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Abstract—The synergies between Sentinel-3 (S3) and the forth-
coming fluorescence explorer (FLEX) mission bring us the op-
portunity of using S3 vegetation indices (VI) as proxies of the
solar-induced chlorophyll fluorescence (SIF) that will be captured
by FLEX. However, the highly dynamic nature of SIF demands a
very temporally accurate monitoring of S3 VIs to become reliable
proxies. In this scenario, this article proposes a novel temporal
reconstruction convolutional neural network (CNN), named dual
attention temporal CNN (DAT-CNN), which has been specially
designed for time-resolving S3 VIs using S2 and S3 multitempo-
ral observations. In contrast to other existing techniques, DAT-
CNN implements two different branches for processing and fusing
S2 and S3 multimodal data, while further exploiting intersensor
synergies. Besides, DAT-CNN also incorporates a new spatial–
spectral and temporal attention module to suppress uninforma-
tive spatial–spectral features, while focusing on the most relevant
temporal stamps for each particular prediction. The experimental
comparison, including several temporal reconstruction methods
and multiple operational Sentinel data products, demonstrates
the competitive advantages of the proposed model with respect to
the state of the art. The codes of this article will be available at
https://github.com/ibanezfd/DATCNN.

Index Terms—Biophysical products, fluorescence explorer
(FLEX), Sentinel-2 (S2), Sentinel-3 (S3), temporal resolution.

I. INTRODUCTION

NOWADAYS, remote sensing (RS) data play a pivotal role
in many important application fields, such as, land-cover

mapping [1], [2], environmental management [3], object recog-
nition [4], and Earth composition analysis [5] among others.
In response, multiple space missions have been developed over
the past years to effectively satisfy the increasing demand of
RS data [6]. The Copernicus programme is one of the main
projects at global level to address this demand. Managed by the
European Commission in partnership with the European Space

Manuscript received November 19, 2021; revised February 1, 2022 and March
10, 2022; accepted March 12, 2022. Date of publication March 22, 2022; date of
current version April 7, 2022. This work was supported by Ministerio de Ciencia,
Innovación y Universidades under RTI2018-098651-B-C54. (Corresponding
author: Ruben Fernandez-Beltran.)

Damian Ibañez and Filiberto Pla are with the Institute of New Imaging
Technologies, University Jaume I, E-12071 Castellón de la Plana, Spain (e-mail:
ibanezd@uji.es; pla@uji.es).

Ruben Fernandez-Beltran is with the Department of Computer Science and
Systems, University of Murcia, 30100 Murcia, Spain (e-mail: rufernan@uji.es).

Naoto Yokoya is with the Graduate School of Frontier Sciences, The
University of Tokyo, Chiba 277-8561, Japan, and also with the RIKEN
Center for Advanced Intelligence Project, Tokyo 103-0027, Japan (e-mail:
yokoya@k.u-tokyo.ac.jp).

Digital Object Identifier 10.1109/JSTARS.2022.3161190

Agency (ESA), it includes several Sentinel missions to cover
different spatial–spectral requirements and needs.

Inside Copernicus, there are two satellite constellations that
share important synergies since both are mainly focused on mul-
tispectral imagery: Sentinel-2 (S2) [7] and Sentinel-3 (S3) [8].
On the one hand, S2 includes two satellites (S2A and S2B) that
carry the multispectral instrument (MSI). In more details, MSI
is able to capture 13 spectral bands (B01-B12, B8a) within the
443–2190-nm wavelength range, using a spatial resolution from
10 to 60 m. On the other hand, S3 also comprises a couple
of satellites (S3A and S3B) that are equipped with the ocean
and land color instrument (OLCI). In this case, OLCI is able
to acquire 21 spectral bands (Oa01–Oa21) in the 390–1040-nm
wavelength region, using a fix spatial resolution of 300 m. Under
these settings, S2 and S3 missions are both able to provide
operational data products related to vegetation, land and water,
but logically with different spatial–spectral characteristics [9].

In the context of terrestrial vegetation, ESA is also developing
the fluorescence explorer (FLEX) mission [10] that will launch
a satellite in 2024 to work with S3 in a tandem configuration. In
particular, FLEX aims at quantifying the solar-induced chloro-
phyll fluorescence (SIF) as an accurate measure of the vegetation
photosynthetic activity [11]. To achieve this goal, FLEX will
carry the fluorescence imaging spectrometer (FLORIS) which
has an ultrafine spectral resolution within the 500–780-nm wave-
length range and a spatial resolution of 300 m. Since FLEX
will be capturing images just few seconds before one of the S3
satellites, OLCI will certainly support FLORIS for enhancing
its sensing capabilities, while providing additional value in the
monitoring of the vegetation status [12]. However, FLORIS has a
particularly narrow field of view in contrast to OLCI. As a result,
FLEX will have a lower temporal resolution of two weeks. This
lower temporal resolution, together with the existing synergies
between FLORIS/OLCI instruments, strongly motivate the use
of S3 vegetation indices (VI) as SIF proxies for the FLEX
mission [13].

Even though S3 has a relatively good temporal resolution
(four days for a single-satellite and two days for the twin-satellite
constellation), the highly dynamic nature of SIF requires a very
accurate monitoring of S3 VIs to really serve as reliable proxies
from a temporal perspective. Note that even small temporal
periods may produce important vegetation changes. Then, the
availability of continuous and consistent intersensor data be-
comes an essential issue for the early detection of changes in
photosynthetic pigments across sensors [14]. In this scenario, the
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open availability of Copernicus data bring us the opportunity of
using intersensor S2 observations for improving S3 VI temporal
resolution by means of temporal reconstruction methods [15].

