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1. Introduction

Worldwide growth of photovoltaics (PV) has been exponential
during the last 15 years with a global installed capacity skyrock-
eting from hardly 1 GW in 2006 to more than 620 GW in 2019.[1]

Further deployment seems unstoppable because of the sustained
decline in utility-scale solar PV electricity cost experienced so far,
which has transformed solar PV plants into one of the cheapest
electricity supplies.

The introduction of such a massive quantity of intermittent
nondispatchable generation, complemented by the also

important wind power penetration, will
impact the grid stability and operation.[2]

Given that the pace of updating the inter-
connection infrastructure among control
areas, which would allow greater power
exchanges, is limited, transmission system
operators (TSOs) need to rely on alternative
solutions, such as energy storage systems
(ESS), to balance the system. In this sense,
one technology stands out: lithium-ion (Li-
ion) batteries. This is due to the tenfold
downward trend in per kilowatt hour cost
experienced by commercial battery packs
in the last 10 years.[3,4] If the evolution of
the PV industry is mimicked, the trend
toward cheaper batteries is expected to con-
tinue in the coming years. This consoli-
dates Li-ion batteries as a key player in
the future electricity grid, primarily in com-
bination with PV installations. The level-

ized cost of electricity for large PV plants integrating a 4 h
capacity battery energy storage system (BESS) is between $85
and $158 per MWh, rapidly decreasing year after year.[5] This
production cost starts making these hybrid plants competitive
when they provide grid services such as frequency and voltage
control, inertia emulation, output smoothing, and peak shav-
ing.[6] In the US market, batteries are allowed to provide these
services, which are remunerated to complement the generation
income.[7] The European scenario, however, is quite the opposite
nowadays and still presents a variety of national and regional
legislations that, combined with government auctions that tend
to undervalue storage, do not favor the introduction of ESS. This
trend would be starting to change with the progress of the uni-
fying process of the European electricity sector with initiatives
like PICASSO[8] and MARI.[9] These projects try to set up a joint
European platform for the exchange of balancing energy from
frequency restoration reserves with automatic and manually acti-
vation, respectively. Therefore, it opens the door to a favorable
and widespread policy frame inciting the deployment of these
types of installations via a proper service remuneration. In the
same way, the Recovery and Resilience Facility derived from
the pandemic situation allows the European Commission to raise
funds (723.8 billion €) to help member states implement reforms
and investments that are in line with the priorities of the
European Union (EU).[10] It concentrates important amounts
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to boost the green transition, including BESS installations, in line
with EU's 2030 climate ambition.

Beyond the industry involved, academics have also devoted
attention to these types of installations. Three topics receive
outstanding research in this context: the size and operation
of the batteries, the forecast of the PV production, and the deg-
radation of the batteries involved. For the first of them,
multiple analyses have been lately performed to define the
optimal size of BESS installed in PV plants targeting various
goals.[11] For instance, Monteiro et al.[12] studied the optimal
placement and sizing of BESS at the distribution grid level.
Nasrolahpour et al.[13] did the same but sizing BESS from a
market integration perspective. Concurrently, other references
focus on control strategies developed to drive PV plants with
BESS targeting to provide different services such as power
ramp-rate control,[14] or secondary reserve,[15] to mitigate grid
congestion from high surplus PV power feed-in,[16] or to improve
the integration of EV and PV systems at the distribution level.[17]

Still, Abdelrazek and Kamalasadan[18] introduced a remarkable
work on PV capacity firming combined with a time shifting of
the production; Wang et al.[19] discussed the PV capacity firming
operation with 5min power steps; and Pantos et al.[20] analyzed
similar operation but considering dispersed ESS. For all these
proposals, it becomes critical to use an accurate irradiance fore-
casting technique such as those based on deep-neural networks
(DNN).[21] This allows to generate proper constant by periods pro-
duction commitments to be traded in the corresponding electric-
ity markets and avoid yielding committed energy deviations.[22]

Finally, works involving the analysis of the batteries degradation
when these are implemented in PV plants (for different goals)
are also found in the literature. For instance, Beltran et al.[14]

analyzed the aging when the batteries are providing ramp rate
control to the PV production. Others analyze the degradation
when batteries are used to provide ancillary services,[23] energy
arbitrage,[24] or peak shaving.[25] Therefore, the degradation of
the batteries is a hot topic in this field and a key parameter in the
profitability analyses of hybrid plants. Altogether, although
references can be identified in the literature with titles specifi-
cally concerning the use of batteries to firm the production of
large PV plants,[26,27] none of the works published so far
analyzed the influence of the electricity market structure on
the aging of the batteries used for PV firming. This is the main
contribution successfully developed in this work. This article
analyzes how the degradation of the optimally sized batteries
varies depending on the market where the hybrid plant is
operated. To this end, the work uses a low prediction error
deep-learning-based irradiance forecasting tool that favors the
adoption of the minimum-sized batteries required to firm
the PV production. Also, state-of-the-art battery aging models
for both NMC and LFP Li-ion battery types are implemented.
Results at three different European locations offer realistic
lifetime calculations under the most typical European intraday
market configurations.

