (q)dVg(q) =
∫

BR(p)

f 2
1 (r(q))

g(∇r(q),∇r(q))
g(∇r(q),∇r(q))dVg(q)

=
∫ R

0

(∫
{q∈M :r(q)=t}

f 2
1 (r(q))

g(∇r(q),∇r(q))
dAg(q)

)
dt

=
∫ R

0
f 2
1 (t)Ag(t)dt =

∫ R

0
f 2
1 (t)Ag̃(t)dt

=
∫ R

0

⎛⎝∫
{q∈M :r(q)=t}

f 2
1 (r(q))

g̃
(

∇̃r(q), ∇̃r(q)
)dAg̃(q)

⎞⎠dt

=
∫

BR(p)
φ2

1 (q)dVg̃(q).

Similarly, since the nominator g(∇φ1(q),∇φ1(q)) = ( f ′1(r(q)))2 is also a radial func-
tion, ∫

BR(p)
g(∇φ1(q),∇φ1(q))dVg(q) =

∫
BR(p)

g̃(∇̃φ1(q), ∇̃φ1(q))dVg̃(q).

Therefore, by equations (3.3) and (3.5), by inequality (3.4) and by Corollary 2.6, we
obtain

λ1,g(BR(p)) � λ1,g̃(BR(p)) = lim
k→∞

( ∫ R
0 T 2

k (t)Ag(t)dt∫ R
0 T 2

k+1(t)Ag(t)dt

)1/2

.

Furthermore, equality in the above inequality implies that φ1 is also a first positive
eigenfunction of Δg , therefore for any q ∈ BR(p)

Δgφ1(q) = f ′′1 (r(q))+ f ′1(r(q))
∂
∂ r

(
ln
√

det(G(r,θ ))(q)
)

= −λ1,g(BR(p)) f1(r(q)).

Then, for any point q ∈ St(p) ,(
f ′′1 (t)+ λ1,g(BR(p)) f1(t)

)
∂ r(q) = f ′1(t)�HSt(p)(q). (3.6)



388 V. GIMENO AND E. SARRIÓN-PEDRALVA

But, since φ1 is a first positive eigenfunction for Δg̃ , by (2.11),

f ′′1 (t)+ λ1,g(BR(p)) f1(t) = −(n−1)
w′

g(t)
wg(t)

f ′1(t).

Hence, from (3.6) and taking into account that f ′1(t) < 0 (see Corollary 2.6), we can
obtain the mean curvature vector field �HSt(p)(q) for any point q ∈ St (p) as

�HSt(p)(q) = −(n−1)
w′

g(t)
wg(t)

∂ r.

Therefore, the mean curvature of the geodesic spheres pointed inward given by

HSt(p)(q) = g(�HSt (p)(q),−∂ r) = (n−1)
w′

g(t)
wg(t)

is a radial function as stated.
On the other hand, if the mean curvature of the geodesic spheres is a radial func-

tion, i.e., �HSt(p)(q) = −h(t)∂ r , we are proving that λ1,g(BR(p)) = λ1,g̃(BR(p)) . In-
deed, we can prove that φ1 is a positive eigenfunction of Δg because

Δgφ1(q) = f ′′1 (r(q))+ f ′1(r(q))
∂
∂ r

(
ln
√

det(G(r,θ ))(q)
)

= f ′′1 (r(q))+ f ′1(r(q))h(t).
(3.7)

But since

(n−1)
ω ′

g(t)
ωg(t)

=
d
dt

lnωn−1(t) =
d
ds

lnAg(s)
∣∣∣∣
s=t

=
1

Ag(t)

∫
S

n−1
1

∂
∂ s

√
det(G(s,θ ))

∣∣∣∣
s=t

dθ 1∧·· ·∧dθ n−1

=
1

Ag(t)

∫
S

n−1
1

∂
∂ s

√
det(G(s,θ ))

∣∣∣
s=t√

det(G(t,θ ))

√
det(G(t,θ ))dθ 1∧·· ·∧dθ n−1

=
1

Ag(t)

∫
S

n−1
1

h(t)
√

det(G(t,θ ))dθ 1∧·· ·∧dθ n−1

=h(t),

from equation (3.7) and (2.11), we have

Δgφ1(q) = f ′′1 (r(q))+ (n−1)
ω ′

g(t)
ωg(t)

f ′1(r(q)) = Δg̃φ1 = −λ1,g̃(BR(p))φ1.