In general, temporal reconstruction pursues to estimate data at
unavailable temporal stamps in order to time-resolve or recover
missing information. Consequently, it is a very useful process
in RS, being three main trends available in the literature [15]:
1) temporal replacement, 2) temporal filtering, and 3) tempo-
ral learning models. In the case of temporal replacement, the
missing information is directly (or indirectly) filled with the
temporally closest available data. For this reason, this approach
is mainly suited to recovering just small image regions, e.g.,
cloud removal [16]. Regarding temporal filtering, these methods
are based on the assumption that time-series data tend to display
regular fluctuations over time. In this way, it is possible to define
a filtering function to interpolate missing values over a particular
temporal window. For instance, it is the case of Zhao et al. [17]
who designed a three-point changing-weight filter to reconstruct
NDVI time series by considering the local maximum/minimum
values for a particular growth cycle. Despite their simplicity
and efficiency, both replacement and filtering approaches gener-
ally demand highly constrained scenarios, where homogeneous
landscapes, temporal stability, and partially missing data are
expected. In contrast, temporal learning methods provide higher
generalization capabilities by means of machine learning regres-
sion models, being more suitable for time-resolving RS prod-
ucts. For example, Zeng et al. [18] presented a linear regression
method for the temporal reconstruction of moderate resolution
imaging spectroradiometer (MODIS) data. Zhao et al. [17] used
a random forest for temporally modeling land surface tempera-
ture. In [19], Zhang et al. proposed a convolutional neural net-
work (CNN) to reconstruct missing MODIS and Landsat-7 data.
Besides, Shao et al. [20] also defined a generative adversarial
CNN for reconstructing multisource RS data. To further exploit
temporal dynamics, alternative deep learning architectures have
also been proposed. For instance, Yu et al. [21] developed a
deep recurrent neural network (DRNN) for the reconstruction
of long-term MODIS data. In [22], the authors also presented
a temporal CNN-based regression network for time-resolving
Sentinel products.

Certainly, the latest advances on deep learning-based temporal
reconstruction provide the most remarkable improvements for
time-resolving VIs [21], [22]. Nonetheless, the limited oper-
ational availability of Sentinel data, together with the short
lifetime of FLEX (3.5 years), may hinder the task of modeling
long-term temporal dependencies that affect the performance
and applicability of time-resolved S3 VIs as SIF proxies. In this
sense, there are two main issues within FLEX/Sentinel context:
1) discontinuous temporal data and 2) multimodal observations.
On the one hand, the operational availability of the data are log-
ically affected by satellite orbits, cloud occlusions, data degra-
dation, and many other factors. Therefore, the same temporal
volume size may cover different temporal gaps (depending on
the operational availability of the data), which can eventually
make convolutional kernels unable to learn consistent temporal
feature patterns over time. On the other hand, the standard
scheme for time-resolving VIs typically involves a single input

Fig. 1. Diagram of the proposed model objective. Showing S2 data in blue,
S3 L2 product data in green and nonavailable S3 L2 product data in red.

sensor to learn a one-to-one projection. However, the availability
of multispectral data coming from different Sentinel missions is
a missed opportunity for exploiting unexplored intersensor syn-
ergies. To address these challenges, this article presents a novel
temporal reconstruction CNN named dual attention temporal
CNN (DAT-CNN). DAT-CNN has been specially designed for
time-resolving S3 VIs using S2 and S3 multitemporal observa-
tions. Fig. 1 displays a conceptualization of the proposed model
objective, where intersensor S2 data together with the corre-
sponding S3 neighboring temporal window are used to estimate
S3 VIs at unavailable timestamps. In more details, DAT-CNN
makes use of 4-D kernels, which slide across height, width,
channel, and time dimensions, with the objective of finding
temporal correlations while extracting dynamic spatial–spectral
and temporal features. Additionally, DAT-CNN incorporates two
different branches for processing and fusing S2 MSI and S3
OLCI modalities with the target of effectively exploiting multi-
sensor input data. Besides, each branch also implements a newly
defined spatial–spectral and temporal attention module. The
developed attention modules have the objective of suppressing
uninformative spatial–spectral features, while focusing on the
most relevant temporal stamps for each particular prediction.
Note that temporal attention is specially important in the consid-
ered discontinuous temporal data context since it allows focusing
on the most informative deep features along inconsistent multi-
modal time intervals in order to reach a better data reconstruc-
tion. All these techniques make the proposed DAT-CNN model
offer an innovative perspective on the intersensor vegetation
estimation task, particularly to improve the reconstruction of
vegetation indices as SIF proxies through multimodal and mul-
titemporal data. The main contributions of this work as follows.

1) A new deep learning architecture (DAT-CNN) is proposed
for time-resolving S3 VIs using S2 and S3 multitemporal
data.

2) An extended spatial–spectral and temporal attention mod-
ule is defined for effectively exploiting multisensor input
data.

3) The performance of several state-of-the-art temporal re-
construction methods is analyzed when resolving S3 VIs
as SIF proxies.

4) The superior performance of the proposed model is
demonstrated via an extensive experimentation using op-
erational S2 and S3 data.
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The rest of this article is organized as follows. Section II
details some related works including their main features and
limitations. Section III details the study area for the experimen-
tation and the dataset generation process. Section IV defines
the proposed architecture as well as the considered attention
modules. Section V presents the experimental part of the work.
Finally, Section VI concludes this article.

II. RELATED WORK

This work is focused on filling temporal gaps in S3 VIs using
multimodal S2 data and S3 information. In this context, temporal
reconstruction methods take on special importance [15], being
learning-based models certainly the most effective paradigms.
With the development of deep learning technologies, multiple
CNN models have been successfully designed to deal with mul-
tispectral RS data, while achieving positive results in land cover
classification and many other downstream applications [23]. For
instance, Sharma et al. [24] proposed a 2D-CNN, which used
deep patch features to classify medium resolution Landsat-8
imagery. Analogously, the CNN-based model defined in [25]
was adapted to hyperspectral imagery. In other works like [26],
the authors used contextual interactions and residual information
to exploit spectral–spatial features. Zhang et al. also showed
in [27] the advantages of using a two-branch CNN architecture
for classifying multisource hyperspectral and light detection and
ranging (LiDAR) data.