The article is organized as follows: Section 2 introduces
both the different European electricity intraday markets and
the semiempirical aging models taken as framework for the
BESS degradation analysis. In Section 3, the control methodol-
ogy implemented to firm the production of PV plants with
BESS is presented. Section 4 introduces the simulations

performed, and analyzes the results obtained under the
described control methodology and the various market
structures considered, in terms of required battery sizes and
lifetime expectancy. Finally, the conclusions are presented in
Section 5.

2. PV Plant Operation Context and Battery Aging
Models

2.1. Intraday Market Structures under Analysis

PV installations including batteries are gaining momentum
around the world. Most of these hybrid projects rely on trading
their energy production in bilateral contracts. However, mer-
chant options are attracting investors’ interest. The economics
of these projects remain highly dependent on the location,
due to the electricity market to which the plant will be subject,
and to the policy conditions associated with it. This implies the
necessity to carefully analyze the economic viability for each
project. Different market and policy contexts are faced across
the Atlantic.

On the one hand, while the Federal Energy Regulatory
Commission (FERC) strives through Order No. 841[28] to estab-
lish standards for the participation of energy storage in wholesale
markets throughout the US, the existence of six different
Independent System Operators is introducing some barriers
to the homogenization procedure. This poses difficulties for a
general study on the intraday market opportunities for storage
installations in the US. On the other hand, the EU initiated
the integration procedure of electricity markets about 15 years
ago with the formation of various regional market areas
(MAs), as shown in Figure 1. Nowadays, these MAs run together
at the daily and the intraday level. In this sense, the daily markets
of eight European power exchanges have been coupled
since 2013 using a common clearing algorithm called the
Pan-European Hybrid Electricity Market Integration Algorithm
(EUPHEMIA).[29] Similarly, the Cross-Border Intraday Project
(XBID) has unified the intraday markets since 2018.[30]

The XBID system is a trading solution designed to enable
power exchanges and energy contracts across the different
European regional MAs in a continuous, transparent, and
efficient way. Therefore, it enables both multiple exchanges
within the different geographies and trading cross-border energy
contracts continuously on a 24/7 basis. The variety of products
supported by XBID is summarized in Figure 1. Note that the
products are configured by MA within XBID. In this way,
XBID includes 60min blocks for all the MAs as well as 15
and 30min blocks for some of them. The products must comply
with a minimum volume size per increment of 0.1MW, a price
tick of 0.1 € per MWh, and a price range from �9,999 to 9,999 €
per MWh. Also note in Figure 1 how the lead times vary among
MAs. The shortest delivery horizon (5 min) is defined in
“Belgium and The Netherlands” for their hourly available prod-
ucts. Moreover, France, Austria, and Germany fix 30min hori-
zons in their products. For the rest of MAs, including all the
cross-border exchanges, 60min leads are implemented.
Finally, the matching of contracts either locally or cross-border
is always performed in compliance with the price-time-priority
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principle, while the XBID solution only enables the trading of
contracts between MAs when enough interconnection capacity
is available.

Apart from XBID, three complementary regional intraday
markets operate in parallel with the common European market
to cope with MA peculiarities or cross-border transfer limita-
tions: one at the Iberian Market (MIBEL) between Portugal
and Spain, and two more in Italy at the capacity calculation
regions of “Greece–Italy” and “Italy–North”.[30] These markets
are operated by means of just a series of discrete auctions in
the intraday time frame (6 for MIBEL and 3 for the Italian
regions) which not only improves the liquidity of the market
but also increases the lead time and reduces the number of time
windows when corrections can be introduced in the traded
energy. Therefore, these types of markets do not favor the
operation of PV plants with batteries for capacity firming.
The increased difficulty of estimating the PV production as the
delivery time gets further from the trading period favors the
appearance of unexpected production biases. They usually
involve economic penalties.

