
Theoretical Computer Science 921 (2022) 20–35
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Stable routing scheduling algorithms in multi-hop wireless

networks ✩

Vicent Cholvi a,∗,1, P. Garncarek b,2, T. Jurdziński b,2, Dariusz R. Kowalski c,3

a Department of Computer Science, Universitat Jaume I, Castellón, Spain
b Instytut Informatyki, Uniwersytet Wrocławski, Wrocław, Poland
c School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 May 2021
Received in revised form 2 December 2021
Accepted 27 March 2022
Available online 31 March 2022
Communicated by L. Christoph

Keywords:
Wireless networks
Routing scheduling algorithms
Adversarial queuing
Interference
Stability
Packet latency

Stability is an important issue in order to characterize the performance of a network, and it
has become a major topic of study in the last decade. Roughly speaking, a communication
network system is said to be stable if the number of packets waiting to be delivered
(backlog) is finitely bounded at any one time.
In this paper we introduce a number of routing scheduling algorithms which, making use
of certain knowledge about the network’s structure, guarantee stability for certain injection
rates.
First, we introduce two new families of combinatorial structures, which we call universally
strong selectors and generalized universally strong selectors, that are used to provide a set of
transmission schedules. Making use of these structures, we propose two local-knowledge
packet-oblivious routing scheduling algorithms. The first proposed routing scheduling
algorithm only needs to know some upper bounds on the number of links and on the
network’s degree, and is asymptotically optimal regarding the injection rate for which
stability is guaranteed. The second proposed routing scheduling algorithm is close to be
asymptotically optimal, but it only needs to know an upper bound on the number of links.
For such algorithms, we also provide some results regarding both the maximum latencies
and queue lengths. Furthermore, we also evaluate how the lack of global knowledge about
the system topology affects the performance of the routing scheduling algorithms.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Stability is an important issue in order to characterize the performance of a network, and it has become a major topic of
study in the last decade. Roughly speaking, a communication network system is said to be stable if the number of packets
waiting to be delivered (backlog) is finitely bounded at any one time. The importance of such an issue is obvious, since if
one cannot guarantee stability, then one cannot hope to be able to ensure deterministic guarantees for most of the network
performance metrics.

✩ A preliminary version of the paper appeared in [18].

* Corresponding author.
E-mail address: vcholvi@uji.es (V. Cholvi).

1 This author was partially supported by the Ministerio de Ciencia, Innovación y Universidades grant PRX18/000163 and by the Spanish Ministry of
Science and Innovation grant PID2019-109805RB-I00 (ECID) cofunded by FEDER.

2 This author was partially supported by the Polish National Science Center (NCN) grant UMO-2017/25/B/ST6/02010.
3 This author was partially supported by the Polish National Science Center (NCN) grant UMO-2017/25/B/ST6/02553.
https://doi.org/10.1016/j.tcs.2022.03.038
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2022.03.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.03.038&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:vcholvi@uji.es
https://doi.org/10.1016/j.tcs.2022.03.038
http://creativecommons.org/licenses/by/4.0/

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
For many years, the common belief was that only overloaded queues (i.e., when the total arrival rate is greater than
the service rate) could generate instability, while underloaded ones could only induce delays that are longer than desired,
but always remain stable. However, this belief was shown to be wrong when it was observed that, in some networks, the
backlogs in specific queues could grow indefinitely even when such queues were not overloaded [9,4]. These later results
aroused an interest in understanding the stability properties of packet-switched networks, so that a substantial effort has
been invested in that area. Stability of specific scheduling policies was considered for example in [7,17,23,26]. In [21,27,29],
it was considered the impact of network topologies on injection rates that guarantee stability. A systematic account of some
issues related to universal stability was given in [2].

Contrary to wireline networks, where a node can transmit data over any outgoing link and simultaneously receive data
over any incoming link, the situation is different in wireless networks. In such scenarios, a node can transmit messages
within its transmission range. Such a range is determined by the power of the transmitting device and the surrounding
topography. However, nearby wireless signal transmissions that overlap in time can interfere with one another, to the effect
that none can be transmitted successfully. As a result, this makes the study of stability in wireless networks more complex.
The contents of transmissions get injected into nodes to be delivered to their respective destination nodes by traversing a
number of nodes. A route indicates the nodes that a packet has to traverse upon its injection until its destination. Further-
more, a scheduling algorithm is run at each node independently and concurrently, and decides, at each time instant which
packet to send and when.