In the literature, it is also possible to find models which are
specifically used to obtain biophysical estimations through RS
imagery. In [28], Pyo et al. were able to quantifying cyanobac-
teria using hyperspectral data. In [29], Aptoula et al. defined
a CNN-based regression architecture for effectively estimat-
ing chlorophyll-a concentration from S2 data. RS data recon-
struction methods have been also explored, even with different
temporal methods [15]. In time-resolving problems, traditional
regression models can be found as well [18]. Nevertheless, the
learning-based methods are able to show further improvements
in temporal reconstruction. Zhang et al. [19] proposed a CNN
model to remove clouds, dead lines or other data anomalies
in MODIS or Landsat-7 images through spatial, temporal, or
spectral information. In the same line, Shao et al. [20] designed
a contextual adversarial two-stages CNN to perform spatial
reconstruction. Other authors opted for using temporal deep
learning models instead. It is the case of Yu et al. [21] who
defined the DRNN for time-resolving MODIS VIs. In [22], a
temporal CNN-based regression network is also presented for
the temporal reconstruction of Sentinel data.

Despite the positive results obtained by these and other rel-
evant methods [30], many of the existing deep learning-based
temporal reconstruction models still struggle at the task of man-
aging temporal RS data from an operational perspective. In real
environments, the operational data availability is not constant
since there are many factors to deal with (e.g., orbit subcycles,
cloud contamination, data degradation, etc.). Consequently, dif-
ferent temporal gaps may be considered within the same fix
temporal volume, which can logically make convolutional ker-
nels not to extract consistent temporal features over time-series

Fig. 2. Study region of Extremadura, with an S2 RGB example image.

data. In this sense, the possibility of extending standard attention
mechanisms beyond spatial–spectral domains (e.g., [31] and
[32]) certainly becomes an attractive opportunity to relieve this
type of intersensor temporal limitations. Additionally, existing
temporal prediction methods for VIs (e.g., [21], [22]) do not
take into account the possibility of exploiting multimodal input
data since they are mainly focused on learning a single domain
projection. However, the open availability of multispectral Sen-
tinel data bring us the opportunity of uncovering new intersensor
synergies in the task of time-resolving S3 VIs. With these
considerations in mind, the proposed model has been designed
to further advance the development of time-resolved S3 VIs as
SIF proxies.

III. DATASET

This section defines the dataset created for the experiments.
In Section III-A, the spatial location of the dataset and the mo-
tivation behind selecting this specific area of study are exposed.
Then, Section III-B describes the process by means of S2 and
S3 products were downloaded, corrected, filtered, and selected.

A. Location and Motivation

The created dataset is composed by 20 daily synchronous S2
and S3 products from the complete 2019 a. Specifically, S2 data
are MSI bottom of atmosphere (BOA) reflectance products and
S3 counterparts are OLCI top of atmosphere (TOA) radiance
images. In this work, the normalized difference vegetation index
(NDVI) was chosen as target VI, as it is a standardized VI well
known in the literature. Nevertheless, any other product could
be used instead, while the selected product changes along time
as a result of vegetation biophysical processes. For this dataset, a
highly covered vegetation area was selected. As one of the most
vegetation covered regions in Spain, Extremadura was chosen
with a 65% of land cover vegetation, including dehesas (an
agrosilvopastoral system consisting of grassland) and oak forests
(which also makes the region keep a high biodiversity. Among
the natural grasslands of Extremadura, there are protected areas,
such as Parque Natural de Cornalvo and Zona de Interés Re-
gional Llanos de Cáceres y Sierra de Fuentes. The study region
is located in (−5.188652, 38.740370) latitudes to (−6.498977,
39.697509) longitudes, which cover a total of 100 km2, while
corresponding to a complete S2 tile. Accordingly, S3 products
were cropped to match and contain only this 100-km2 area as
well. An illustrative example is shown in Fig. 2.
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B. Automated Data Acquisition and Processing

To automate the process of downloading the data from the
open access hub Sentinel platform, a region of interest (ROI)
over S2 tilling grid, i.e., RS2, is initially defined in GeoJSON
format. Once this region is selected, we generate a query using
the Sentinel mission’s name, the product type, the ROI and the
temporal interval T . This process was implemented through
the Sentinelsat [33] application programming interface (API)
in Python. For the S2 products, the ROI ROIS2 is directly used,
and the temporal interval T is defined. In the S3 product case,
the ROI is defined as any S3 product containing the S2 ROI,
ROIS3 = S3products ∈ ROIS2. The temporal interval T used is
the same as for the S2 products.

When the products are already downloaded, a filtering
to avoid cloud coverage is performed using the information
from S2 level-2 A (L2A) products. In more details, these
cloud masks are generated following S2 ground segment data
pipeline through level-1 C (L1C) processing and enhanced
L2A scene classification [34], [35]. After filtering the products,
corrections are needed for each type of product. In the S2A
case, let XS2ref ∈ R(MS2×WS2×HS2)

RS2,rS2
be a S2 reflectance product

covering the region RS2 in universal transverse mercator
(UTM) coordinates, with MS2 spectral bands, WS2 width and
HS2 height with a spatial resolution of rS2 meters per pixel.
A resampling to set the spatial resolution rS2 equal in all the
bands is needed, as some bands have different resolutions. To
retain only the MS2 main 13 spectral bands (from B1 to B12,
including B8a) a spectral subset is also performed. For the
S3 products further processing is needed. For a S3 radiance
L1C product XS3rad ∈ R(MS3×WS3×HS3)

RS3,rS3
in world geodetic

system 1984 (WGS84) coordinates of the region RS3, with an
MS3, WS3, HS3, and rS2 spectral bands, width, height, and
spatial resolution, respectively. First, the radiance values were
transformed to reflectance using the sun zenith angle and solar
flux information from the auxiliary product information. Then,
a reprojection from the WGS84 system to the UTM coordinate
system used in the S2 products is done to have both products,
S2 and S3, in the same coordinate system. At the same time, the
S3 product is trimmed to use only the intersecting area with the
ROIS2, and resampled to 300-m per pixel resolution. After these
spatial corrections, a spectral subset is performed to maintain
the main 21 reflectance bands. The product resulting after these
processes is XS3ref ∈ R(MS3×WS3×HS3)

RS2,rS3
. This corrections were

done using the Sentinel application platform (SNAP) in Python
interface, to access to the SNAP Java API [36].