Among the various operation frameworks available for PV
plants with batteries in the European context, the analysis
introduced in this work focuses on the common XBID intraday
market that currently runs across the continent and is available
for all the European agents, that is, the daily and the different
regional intraday markets are neglected. Therefore, the study
analyzes the influence on the degradation of the batteries of
the different combinations of XBID products summarized in
Figure 1, with varying delivery periods and various lead times.

2.2. Degradation Models for Li-Ion Batteries

Li-ion batteries are the dominant technology in the energy
storage sector nowadays because they clearly outperform other
chemistries at a technical and economical level. Within the
Li-ion battery industry there are six types of chemistries: lithium
cobalt oxide (LiCoO2), lithium manganese oxide (LiMn2O4),
lithium iron phosphate (LiFePO4), lithium, nickel, cobalt, and
aluminum oxide (LiNiCoAlO2), lithium, nickel, manganese,
and cobalt oxide (LiNiMn-CoO2), and lithium titanate
(Li4Ti5O12). Being all commercial nowadays, two of them stand

out as the best fitted alternatives to operate in combination with
renewable power plants[31]: LiFePO4 (LFP) and LiNiMn� CoO2

(NMC).
A great concern in such applications is the degradation

experienced by the batteries as the power plant operates. The
ability to estimate the aging in both real-time and forecasting
future trends is crucial for a safe and effective use.[32] Diverse
types of degradation models are available in the literature to
predict the aging of the batteries.[33,34] These are usually
classified into[35]: electrochemical models (detail and model
the phenomena occurring into the battery),[36,37] equivalent
circuit-based models (the battery is reduced as an equivalent
circuit model),[38–40] analytical or semiempirical models with
empirical fitting (estimation of aging parameters through meas-
urements),[41–43] and statistical approaches or data-driven/
machine-learning-based models (mainly based on data, without
any a priori knowledge).[44–47]

However, we consider that among all of them, the semiempir-
ical models are the best option for analyses such as those per-
formed in this work in terms of complexity, computational
burden, real-time response, and reliability trade-off.[48] In this
way, the present study uses semiempirical models for both
LFP and NMC cells. Beltran et al.[41] provided a detailed descrip-
tion of such models corresponding to VL30P cells by SAFT and to
JH3 cells by LG Chem, respectively. These models are selected for
this study as mainstream examples of LFP and NMC commercial
Li-ion cells widely adopted in battery packs installed in renewable
applications. Both models, for LFP and NMC cells and summa-
rized by Equation (1)–(4), analyze the capacity fade of the cells
associated with either the calendar (Cfade cal) or the cycling aging
(Cfade cyc). The former aging ismainly due to stress factors such as
temperature and average state-of-charge (SOC) during stand-by
periods, while the latter is strongly associated with the tempera-
ture of the cells under operation and with the number, C-rate,
depth of discharge, and the average SOC of the cycles.

Cfadecal LFP
¼ αcal LFP ⋅ eβcal⋅T ⋅ t0.5 (1)

Cfadecyc LFP
¼ αcyc LFP ⋅ eβcyc⋅T ⋅ NC0.5 (2)

Cfadecal NMC
¼ αcal NMC ⋅ ðV � 3.15Þ ⋅ e�6976

T ⋅ t0.75 (3)

Figure 1. Lead times at the different MAs for the various products offered in the XBID.[31]
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Cfadecyc NMC
¼ αcyc NMC ⋅ ð1.8 ⋅ ðOV � 3.667Þ2 þ ΔDOD

þ 0.1862Þ ⋅Q0.5
(4)

where T is the temperature (in K), t is the time (in months for
LFP, in days for NMC), NC represents the number of equivalent
full cycles performed, V is the average daily voltage (in V), Q
stands for the experienced charge throughput (in Ah), OV is
the average voltage for each cycle (in V), and ΔDOD is the depth
of discharge of the cycle (in range of 0–1). Beltran et al.[41] pro-
vided the value of the different parameters αcal LFP, βcal, αcyc LFP,
βcyc, αcal NMC, and αcyc NMC.

Therefore, the present study makes use of the results of the
simulated annual operation of the hybrid power plant to feed
these degradation models with the annual evolution of the cor-
responding variables (T, t, NC, V, Q, OV, and ΔDOD)). This pro-
vides a battery aging prognosis as a function of the electricity
market structure considered for the plant operation.

3. Control Methodology to Firm the PV Plant
Production with Batteries

Capacity firming is widely accepted as the capability to transform
the intermittent power output from a renewable power genera-
tion plant, such as wind or solar PV, into a dispatchable power
production that can be maintained at a committed level for a
period of time.