Related work Similar to the wireline case, a substantial effort has been invested in investigating stability in that setting. Net-
works with bandwidth and delay parameters associated with wireline links were considered in [8] and [10]; such behavior
can be considered as capturing some properties of wireless networks. Wireless networks were first studied by Andrews and
Zhang [5,6] and Cholvi and Kowalski [19] without considering explicit interferences. Lim et al. [28] analyzed the stability
of the max-weight protocol in wireless networks with interferences, assuming the existence of a set of feasible edge rate
vectors sufficient to keep the network stable.

The stability and packet latency of broadcasting in single-hop radio networks understood as synchronous multiple access
channels was studied by Chlebus et al. [15,16] and Anantharamu et al. [3]. Fernández Anta et al. [22] provided an adaptive
transmission policy that guarantees a hearing latency of O(k2 log k), where k − 1 is the maximum degree of the network.
Garncarek et al. [24] studied stability of packet scheduling policies in a distributed system which are local in that nodes only
access their local queues, and have no other feedback from the underlying distributed system. They developed an adaptive
scheduling policy that is universally stable on a shared channel and proved that memoryless policies resorting only on
the information about non-emptiness of queues could be stable with injection rates of O(1/ log n). In a subsequent work,
Garncarek et al. [25] developed a local memoryless scheduling policy which is both adversarially and stochastically stable
for injection rates �(1/ log n).

In [13], Chlebus et al. considered interactions among components of routing in multi-hop wireless networks with in-
terferences, which included transmission policies, scheduling policies and control mechanisms to coordinate transmissions
with scheduling. In [12], the authors demonstrated that there is no routing algorithm guaranteeing stability for an injection
rate greater than 1/L, where the parameter L is the largest number of nodes which a packet needs to traverse while routed
to its destination. Furthermore, they also provided a routing algorithm that guarantees stability for injection rates smaller
than 1/L. However, their approach is not accurate for studying stability of longer-distance packets; therefore, in this work
we study how the stability of routing depends of the conflict graph of the underlying wireless networks, which is indepen-
dent of the lengths of the packets’ routes. Roughly speaking, the conflict graph of a network models whether or not two
transmission could interfere with each other.

Our results In this paper, we study the stability of dynamic routing scheduling algorithms in multi-hop radio networks with
a specific methodology of adversarial traffic that reflects interferences. We focus on algorithms that do not take into ac-
count any historical information about packets or carried out by packets, which we call packet-oblivious algorithms. Such
algorithms are important since practical forwarding protocols and corresponding data-link layer architectures are typically
packet-oblivious.

First, we introduce two new families of combinatorial structures, which we call universally strong selectors and generalized
universally strong selectors, that are used to provide a set of transmission schedules. Making use of these structures, combined
with some known queuing policies such as Longest In System (LIS), Shortest In System (SIS), Nearest From Source (NFS) and
Furthest To Go (FTG), we propose two local-knowledge packet-oblivious routing scheduling algorithms which work without
using any global topological information about the networks on which they operate, that guarantee stability for certain
injection rates.

The first proposed routing scheduling algorithm only needs to know some upper bounds on the number of links and
on the network’s degree, and is asymptotically optimal regarding the injection rate for which stability is guaranteed. The
second proposed routing scheduling algorithm is close to be asymptotically optimal by a factor that depends logarithmically
on the number of nodes, but it only needs to know an upper bound on the number of links. For such algorithms, we also
provide some results regarding both the maximum latencies and queue lengths.

Furthermore and in order to evaluate how the lack of global knowledge about the system topology affects the perfor-
mance of the routing scheduling algorithms, we also introduce a new global-knowledge routing scheduling algorithm and
21

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Fig. 1. Radio network G with 4 nodes and links labeled 1 − 6 (up). Conflict graph H(G) obtained from network G (down). Observe that each link i in
network G corresponds to one node i in H(G).

we show that it is optimal regarding the injection rate for which it guarantees stability. We show that the lack of global
knowledge decreases the injection rate for which stability is guaranteed by a factor of e.