Once the corrections are applied, the S3 product is chosen
and calculated. In order to illustrate the method, NDVI has been
selected as target VI since it is used to estimate the quality,
quantity, and development of the vegetation.

For the S3 case, before calculating the NDVI, the three red
bands (B07, B08, B09, and B10) and the three near-infrared
radiation (NIR) bands (B16, B17, and B18) are joined to one
red band and one NIR band by averaging them, shown in (1)
following the methodology from [37]:

meanRED =
B07 +B08 +B09 +B10

4
(1)

meanNIR =
B16 +B17 +B18

3
. (2)

The obtained averages are used to calculate the final NDVI
value, represented in (3). Thus, the S3 level-2 (L2) NDVI product
can be defined as XS3NDVI ∈ R(WS3×HS3)

RS2,rS3

XS3NDVI =
meanNIR−−meanRED

meanNIR + meanRED
. (3)

IV. METHODOLOGY

In this section, the proposed model to perform the missing
S3 data completion using multimodal S2/S3 temporal data is
described. The methodology for this process has been divided
in three main blocks: 1) An overview including the definition
of problem and our proposed model to solve it (Section IV-A);
2) the main features of the proposed model, which allows it
to deal with temporal information and improve the generation
S3 enchanted products using state-of-the-art techniques and
structures (Section IV-B); and 3) the dual attention temporal
convolutional neural network model proposed architecture def-
inition (Section IV-C).

A. DAT-CNN Overview

The data employed by the model is defined as follows. Let
XS2 be an input time series of multispectral S2 products; XS3

another input time series, in this case of biophysical S3 products
and YS3, the unavailable desired S3 L2 same biophysical output
product. The ultimate goal of the DAT-CNN is to be able to
generate a S3 L2 biophysical unavailable product mapping a
function, such as F : XS2, XS3 → YS3. More specifically, for
this process the images have been divided into patches. There-
fore, each S3 L2 output pixel patch yS3(i, j) ∈ RS×S at position
(i, j) of the YS3 target product will correspond to S2 time series
image patches of pixelsQS2(m, i, j, h) ∈ R(MS2×P×P )×T from
XS2, wherem is the spectral band, andh is the time stamp; and to
a S3 time series image patches S3 QS3(i, j, h) ∈ R(S×S)×T . In
this case, P is the height and width of the S2 neighboring region
or image patch corresponding to each S3 L2 S height and width
patch, input, and output, following the spatial resolution ratio
rS2:rS3, and T the number of time stamps in the time interval
considered.

In Fig. 3, the complete structure of the proposed DAT-CNN
is shown. The architecture can be divided in three main parts
as follows:1) The S2 branch, 2) the S3 branch, and 3) the
tail of the network. The use of two different temporal input
steams is aimed at allowing the network to learn deep features
at each multitemporal modality and, then, exploiting intersensor
relationships at a common resolution level embedding scheme.
Each of these branches has several blocks composed by different
layers. Both of the S2 and S3 branches have an attention block,
helping them to focus in the most relevant information from the
inconsistent time intervals between the available images. After
the attention blocks, the model has head blocks and body blocks
for each branch. Finally the S2 and S3 branches are connected
to the tail block, which generates the time-resolved VI.
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Fig. 3. Complete architecture is made of main branches, one for S2 data and another for S3 data. Each branch has several layers organized by blocks including
attention blocks. After the features extraction of each branch, both set of features are concatenated and in a final block called Tail the expected S3 pixel value
is generated. In the diagram the legend presents the two different attention blocks (3-D attention and 2-D attention) and the layers composing the model: 3-D
convolutional layers (3D-C), batch normalization layers (BN), RELU activation layers (RELU), 3-D pooling layers (3D-P), 2-D convolutional layers (2D-C), and
full connected layers (FC).

B. DAT-CNN Main Features

A CNN is a feed-forward neural network which contains
convolutional layers and other kinds of filters to extract char-
acteristics and information, specially used in the case of im-
age data. In images, CNN models can locate lines, gradients,
circles, or even more complex features. The proposed archi-
tecture has three main strengths to predict unavailable S3 L2
biophysical products. First, the use of temporal information
through 3-D convolutions (Section IV-B1); second, the use of
multisensor information simultaneously through two different
branches (Section IV-B3); and third, an improvement of focus
and representation in the feature maps applying channel and
spatial attention (Section IV-B2)

yk(i, j, h)

=

{
M−1∑
m=0

N−1∑
r=0

N−1∑
s=0

T−1∑
t=0

wk(r, s, t;m)xm(i+r, j+s, h+t)

}
+bk.

(4)

1) 3-D Convolutions: The first of the main features of this
model is the use of temporal information. In the literature, differ-
ent temporal related tasks have been explored to solve through
3-D convolutions. For example, Diba et al. found the use of
temporal information through 3-D convolutions to increase the
accuracy for video classification. In order to manage multispec-
tral time series data, the model contains several 3-D convolutions
for the S2 data stream. For the S3 data, 3-D convolutions were
not used. Instead, as the biophysical product information is

concentrated in only one channel, the temporal data will be
used as channels in 2-D convolutions. The 3-D convolutions
perform not only in the spatial and spectral domain but also
in the temporal domain, which in our case is equivalent to the
image plane and channels, and the temporal interval. The 3-D
convolutional kernels will expand in the fixed spectral domain,
while moving through the temporal information. This allows
the 3-D convolutions to find temporal correlations between
samples, extracting characteristics that change dynamically in
the temporal dimension. It has to be considered that vegetation
indices usually change in temporal intervals of hours, days,
weeks, or even longer. For example, the chlorophyll concen-
tration changes in time periods longer than days, while other
vegetation products, such as fluorescence can change drastically
in a few hours. Therefore, the estimation of intersensor level-4
(L4) products can be improved with essential information from
the use of the progression of the different vegetation indices
through time. As the 3-D convolutional filters are allowed to
move through the time dimension along with the height and
width dimensions, this process creates a 3-D feature map for
each spatial–spectral-temporal data input. This convolution is
defined in (4). In this equation, yk(i, j, h) is the output pixel
at a time h and spatial position i, j of the final reconstructed
biophysical product. T is the time dimension and N ×N is the
spatial size of the filter and M is the set of features, in our case
the number of spectral bands. In this equation, wk(r, s, t;m) are
the weight values of the kth filter at the image position (r, s),
time t, and m spectral band, bk is the bias for the kth filter,
and xm(i+ r, j + s, h+ t) is the input, for us S2 data patch
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Fig. 4. Diagram of the full process of the attention block, where the original
data are multiplied by the channel attention features, the spatial attention
features, and finally the obtained features are added as a weight to the original
data to improve the representation.