Energy storage systems, mainly in the form of Li-ion batteries,
have become a key player that allows firming the production of
PV plants, acting as an energy buffer. In this way, BESS helps
smoothing the PV output or even granting it to be constant
by periods (minutes to hours) so that power commitments pre-
viously traded in the electricity markets are matched. The power
exchanged with the grid is shaped by the combination of the
power exchanged by the BESS and the PV production

PgridðtÞ ¼ PPVðtÞ þ PBESSðtÞ (5)

where PgridðtÞ represents the instantaneous power exchanged
with the grid (ideally, the one committed), PPVðtÞ is the PV pro-
duction, and PBESSðtÞ is the power exchanged by the batteries.
Depending on the operating framework (of those existing in
the XBID continuous intraday market) where the hybrid plant
is located (1 h, 30min, or 15min products), different constant-
by-periods power sequences are required to firm the production.
These power sequences range from 24 to up to 96 different
values to be defined every day. Moreover, there is a lead time
for the commitment of these power sequences that also depends
on the intraday market in which the plant is participating.
Ideally, if the lead time were equal to zero and the PV production
forecast was assumed to be perfect, the optimized operation
that would be targeted with a plant of this kind would be the
one represented in Figure 2 for the three possible operating
frameworks: 1 h, 30min, and 15min energy products. Note
how the power sequences tend to match the PV production
and that the shorter the energy product, the closer the SOC is
to the 50% reference value. Unfortunately, the market
configuration always imposes a nonzero lead time when the exact

future irradiance (and the corresponding actual PV production)
is not known in advance. This implies using a prediction
model for PPV .

In this sense, the methodology shown in Figure 3 is proposed
in this work. An irradiance forecasting tool predicts the future PV
production, which is used, together with the actual SOC mea-
surement, to calculate the optimal power sequence to be commit-
ted by means of an optimization problem. Next, a receding
horizon strategy is carried out. This solely implements the first
value of the calculated power sequence. Furthermore, Figure 3
also shows the simulation procedure which has been used in this
work for the simulation and assessment of the results that will be
discussed in Section 4.3.

This optimization problem and the irradiance forecasting tool
that have been implemented are introduced in the following,
together with an example of the resulting plant operation with
power commitments.

3.1. Operational Optimization

In order to determine the constant-by-periods power sequences
in the real context, in this work we propose an optimization prob-
lem which periodically minimizes the quadratic distance from
the SOC of the BESS to a reference value (typically 50%) for
the different settlement/lead time scenarios, without violating
power and energy constraints. Each time instant t0 in which
the optimization problem is cast, the SOC of the BESS is mea-
sured (EESðt0Þ, in kWh) and the PV production forecast is
updated based on the irradiance model introduced in
Section 3.2. In this way, the successive optimization problems
(6) are formulated using the most recent SOC measurement
and meteorological information.

J ¼ min
Pgrid

X288
t¼t1

ðSOCðtÞ � SOCref Þ2 (6)
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Figure 2. Optimal production power steps to be committed for different
energy products and lead times of 30 min.
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subject for t ¼ t0 : : : 288 to

PgridðtÞ ¼

8>>>>>><
>>>>>>:

pk,prev, t ¼ t0 : : : t1
pkþ1, t ¼ t1 : : : t1 þ n
pkþ2, t ¼ t1 þ nþ 1 : : : t1 þ 2n

..

.

pN , t ¼ 289� n : : : 288

(7)

PgridðtÞ ¼ bPPVðtÞjt0 þ PBESSðtÞ (8)

Pmin < PBESSðtÞ < Pmax (9)

EBESSðtÞ ¼ EBESSðt� 1Þ � T ⋅ PBESSðtÞ (10)

Emin < EBESSðtÞ < Emax (11)

where N is the number of elements in the power sequence
committed for a day; n ¼ 288

N is the number of samples in each

power step (considering a sampling time of T ¼ 5min); bPPVðtÞjt0
stands for the PV forecast at time t with the information available
at time t0; SOCðtÞ ¼ EBESSðtÞ=Cbat is the instantaneous SOC of
the battery in pu; EBESSðtÞ is the energy stored in the battery
(kWh); Cbat is its rated energy capacity (kWh); SOCref is the
reference SOC; p1 : : : pN are the N constant power values;
Pmin and Pmax are the rated power limits that the battery can
provide; and Emin and Emax are the limit values for the energy
stored in the battery. Note that both the summation in the
objective function and the constraints consider 288 samples
because of the aforementioned 5min sample time.