Paper structure The rest of the paper is structured as follows. Section 2 contains the technical preliminaries. In Section 3,
we introduce a family of combinatorial structures, widely called selectors [20,14], that are the core of the deterministic local-
knowledge routing scheduling algorithms presented in Sections 4 and 5. In Section 6 we also introduce a global-knowledge
routing scheduling algorithm. In Section 7, we compare the maximum injection rates for which these routing scheduling
algorithms guarantee stability. In Section 8, we extend the obtained results to a number of queueing scheduling policies.
We end with some conclusions in Section 9. Some auxiliary technical proves are given in the Appendix.

2. Model and problem definition

2.1. Wireless radio network

We consider a wireless radio network represented by a directed symmetric network graph G = (V G , EG). It consists of
nodes in V G representing devices, and directed edges, called links, representing the fact that a transmission from the starting
node of the link could be directly delivered to the ending node. The graph is symmetric in the sense that if some (i, j) ∈ EG

then (j, i) ∈ EG too. At this point, we note that we use symmetric directed graphs instead of undirected graphs since,
in order to specify when transmissions interfere, we need to distinguish when a given node uses a link to transmit and
when to receive.

Each node has a unique ID number and it knows some upper bounds on the number m of edges in the network and the
network in-degree (i.e., the largest number of links incoming to a network node).4

Nodes communicate via the underlying wireless network G . Communication is in synchronous rounds. In each round a
node could be either transmitting, receiving or waiting to receive. Node i receives a message from a node j �= i in a round
if j is the only transmitting in-neighbor of i in this round and node i does not transmit in this round; we say that the
message was successfully sent/transmitted from j to i.

2.2. Conflict graphs

We define the conflict graph H(G) = (V H(G), E H(G)) of a network G as follows: (1) its vertices are links of the network
(i.e., V H(G) = EG) and, (2) a directed edge (u, v) ∈ E H(G) if and only if a message across link v ∈ EG cannot be successfully
transmitted while link u ∈ EG is being used to transmit. Note that, accordingly with the radio model, a conflict occurs if
and only if the transmitter in u is also a receiver in v or the transmitter in u is a neighbor of the receiver in v (see Fig. 1
for an illustrative example). If network G is clear from the context, we skip the parameter G in H(G) (i.e., we will use H).
Note that, the links in our definition are directed in order to distinguish which transmission is blocked by which.

2.3. Routing scheduling algorithms

The contents of transmissions (i.e., messages or packets) get injected into nodes to be delivered to their respective
destination nodes by traversing a number of nodes. A route indicates the nodes that a packet has to traverse upon its
injection until its destination. In our case, we assume that they will be decided by an adversary.

A routing scheduling algorithm, denoted RoSA, is an algorithm that is run at each node independently and concurrently,
and decides, at each time instant, which packet to send and when. Note that a RoSA should not to be confused with a
routing algorithm, but it is one of the components that make it up.

4 In which case the performance will depend on these known estimates, instead of the actual values.
22

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
All our RoSAs will be based on pre-defined transmission schedules, which will be circularly repeated — the properties of
these schedules will guarantee stability for certain injection rates. These schedules will be different for different types of
algorithms, due to the available information based on which these schedules could be created. We consider packet-oblivious
RoSAs, that is, algorithms which only use their hardwired memory and basic parameters of the stored packets assigned to
them at injection time (such as source, destination, injection time, route) in order to decide which packet to send and when.

2.4. Adversaries

We model dynamic injection of packets by way of an adversarial model, in the spirit of similar approaches used in [9,
4,29,16,19,13,12]. An adversary represents the users that generate packets to be routed in a given radio network. The
constraints imposed on packet generation by the adversary allow considering worst-case performance of deterministic RoSAs
handling dynamic traffic.