Fig. 5. Diagram of the channel attention features generation through a max
and average pool, two dense layer, the addition of the resultant features, and a
sigmoid activation function.

of spectral band m at image coordinates (i+ r, j + s) at time
stamp (h+ t).

2) Convolutional Attention: The objective of an attention
block is to suppress the unnecessary features and help the
network to focus in the most significant ones. The temporal data
series of S2 and S3 might be from different periods of time, with a
different time interval between the samples because of missing
data. Due to this reason, using an attention block to highlight
the most relevant temporal features can give a great advantage
to avoid outliers and temporal noisy data. This technique has
been studied extensively in previous literature [38]–[41]. This
block is composed by two main modules, a channel attention
module and a spatial attention module, as shown in Fig. 4.

The channel attention (Fig. 5) focuses in obtaining feature
maps through the interchannel possible relationships. To achieve
it efficiently, the spatial dimensions are squeezed using average-
pooling [42] and max-pooling features at the same time to obtain
more accurate information. Once both max and average-pooling
features are extracted, two shared dense layers with a reduction
ratio in the first layer (to avoid overparameterization) and a
second dense layer with the same number of neurons as the
original number of channels are used to generate the attention
channel maps. Later, both feature vectors are merged using an
elementwise addition and forwarded to a sigmoid activation. In
the case of the spatial attention (Fig. 6), the objective is using
the interspatial relationships between the data. Max-pooling and
average-pooling of the data are used again to squeeze the infor-
mation. However, now the obtained features are concatenated
and fed to a convolution layer to generate a single spatial feature
map.

Fig. 6. Diagram of the spatial attention features generation using a max and
an average pool, a convolution layer, and a sigmoid activation function.

Even though both modules can be used in a sequential or paral-
lel order (as was shown in [43]), the sequential structure appears
to give better results. Specifically, the best composition is using
first the channel attention and then the spatial attention. Hence,
we first calculate the channel features and multiply them to the
original data to after proceed a second multiplication with the
resulting values and the spatial features. These attention features
are then added to the original data to increase the representation
power of the network. In the DAT-CNN, an attention block was
used for both S2 and S3 data, with the only difference between
them being the use of 3-D pooling and 3-D convolutions for S2,
and the respective 2-D layers for S3.

3) Dual Branch: For our model, the input data will be com-
posed by two different data streams: the first one of multispec-
tral and multitemporal image products from the S2 mission,
and a second one of S3 multitemporal biophysical products.
Therefore, the proposed architecture has been designed to deal
with both, a sequence of S2 multispectral images and another
sequence of S3 product data in order to generate an estimation
of absent or inaccessible S3 L2 products at specific times.
Both of the time series include previous and latter products to
the objective output time. This is achieved using two differ-
ent branches initially, which will eventually join the extracted
features from both streams. There are examples of the use of
multibranch networks using multimodal data in other fields as
action recognition [44], person search [45], or even medical
image categorization [46].

C. DAT-CNN Architecture

1) S2 Branch: The first block in the S2 branch is the 3-D
attention block, which was described in Section IV-B2. This
block has the function to enlighten and help the network to
focus in the most relevant information from the time series
multispectral input patches. Due to the inconsistency in time
intervals between S2 and S3 cloudless coupled data, the ability
of the attention block to highlight useful temporal information
in irregular periods of time has significant role. Specifically,
for the S2 attention block, the number of neurons in the first
dense layer of the channel attention is N = 6 and in the second
layer equal to the number of channel, in this case, N = 13.
The 3-D convolution performed in the spatial attention has only
one filter to maintain the original spatial image size. After the
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attention block an encoder structure is followed to reduce the
spatial resolution, while augmenting the depth of the features,
leading to the S3 biophysical product smaller patch size. This
structure is composed of the other two blocks or stages of this
branch, which we have called S2 head and S2 body.

The S2 head blocks consist of a sequential composite of
layers. 1) A 3-D convolutional layer (3D-C), where the 3-D
convolutions K@N ×N × T with K as the number of filters
are done to the input patch QS2(m, i, j, h) to extract temporal
feature maps from the previous stage, 2) a batch normalization
layer (BN) to regularize the 3-D feature maps, 3) a RELU
layer (RELU) as activation function, and 4) a pooling layer
(3D-P) to reduce the dimensions of the generated 3-D feature
maps. The aim of the S2 head blocks is to produce initial low
level 3-D feature maps from the S2 multispectral data already
focused by the attention block. Two head blocks were used,
a first block (S2 head A) for the complete spatial resolution
features extraction, and a second block (S2 head B) to obtain a
more abstract feature representation without losing much spatial
resolution. Therefore, in this stage early characteristics from
local information in the spectral/spatial–temporal domain with
a moderated depth but in full spatio–temporal resolution feature
map is obtained.

The 3D-C layers, wherein both head blocks A and B defined
with a kernel size of (3× 3× 3) and (1× 1× 1) stride, in the
S2 head A block using 64 filters and in the S2 head B the double,
128. The number of filters for each layer has been selected
after experimenting with deeper and shallower convolutional
layers, leading to the selected filter values. The 3D-P used a
pool of (2× 2× 1) and a stride in the first case of (1× 1× 1)
as well to highlight the stronger features without reducing its
dimensionality. Meanwhile, in the second head a (2× 2× 1)
stride was used to obtain a higher spatial reduction maintaining
the temporal information.