As the optimization runs many times a day, note how Pgrid

contains a first value, pk,prev, that stands for the power commit-
ment derived from a previous market session. This is not a
decision variable but has to be considered for the SOC evolution.
In fact, this is the reference power value to be produced during
the already committed period comprehending from t0 to

t1 ¼ t0 þ lead time, after which the power dispatch is resched-
uled. Further details on this optimization can be found in the
study by Beltran et al.[49]

3.2. Irradiance Forecasting Model

The proposed control methodology requires an accurate irradi-
ance forecast in order to provide the best results. Forecasting
methods perform differently depending on the required granu-
larity (somehow associated to the electricity product traded in the
market) and on the forecasting horizon (equally associated to the
traded product and to the lead time of the market). For the oper-
ation of a PV power plant, both intraday and day-ahead forecasts
are used. Forecasting techniques which use machine learning
and satellite data are the best ones for intraday forecasting,[50]

whereas numerical weather predictions (NWP) and ensemble
methods have a higher performance for longer forecasting
horizons.[51]

To estimate the PV production, our simulations use an irra-
diance forecast model which combines the best methods for each
forecasting horizon. An NWP model is used for the day-ahead
forecasts and a deep learning model for the intraday forecasts.
Hence, the incorporated NWP forecasts are those from the
European Centre for Medium-Range Weather Forecasts
(ECMWF),[52] which are obtained every 12 h and have a 10 day
forecasting horizon with 1 h time steps for the first 90 h.
Forecast of the surface net solar radiation are obtained from
the high-resolution forecast: Atmospheric Model high-resolution
10-day forecast (HRES), which has a spatial resolution of 0.1� for
both latitude and longitude. Moreover, the DNN proposed in
Pérez et al.[53] is used to obtain the intraday forecasts. This
DNN uses as its main input the results from the Surface
Insolation under Clear and Cloudy Skies algorithm,[54] which
provides estimated irradiance images from satellite data around
the target location. These data matrices, which cover the last two

Figure 3. Process diagram of control and simulation workflows.
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and a half hours, go through five convolutional layers in order to
detect patterns and features and perform a type of deep-learning-
based cloudmotion detection. The results from the convolutional
layers are combined with two more inputs, the measured
irradiance in the last two and a half hours and estimations of
the irradiance at the top of the atmosphere covering the
forecasting horizon. Then these data are fed into a group of three
dense layers which calculate the final irradiance forecasts.

The DNN forecasting covers a 6 h horizon with 15min time
steps, matching the time steps of the irradiance estimations.
These forecasts can be updated every 15min to be periodically
fed to the control optimization algorithm previously introduced.
The DNN forecasts are combined with the NWP ones to cover the
forecasting horizon required by the optimization and the final
forecasts are interpolated to a 5min resolution to match the time
steps for the optimization. In this way, it always calculates the
future production power steps to be renegotiated in the intraday
market making use of the latest irradiance forecast available.

3.3. PV Plant with BESS Power Commitments

To illustrate how the proposed algorithm works, let us consider
the different profiles for a single day shown in Figure 4. The
operation of the plant is conceptually initiated by executing
the irradiance forecasting model, described in Section 3.2, as
close as possible to the next intraday session closing time. In
Figure 4, the forecast profiles obtained at 07:30, 10:30, and
14:30 are shown as an example together with the actual PV
production, but a different forecast would be obtained for each
market session in which the plant participates (48 sessions in this
case). With this information, along with the current SOC
measurement, the optimization introduced in Section 3.1 is
performed, which generates the power profiles to commit in
the market and that are shown in the central part of the figure.
Again, only three power step profiles (from 8:00, 11:00, and 15:00
until the end of the day) are represented, but there would be a
different one for each market session. Note how these profiles

start half an hour later than the corresponding irradiance
forecasts implying that, for the chosen example, the lead time
is equal to 30min. Note also how the power commitment profiles
roughly track the irradiance forecasts previously shown, except
for the first value of the sequence. This is so because the
optimization algorithm, with this first step, tends to compensate
for previous forecasting errors which have moved the SOC away
from its reference value (namely 50%). Finally, the last part of
Figure 4 shows the power sequence finally exchanged with
the grid for the day. This sequence of power steps results from
the composition of the first steps defined at each of the previous
sequences (in a predictive-control-like receding horizon strategy).