Hence, φ1 is a positive eigenfunction of Δg and the Theorem follows. �

REMARK 3.2. Observe that the function h(t) of the Theorem 1 is

h(t) = (n−1)
w′

g(t)
wg(t)

.
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4. Proof of Theorem 2

In this section we will prove Theorem 2 which is a particular case of the following
Theorem 4.1 when W (t) = Sκ(t) with

Sκ(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin(
√

κt)√
κ

, if κ > 0,

t, if κ = 0,

sinh(
√−κt)√−κ

, if κ < 0.

THEOREM 4.1. Let (M,g) be a Riemannian manifold, and let p∈M be a point of
M with injectivity radius injg(p) . Let BR(p) be the geodesic ball of radius R centered
at p. Let W : [0,R]→ R be a non-negative smooth function such that the metric tensor

gW = dr⊗dr+(W 2 ◦ r)π∗g
S

n−1
1

is smooth on BR(p) . Suppose that R < injg(p) and that for any t < R the function

t 	→ Ag(t)
AgW (t)

is a decreasing function. Then, the first eigenvalue λ1,g(BR(p)) of the Laplacian for
the Dirichlet problem on the geodesic ball BR(p) of radius R centered at p is bounded
by

λ1,g(BR(p)) � λ1,gW (BR(p)), (4.1)

with equality in (4.1) if and only if, for any t ∈ (0,R) , the mean curvature pointed
inward HSt(p) of the geodesic sphere St(p) is

HSt(p) = (n−1)
W ′(t)
W(t)

, for all 0 < t < R.

Proof. From (BR(p),g) we will symmetrize the metric tensor to obtain the rota-
tionally symmetric metric tensor

g̃ = dr⊗dr+(ω2
g ◦ r)π∗g

S
n−1
1

(4.2)

with ωg : [0,R) → R+ being the positive function given by

t 	→ ωg(t) :=

(
Ag(t)

vol
(
S

n−1
1

)) 1
n−1

.

Hence, by using the Theorem 1

λ1,g(BR(p)) � λ1,g̃(BR(p)). (4.3)
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Moreover, since Ag̃(t) = Ag(t) , by hypothesis the function

t 	→ Ag̃(t)
AgW (t)

is assumed to be a decreasing function. Therefore

ω ′
g(t)

ωg(t)
� W ′(t)

W(t)
, for all t ∈ [0,R].

Let us denote by φ1,W (q) = f1,W (r(q)) the first (radial) eigenfunction of the Laplacian
for the Dirichlet problem with respect to the metric tensor gW . Then for any q ∈ St(p)

ΔgW φ1,W (q) = f ′′1,W (t)+ (n−1)
W ′(t)
W(t)

f ′1,W (t) = −λ1,gW (BR(t)) f1,W (t).

Hence, for any q ∈ BR(p) with r(q) = t ,

−�g̃φ1,W (q)
φ1,W (q)

=
− f ′′1,W (t)− (n−1)

ω ′
g(t)

ωg(t)
f ′1,W (t)

f1,W (t)

�
− f ′′1,W (t)− (n−1)W′(t)

W(t) f ′1,W (t)

f1,W (t)

=λ1,gW (BR(p)).

Finally the Theorem follows by using Barta’s Lemma (see [4] for instance) and (4.3). �
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Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte, Bayerischen Akademie der
Wissenchaften, Math.-Phys. München, (1923).

[10] A. GRAY, The volume of a small geodesic ball of a Riemannian manifold, Michigan Math. J., 20, 4
(1974), 329–344.



FIRST EIGENVALUE OF THE LAPLACIAN OF A GEODESIC BALL 391

[11] A. GRIGOR’YAN, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics
47, American Mathematical Society, Providence, RI, International Press, Boston, MA, 2009.

[12] A. HURTADO, S. MARKVORSEN, AND V. PALMER, Estimates of the first Dirichlet eigenvalue from
exit time moment spectra, Mathematische Annalen, 365, 3–4 (2016), 1603–1632.
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