The S2 head blocks are followed by two S2 body blocks (body
A S2 and body B S2), both of these blocks contain seven layers
in sequential order: 1) 3D-C, 2) BN, 3) RELU, 4) 3D-C, 5)
BN, 6) RELU, and 7) 3D-P. In the body blocks the previously
obtained features are significantly reduced in the space domain
to generate further deeper and complex maps to extract the
information from the S2 data temporal series correspondent
to the desired S3 biophysical product. Reducing the spatial
information of the feature maps allows to reduce progressively
the spatial resolution until a spatial size of 1× 1. To obtain
deeper feature temporal maps, the 3D-C layers in each body
block are equally defined, but in the subsequent pooling layers
the spatial resolution is reduced.

In the body A S2 256 filters were used in both convolutional
layers with (3× 3× 3) size. The 3D-P layer of this block’s
pool size and stride are of size (2× 2× 1) as well, in order to
reduce the spatial resolution without reducing the temporal deep
features. Besides, the body B S2 has 512 filters and the 3D-P
was designed with a pool size and stride of (2× 2× 3). Is in
this last part of the second body block, where the deep temporal
features are also reduced.

2) S3 Branch: The S3 branch can be seen as a simplification
of the S2 branch regarding to its structure, as the corresponding

S3 spatial resolution to S2 is always lower. Starting by a 2-D
attention block. In this case the attention block has the purpose
of highlighting the most useful samples for the desired output
value. Nevertheless, as there is less spatial information, the
temporal attention for irregular time intervals between samples
has even higher relevance. The 2-D attention block has the
same structure as the 3-D attention block with the necessary
2-D counterpart layers, as each of the temporal S3 biophysical
product patches contain only one channel each. The number of
neurons in the dense layers in this case is of N = 1 for the first
layer and 4 in the second one. As in the S2 branch, in this case
the 2-D convolution has one filter to maintain constant the space
dimension.

Once the S3 input is focused by the attention, an S3 head
block is used with the same purpose as the S2 head blocks, to
extract superficial features. The block structure is equal to the
S2 but with 2-D layers: 1) a 2-D convolutional layer (2D-C), 2)
BN, and 3) RELU. From the first 2D-C after the attention block,
the spatial resolution is maintained with all the filter sizes and
strides of (1× 1). Also, the number of filters is smaller, with
only 16 filters in the 2D-C.

The S3 body block has the same structure as the S2 branch
body blocks with 2-D layers as well: 1) 2D-C, 2) BN, 3) RELU,
4) 2D-C, 5) BN, and 6) RELU. With this block, deeper temporal
characteristics are extracted from the S3 data, without reducing
its spatial resolution. Again, the filter sizes and stride parameters
of every layer are of size (1× 1) with a number of filters of 64
and 128 for each 2D-C, layer respectively.

3) Tail: In the final segment of the architecture, which we
have called tail block, the two branches are concatenated. The
final 3-D volume containing S2 and S3 deep temporal features is
then flattened. Once a single vector of features is generated, the
tail block containing: 1) fully connected layer (FC), 2) BN, and
3) RELU is used. With this set of layers the spatial, temporal,
and spectral features previously obtained are correlated to better
approximate the desired biophysical S3 product value. The FC
layer used has a total of 1024 fully connected neurons for this
purpose. Finally, a last FC layer with a single output estimates
S3 L2 product image patch.

V. EXPERIMENTS

In this section, the experimentation conducted to validate and
compare the DAT-CNN is described. In Section V-A, the exper-
imental settings used through all the experiments presented are
explained. Finally, in Section V-B, Section V-C, and Section V-D
the proposed experiments are described and discussed, first an
ablation study of the proposed model, second an experiment to
compare its results with other state-of-the-art-methods designed
to solve similar issues, and third a real case experimentation.

A. Experimental Settings

In both experiments, Section V-B and Section V-C, the exper-
imental setting were defined equally, and executed using Python
3.6 on a Ubuntu 16.04 x64 machine with Intel(R) Core(TM) i7-
6850 K processor with 110 GB RAM with a NVIDIA GeForce
GTX 2080 Ti 11 GB GPU. In the experimentation, the S2 data
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TABLE I
ABLATION’S STUDY QUANTITATIVE ASSESSMENT FOR NDVI PRODUCTS BASED

ON RMSE (×10−2), MSE (×10−2), AND MAE (×10−4)

has been reduced with a 1:3 ratio through a Lanczos interpola-
tion. All the XS2ref product bands have been resampled with a
resolution r of 20 m per pixel, being the final S2 input products
of a size of 1830× 1830 pixels and 13 spectral bands. In this
work, since S2 and S3 spectral ranges do not perfectly match,
we decided to use all S2 bands to take full advantage of the MSI
spectral range. However, other S2 bands subsets could be also
considered in this regard. By the other hand, theXS3NDVI products
have a size of 366× 366 pixels. The temporal windows used for
in the S2 input products was of T = 5 with the central image of
the temporal series being of the same day as the absent target S3
product. For the S3 input products a T = 4 interval was used, as
the central image of the set was the unavailable product, selected
for the training and validation as output.

For the training stage, all the methods used the same data
partitions from the dataset defined in Section III-A. From this
data, one complete S2 and S3 paired product was excluded to
generate a real case example. The rest of the paired samples
were divided in patches of P = 5× 5 for S2, and S = 1× 1 for
S3 due to computational limitations, following the final spatial
relation between the input and output products of 1 : 5. A 40% of
the data was used for training, while another 40% for test and a
20% for validation. All the networks used in the experimentation
were trained using the same hyperparameters and optimization
methods. We used the ADAM optimizer with a learning rate
lr = 10−3. A reduction of this learning rate with a factor of
0.5 was used when the LOSS value did not improve in 10
consecutive epochs until a minimum learning rate lr = 10−7.
The batch size and the epochs were also fixed to 128 and 150,
respectively, for every training. The results for each epoch were
evaluated minimizing the mse metric. To check the robustness
of the methods each one was trained five different times, with
different seeds used to randomize the data partition in training,
test, and validation and the results shown below are the mean
value of these five training.