4. Simulation of the Plant Operation and Results
on Battery Degradation

4.1. Simulations Description and Setup

The annual operation of the PV plant with batteries, controlled by
the proposed algorithms and according to the workflow shown in
Figure 3, has been simulated with Matlab using a time step of
5min. Every simulation step is initiated by defining the optimal
power exchanges with the grid bPgridðtÞ. Then, the actual PV pro-
duction is subtracted to get the power reference for the BESS,bPBESSðtÞ. This is, in turn, used as the input to the BESS model.
This checks if the power exchange is feasible (i.e., if the BESS is
not saturated) and outputs both the actual power value applied
PBESS,satðtÞ (which may be different if the input is not feasible)
and the actual SOC. After that, the PBESS,satðtÞ value is added
to the actual PV production to define the power actually
exchanged with the grid, PgridðtÞ.

After 1 year, the simulation algorithm returns evolution curves
for three parameters: the PBESS,satðtÞ, the bPBESSðtÞ, and the SOC.
The two first are compared to define the annual saturation rate,
while the latter allows to define the battery aging.
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Figure 4. Schema of the control and operation methodology implemented for the capacity firming of PV plants with batteries.
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For the case of the battery degradation analysis, this SOC evo-
lution is introduced together with the operation temperature.
The temperature conditions are assumed to be the same for
the three sites because the battery packs installed in such hybrid
plants are usually placed within containers including internal
temperature regulation. In this way, the inner ambient tempera-
ture within the container is treated to be controlled between 20
and 25 �C throughout the year, varying within this range in
agreement with the outer temperature, and limited to 20 or
25 �C when the outer temperature rises above or goes below
those limits, respectively. Then, the container temperature is
assigned to the Li-ion cells at rest, while a temperature offset
of 20 �C is added to the batteries during operation (with temper-
ature transients after turning on and off ). Based on these
parameters, the aging models provide the calculated calendar
and cycling aging prognosis and we determine the battery
lifetime expectancy till the end-of-life (EOL) of the batteries.
This EOL is defined as the moment when the retained capacity
equals a given percentage of its initial value, being 70% in this
case (according to the warranty provided by SAFT and LG Chem
for their cells).

These annual simulations are run at three European locations:
a Mediterranean site close to València (Spain), a site close to Paris
(France), and a site close to Amsterdam (The Netherlands).
These locations present 1759, 1194, and 1077 peak sun-hours
per year, respectively, and they are representative for three
different climatic regions with varying characteristics in their
PV production patterns. This selection aims at covering a wide
range of production profiles for PV plants operated within XBID.

For each of these locations, simulations use actual irradiance
values and comprehend four different battery sizes (ranging
from 5min to 1 h in equivalent accumulation time at rated
power) and up to five XBID market structures (hour products
with lead times of 1 h, and both 30 and 5min, and half-hour
and quarter-hour products with lead times of 30min).

In this context, the analysis has initially focused on determin-
ing how well the hybrid plant can grant capacity firming through-
out the year with the control operation system proposed for the
different battery sizes at the various market structures. Then, for
those battery sizes that would optimize the operation without
involving large cost overruns, this work analyzes the influence
of the intraday electricity market structure on their degradation,
based on the two commercial battery packs introduced. Finally, it

provides a lifetime expectancy prognosis. Results on both
extremes are introduced in the following.

4.2. Results on Battery Sizes Required for Capacity Firming

The evolution of the SOC produced by the simulations allows us
to identify when the hybrid power plant grants its production
to the committed levels and when the battery gets saturated
(i.e., it becomes completely charged or discharged). Table 1
summarizes, for each of the three analyzed locations, the per-
centage of time in a year in which the plant incurs deviations
from the energy committed in the different intraday market
structures.

The three locations return equivalent results regardless of
their climatic conditions. Therefore, the site irradiance pattern
does not significantly rule the battery size requirements. This
is due to the proposed optimization strategy, which makes
BESS capacity requirements to depend on the error between real
production and the prediction instead of depending on the levels
of irradiance. As the solar forecasting DNN performs with high
accuracy at any location, it minimizes the impact of the solar
pattern and variability on the battery degradation. On the
contrary, it is strongly influenced by the market structure, where
two characteristics highlight in this sense: the “product type”
and the “lead time.”Note in Table 1 how the shorter the product
and the closer the lead time, the lower is the percentage of time
with deviations. For instance, if half-hour and quarter-hour
products with a BESS energy capacity of 30 min are compared
for the Amsterdam PV plant, the saturation value for the half-
hour product case is twice as big as the one for the quarter-
product market. In addition, the results for a BESS energy
capacity of 5 min at the three locations are approximately two
times bigger for a structure market with 1 h of lead time than
for 5 min of lead time. Hence, a smaller battery is required to
grant capacity firming. This is due to the proposed optimization
strategy and to the use of the DNN-based high-performing
short-term forecasting tool, which achieves better results with
shorter time elapsed from auction closing time to starting
delivery. Therefore, it can be concluded that BESS energy
capacities of 1 h will completely grant PV firming while 30
and 15min batteries will achieve it more than 95% of the
time. Only the case of 5 min capacity batteries would produce
deviations beyond the 10% of the operation time. Although not

Table 1. BESS annual saturation rate for the intraday market structures considered (in %).

Paris Valencia Amsterdam

BESS capacity BESS capacity BESS capacity

Product Lead time 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0

15 0 30 0 0 0.2 1.4 9 0 0.2 1.5 8.8 0 0.1 0.9 9.8

30 0 30 0 0 0.4 2.4 11.9 0 0.5 2.4 11.8 0 0.2 1.8 13.4

1 h 1 h 0.3 1.6 5.4 19.4 0.2 1.7 5.4 19.7 0.1 1.0 5.3 19.6

1 h 30 0 0.1 0.7 3.2 16 0.1 0.8 3.5 15.6 0 0.3 2.7 16.2

1 h 5 0 0 0.3 1.9 11.2 0 0.4 2.1 11.5 0 0.1 1.3 12.1
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so good in terms of PV capacity firming purposes, these are also
included in the aging analysis because of their significantly
smaller CAPEX.

4.3. Degradation Results and Lifetime Expectancy

The degradation analysis experienced by the indicated two
types of commercial battery packs is based on the annual
operation conditions. These are extracted from the SOC
(cycling activity defined by the control algorithm and the
market configuration) returned by the simulations and from
the temperature vector (calendar activity) registered at each of
the locations.

Figure 5 exhibits the capacity degradation experienced in Paris
by four different battery packs when providing 30min products.
The two battery packs represented in the upper graph correspond
to commercial LFP cells from SAFT and present initial energy
capacities of 1 h (blue lines) and 5min (red lines). The two
represented in the lower graph belong to NMC commercial cells
from LG Chem and present the same initial capacities (1 h and
5min with the corresponding reference colors).

Observe how for both types of cells, smaller capacity packs
present lifetime expectancy values much shorter (around 17
and 13 years, respectively) than larger packs (up to 32 and

33 years, respectively). Although results are quite different
among them, such high lifetime expectancy values (all of them
beyond 10 years) are considered particularly good projections.
These are mainly achieved because of two reasons: first, the
PV capacity firming application is concluded to be not very stress-
ing in terms of battery use (low cycle aging) and, second, the
importance provided to the calendar aging in the corresponding
degradation models defined in (1) to (4). In this regard, note how
the calendar effect is minimized in this application due to
the control of the ambient temperature during operation.
Although calendar aging has been disregarded in some degrada-
tion studies, it presents a clear weight in these cells’models even
in the case of temperature-controlled operation. In fact, if the par-
tial effect of the calendar is compared to that of the cycle aging for
each cell type in Figure 5, note how it cannot be overlooked at all.
Considering the maximum degradation value defined by
manufacturers to achieve the EOL of the battery pack, 30%
(i.e., retained capacity of 70%), the calendar may weight from
36% out of that maximum for the NMC 5min battery pack to
around 73% for the LFP 1 h battery pack. In the same way, notice
how the cycle aging influence is significantly higher in both
chemistries for the 5min battery packs (around 50% and
64%, respectively). This is because the limited energy capacity
of these packs forces them to operate and cycle more frequently.
Also, the experienced cycles will be deeper with respect to the
rated capacity, which increases the degradation.

Table 2 and 3 introduce a complete summary of the lifetime
expectancy values that both types of Li-ion battery packs will pres-
ent at each of the three locations. Note that all the considered
combinations (energy capacities according to the battery sizes
discussed in Section 4.2 and intraday market structures) are
gathered for each of the chemistries. As for the deviation results
presented in Section 4.2, results on lifetime expectancy show that
the irradiance patterns experienced in the considered locations
do not significantly influence the battery degradation.
Therefore, the aging analysis introduced here would be valid
for any location within the XBID context as long as the battery
packs are kept under temperature-controlled conditions. Also,
the comparison of the lifetime expectancy values represented
in both tables leads to the conclusion that the two battery packs
present similar responses in terms of aging. Both models seem
to deal similarly with the stress factors and none of them could be
sentenced to be clearly superior in this regard. On the contrary, it
is important to point out the varying degradation they experience
depending on both the energy product provided by the hybrid

Figure 5. Total degradation and partial calendar and cycle aging
experienced by a 1 h (blue) and a 5min (red) capacity LFP (top) and
NMC (down) battery packs.