B. Experiment 1: Ablation Study

In this first experiment, an ablation study with different
variants of the proposed model have been studied. In Table I,
root mean squared error (RMSE), mean squared error (mse),
and mean absolute error (MAE) metrics between the objective
supposed unavailable S3 NDVI product and the predicted by
each model are shown. The variance of each metric in every

method along the five iterations is shown as well. Note that the
values displayed in Table I have been multiplied by a factor
(10−2 in the case of RMSE and mse, and 10−4 for MAE) to
reduce the number of uninformative digits in the results. The
various model variations are explained below.

1) S3 Branch: The first of the variations proposed is as well
the most simple model among them. This model consists of only
the S3 branch explained in Section IV-C2 without the attention
module. In this case, the input data is the temporal vector of S3
NDVI product pixels.

2) S3 Branch+Attention: In this variation an attention 2-D
module has been used at the starting of the S3 branch, exactly as
described in Section IV-C2. The input data are also a temporal
vector of S3 NDVI product pixels.

3) S2 Branch: This model has the architecture of the S2
branch Section IV-C1 without the 3-D attention module. The
input data are the multitemporal multispectral S2 image patches.

4) S2 Branch+Attention: As in the S3 case, a S2 branch in-
cluding the 3-D attention module, as described in Section IV-C1,
has been selected. As in the previous case, the input data are
multitemporal multispectral S2 image patches.

5) S3+S2 Branch: This is the first model of the ablation study
which uses both of the S2 and S3 branches. Nevertheless, neither
the S2 nor the S3 branches contain any attention module. As the
model contains both branches, the S3 NDVI temporal product
pixels and the temporal multispectral S2 image patches window
are used as input.

6) S3+S2 Branch+Attention (DAT-CNN): The DAT-CNN
model described in Section IV-C containing both branches with
their correspondent attention modules, using the same data has
the model previously described.

According to the results shown in Table I, the multimodal S2
branch models outperform drastically the S3 simpler models.
This is in part thanks to the spatial information contained in
the S2 patches which the S3 pixel vector lacks, even though
the S3 pixel vector consists of the same product data type as
the expected output. Also, the multimodal S2 branch models
containing a S2 product of the same day as the objective S3 L2
product seems to increase this advantage. In the both cases of
isolated branches, the use of an attention block seems to give
some stability in a few metrics, and very slight improvements in
general. However, the multiple branch models show a significant
improvement to the single S2 or S3 branches. In the case of the
model without attention, there is an overall improvement in all
the metrics, but there is a high deviation as well, we consider
this as a result of the network not being able of extracting the
most important features efficiently. This is solved in the last
and proposed model, DAT-CNN, through the attention blocks
which now show a better performance. As the number of layers
and filters grow, the highlighting of the most relevant features
extracted grows in significance as well.

C. Experiment 2: Comparison With Other Methods

In this second experiment, the proposed DAT-CNN is
compared to other state-of-the-art methods, which were used
for similar objectives and standard methods. To perform this
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comparison, the dataset defined in Section III-A was used as
well. For this multimodal experiment the main input data used
have been the S2 image patches. The methods unable to profit
from the temporal information were given only the same day
S2 image patches as input data, while more information was
given to the methods able to exploit temporal information or
other inputs. The methods which were used in this experiment
can be separated in three groups.

In the first group, four traditional regression methods were
selected as representatives. This group includes the following
methods: 1) The linear regression (LIN) [18]; 2) the ridge
regression (RG) [47], which is an improvement of the linear
regression to better model multicollinear independent variables;
3) the support vector regression (SVR) [48] using a nonlinear
radial basis function kernel and a maximum number of 1000
iterations; 4) and a random forest regression (RFR) [17] with
eight classification trees which results averages to improve the
accuracy.

The second group contains methods based in 2-D neural
networks architectures that have been used for multispectral or
hyperspectral classification or temporal prediction: a multilayer
perceptron (MLP) with only fully connected layers, as defined
in [23], which was used in a hyperspectral image classification
review; from the same review [23] a standard 2-D convolu-
tional neural network (2D-CNN); a 2-D CNN that was used
to quantifying cyanobacteria using hyperspectral imagery (PR-
CNN) [28]; a deep patch-based 2-D CNN designed to classify
RS land cover images (DP-CNN) [24]; an hyperspectral image
classification optimized 2-D CNN (HY-CNN) [25]; a contextual
CNN which uses residual information and a multiscale filter to
classify multispectral images (CD-CNN) [26]; and the last of
this group, a CNN used as to estimate with a regression the
chlorophyll-a concentration using S2 data (CNNR) [29].

In the third group the models which take advantage and use
temporal information are included: A standard 3-D convolu-
tional neural network used in a hyperspectral image classifi-
cation methods review [23]; a deep recurrent neural network
with long short-term memory and gated recurrent units (DRNN)
designed to predict short-term vegetation indices using temporal
information from S2 or MODIS data [21]; and our proposed
model DAT-CNN with two branches, 3-D convolutions, and
channel and spatial attention as main features.

To analyze and compare the performance of each of the meth-
ods presented previously and the proposed DAT-CNN, three
different metrics have been used. The mean of five iterations with
different partitioned data and the standard deviation of RMSE,
mse, and MAE for all the models was obtained. In Table II this
quantitative evaluation is presented. In order to have a better
visualisation the RMSE and MAE values and standard deviation
were multiplied by a factor of ×10−2, while the mse results and
deviation were multiplied by a factor of ×10−4.

In the first column of this table the different models are
arranged in rows. In following columns, the RMSE, mse, and
MAE obtained results by each method are shown. The results
obtained show how the proposed DAT-CNN model outperforms
every other method studied for the analyzed metrics. For the
set of traditional regression methods, the method with the best

TABLE II
DIFFERENT METHODS’ QUANTITATIVE ASSESSMENT FOR NDVI PRODUCTS

BASED ON RMSE (×10−2), MSE (×10−2), AND MAE (×10−4)

performance was the RFR with a considerable improvement
compared to the others, while the worst results were obtained by
the SVR. In the 2D-CNN models the simple MLP and 2D-CNN
had similar results to the traditional LIN or RID methods, by the
other hand models like the HY-CNN or the DP-CNN obtained
better results than the RFR. Among the methods unable to
use temporal information, the CNNR achieved the best results.
Nevertheless, all the methods which used temporal information
outperformed the previous. The method with the best results
behind the proposed DAT-CNN was the 3D-CNN, but still its
noticeable how the difference between the DAT-CNN and the
other 3-D methods is larger than the difference between the
CNNR and 3D-CNN methods. The margin of improvement
obtained against the following best method is comparable to
the difference between using a LIN regressor and an 2D-CNN
in the middle set of performances as the PR-CNN.

D. Experiment 3: Real Case Experimentation

In order to test the actual ability of the proposed method to
generate enchanted S3 products in a more realistic experimenta-
tion, one random complete S3 product was excluded of the pre-
vious training, testing, and validation. In this experiment, some
of the models trained in the previous experiment will generate
the enchanted S3 product corresponding to the excluded product.
Then, their qualitative and quantitative results will be compared.
For this purpose, our model and two representatives from each of
the three different groups according to their performance in the
previous experiment were selected: traditional (LIN and RFR),
2D-CNN (DP-CNN and CNNR), and 3D-CNN (3D-CNN and
DRNN) were selected to generate S3 NDVI product predictions.

In Table III the qualitative results of this experiment are
shown. Again, in the first column of the table the models are
presented in rows, and in the next columns the RMSE, mse,
and MAE results are shown. For this real case experimentation,
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Fig. 7. NDVI qualitative assessment. (a) Ground-truth. (b) LIN. (c) RFR. (d) DP-CNN. (e) CNNR. (f) 3D-CNN. (g) DRNN. (h) DAT-CNN.

TABLE III
QUANTITATIVE ASSESSMENT FOR NDVI PRODUCTS BASED ON RMSE

(×10−2), MSE (×10−2), AND MAE (×10−4)

the proposed DAT-CNN model is able to outperform the other
methods as well. Nevertheless, for this specific case the follow-
ing better performing methods in the global calculated metrics
are the CNNR and the DP-CNN. Then the CNN3D, DRNN,
RFR, and finally the LIN method.

Complementary to the quantitative results, a qualitative
experimentation to further demonstrate the improvement ob-
tained using the proposed DAT-CNN method in this experiment
has been done. The generated NDVI predictions from each
model and the ground-truth are shown in Fig. 7. To generate
more intuitive visual results, a false color was used. Values
from −1 to 0 represent rocks and water surfaces corresponding
to blue to greenish blue, bare soil can be seen between 0.1 and
0.2 in pure green, and the vegetation is observable from 0.2 to
1 values, in greenish yellow to pure yellow.

As previously stated, the proposed model obtained the best
results, and this can be easily seen visually as well through two
main points. First, the overall values in the image, and second the

correct features representation. In all the models (except DRNN
and the proposed DAT-CNN) the images have in general lower
values. These lower values appear as a greenish overall image
than the ground-truth image, specially in the LIN prediction. The
other visible difference can be better seen in the magnification.
The shape of the river which appears in it is completely lost in the
LIN prediction. In the RFR, DP-CNN, and CNNR the shape can
be seen, but it has lost sharpness, appearing blurry, and bigger.
This loss of sharpness can lead to a better quantitative general
results when other methods are not able to correctly represent
the features of the image. For the 3D-CNN, even though the
reconstructed image is greenish as was discussed previously,
the shape of the river is still better preserved. By the other
hand, the DRNN which better represented the overall colors,
appears to have difficulties with shapes as the river shown,
leading to worst results than the DP-CNN or CNNR. After
analyzing the different time-resolved S3 VI visual results, it can
be concluded that the proposed DAT-CNN model not only ob-
tained better quantitative results but also better shape and color
representation in qualitative results according to the objective
ground-truth.

From the results obtained there are four evident advantages
of the proposed architecture compared to the others: 1) consid-
ering multitemporal features, 2) the adaptation to data diversity
limitations, 3) the focused representation of features, and 4) the
use of multimodal information of both S2 and S3 data. The use
of temporal information allow the network to extract dynamic
information not available in the spatial or frequency dimensions
found in the temporal interval data in S2 and S3. This can be
noticed in the experimental results, where the best performing
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models are all 3D-CNN architectures. Besides, when working
with limited data due to cloud covering (which is a common
issue in RS imagery) or other limitations, avoiding overfitting
is mandatory. The increment in parameters and complexity due
to the 3D-convolutions has to be considered as well, possibly
aggravating this issue. To decrease this possible overfitting, we
reduced the number of parameters and layers, while adopting the
head, body, and tail block scheme. At the same time, a it was nec-
essary to acknowledge the necessary layers and blocks to com-
pensate the spatial resolution difference and obtain represen-
tative features. The highlighting of the most relevant temporal
features through the attention modules is essential to improve the
feature representation, while the overfitting is minimized from
irregular temporal period samples. Finally, the use of both S2
and S3 information, complementary to the previous mentioned
reasons has a major impact in the overall better performance
of the model, as has been explored in the first experiment
Section V-B.

VI. CONCLUSION

In this article, a 3D-CNN model to generate temporal en-
hanced Sentinel-3/FLEX Derived L4 products has been pro-
posed. This model takes advantage from not only spatial and
spectral information, but also temporal information from pre-
vious and following days samples to obtain L4 products. The
objective of those L4 products is to complete and enhance the
temporal resolution of S3 or FLEX temporal series of products.
To prove the accuracy of this model, it has been compared
to other regression state-of-the-art methods, including other
CNN models designed specifically for RS, using the RMSE,
mse, and MAE metrics. The experimental results demonstrate
the improvement obtained from using temporal information to
generate the L4 products. Furthermore, the proposed 3D-CNN
model was able to obtain better results and predictions than the
other models in the same conditions, using a S2 reflectance
products and S3 L2 products dataset of 20 same-day paired
images from 2019. In the future, we plan to extend the pro-
posed DAT-CNN model by exploiting early fusion interactions
together with other strategies, such as increasing the temporal
depth as well as the data used for training. Nevertheless, this will
increment the computational costs and data volume as potential
limitations.
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