Table 2. Lifetime expectancy of LFP battery packs (in years).

Paris Valencia Amsterdam

BESS capacity BESS capacity BESS capacity

Product Lead time 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0

15 0 30 0 38.8 28.4 20.2 14.4 38.7 28.9 21.2 15.4 39.4 28.5 19.6 13.8

30 0 30 0 36.6 26.8 20.3 15.8 36.8 27.8 21.3 16.4 39.6 27.2 19.5 15.5

1 h 1 h 32 24.3 19.5 17.4 32.2 24.7 19.8 17.4 32.5 23.5 18.8 17.4

1 h 30 0 35 26.1 20.2 16.5 34.7 26.6 20.6 16.5 36.1 26.2 19.4 16.4

1 h 5 0 38.1 28.4 21.2 15.8 37.7 28.6 21.6 15.8 39.6 29.3 20.8 15.8
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plant and the lead time defined by the market. In this regard,
check how the shorter the product and the closer the lead time,
the better the battery performs avoiding certain degradation,
except for the case of the 5min battery packs. For this size of
battery, the operation saturates the battery significantly through-
out the year, which distorts the results. Then, in general, it will be
always better for the sake of the batteries lifetime to operate the
plant in a market with 15min products with lead times of 30min
or 1 h products with lead times of 5 min, rather than in a 1 h
product market with lead times of 1 h (being the latter the com-
mon structure for the cross-border exchanges). Finally, the sizing
can be concluded again as a strong influencing factor because
results demonstrate that the smaller the battery size, the
significantly shorter the lifetime expectancy becomes for all
the combinations and locations analyzed.

Then, both battery pack size and market structure are
identified as the main factors somehow conditioning the battery
pack lifetime expectancy. Considering the location independence
and the similitude between the commercial battery models
analyzed, an accurate evaluation on potential economic benefits
achievable at each market has to be conducted to define the
optimal size (and the corresponding cost overrun) to be installed
at any given PV plant.

5. Conclusions

This work aimed at analyzing the degradation experienced by two
of the most widely used types of Li-ion batteries (NMC and LFP)
installed to qualify PV plants with capacity firming to trade at
different intraday electricity markets. In this framework, the
influence of the intraday market structure on the degradation
record of differently sized batteries was studied by means of
simulations at three European locations.

To estimate the PV production, these simulations used an
irradiance forecasting model that combined a deep learning
approach with ECMWF derived forecasts. Also, a quadratic
optimization control algorithm was implemented to generate
the power commitments to be traded in the electricity market
by the hybrid plant. Finally, semiempirical degradation models
calibrated according to the warranty published for two current
state-of-the-art commercial battery packs have been adopted.

According to the resulting values, the proposed control
strategy allowed to decouple the saturation rate for a given
BESS size from the climatic conditions imposed by the location

of the plant. Therefore, the saturation became mainly dependent
on the PV forecast error, but with little effect due to its low value
in the three locations under study, and on the intraday market
structure (energy product and lead time). Annual saturation rate
results varied from values around zero for 1 h battery capacities
to percentages between 9% and 20% for 5min capacities.

Regarding battery degradation, both battery chemistry and
location of the plant were factors with little influence. On the
contrary, the degradation experienced by the BESS varied signifi-
cantly with its energy capacity and the intraday market structure
(energy product and lead time). In this sense, trading in continu-
ous intraday markets with shorter settlement periods, as well as
taking advantage of closer lead times, allowed reducing the degra-
dation by around 5–20% and increasing the lifetime expectancy up
to 7 years, depending on the implemented battery size. The sim-
ulations also showed that calendar aging cannot be disregarded
even under the temperature-controlled conditions of the study.
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Table 3. Lifetime expectancy of NMC battery packs (in years).

Paris Valencia Amsterdam

BESS capacity BESS capacity BESS capacity

Product Lead time 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0 1 h 30 0 15 0 5 0

15 0 30 0 39.5 30.1 20.3 12.2 39.2 30.4 21.4 13.3 39.8 30.2 19.6 11.3

30 0 30 0 37.7 28 19.6 12.7 37.7 29.2 21.1 13.6 40.1 28.3 18.5 12.1

1 h 1 h 33.7 24.9 18.1 12.9 34.1 25.8 19 13 33.9 23.7 16.8 13

1 h 30 0 36.4 27.2 19.4 12.6 36.2 28.1 20.4 13.3 37 26.8 18 12.5

1 h 5 0 39 29.7 21.1 12.7 38.6 30.4 22 13.3 40.1 30.5 20.4 12.6
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