Over time, an adversary injects packets to some nodes. The adversary decides on a path a packet has to traverse upon
its injection. Our task is to develop a packet-oblivious RoSA such that the network remains stable; that is, the number
of packets simultaneously queued is bounded by a constant in all rounds. Since an unbounded adversary can exceed the
capability of a network to transmit messages, we limit its power in the following way: for any time window of any length
T , the adversary can inject packets, with their paths, in such a way that each link is traversed by at most ρ · T + b packets,
for some 0 ≤ ρ ≤ 1 and b ∈N+ . We call such an adversary a (ρ, b)-adversary.

2.5. (ρ, T)-frequent schedules

Finally, we introduce the (ρ, T)-frequent schedule concept, which we will use throughout the rest of the paper.

Definition 1. A (ρ, T)-frequent schedule for graph G is an algorithm that decides which links of graph G transmit at every
round in such a way that each link is guaranteed to successfully transmit (i.e., without radio network collisions) at least
ρ · T times in any window of length T , provided at least ρ · T packets await for transmission at the link at the start of the
window.

3. Selectors as transmission schedulers

In this section, we introduce a family of combinatorial structures, widely called selectors [20,14], that are the core of the
deterministic local-knowledge protocols presented in Sections 4 and 5. In short, we will use specific type of selectors to
provide a set of transmission schedules that assure stability when combined with suitable queuing policies.

There are many different types of selectors, with the more general one being described below:

Definition 2. Given integers k, m and n, with 1 ≤ m ≤ k ≤ n, we say that a boolean matrix M with t rows and n columns
is an (n, k, m)-selector if any submatrix of M obtained by choosing k out of n arbitrary columns of M contains at least m
distinct rows of the identity matrix Ik . The integer t is referred as the size of the (n, k, m)-selector.

In order to use selectors as transmission schedules, the parameter n is intended to refer to the number of nodes in
the network, k refers to the maximum number of nodes that can compete to transmit (i.e., k = � + 1, where � is the
maximum degree of the network), and m refers to the number of nodes that are guaranteed to successfully transmit during
the t-round schedule. Therefore, each column of the matrix M is used to define the whole transmission schedule of each
node. Rows are used to decide which nodes should transmit at each time slot: In the i-th time slot, node v will transmit iff
Mi,v = 1 and v has a packet queued; the schedule is repeated after each t time slots.

Taking into account the above-mentioned approach, selectors may be used to guarantee that during the schedule, every
node will successfully receive some messages.

An (n, k, 1)-selector guarantees that, for each node, one of its neighbors will successfully transmit during at least 1
round per schedule cycle. That is, that node will successfully receive at least one message. However, whereas the above use
of selectors is helpful in broadcasting (since there is progress every time any node receives a message from a neighbor), it
happens that many neighbors may have something to send, but only one of them has something for that node. Therefore,
the above presented selector guarantees that each node will receive at least one message, but not necessarily will receive
the one addressed to it.

An (n, k, k)-selector, which is known as strong selector, guarantees that every node that has exactly k neighbors will
receive a message from each one of them. However, it has been shown that its size t = �(min{n, (k2/ log k) log n}) [20]. This
means that k packets will be received, but during a long amount of time.

In order to solve the above mentioned problems with known selectors, now we introduce a new type of selectors, which
we call universally strong. Formally:
23

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Definition 3. An (n, k, ε)-universally-strong selector S , also called an (n, k, ε)-USS, is a family of t sets T1, . . . , Tt ⊆ [n] such
that for every set A ⊆ [n] of at most k elements and for every element a ∈ A there exist at least ε · t/k sets Ti ∈ S such that
Ti ∩ A = {a}.

In the context of wireless networks, the parameter n represents the number of nodes in the conflict graph H of a given
graph G , k represents the upper bound on the number of links, whose transmissions can conflict with a transmission across
any link e (e.g., k = �H

in + 1, where �H
in is the in-degree of the conflict graph H). Then, ε/k represents the frequency of

successful transmissions across any link.
Finally, we introduce one more new type of selectors that generalize (n, k, ε)-universally-strong selectors in the sense

that they remove the restriction that the incoming set k is of bounded size.

Definition 4. An (n, ε)-generalized-universally-strong selector S , also called an (n, ε)-GUSS, is a family of t sets T1, . . . , Tt ⊆ [n]
such that for every set A ⊆ [n] and for every element a ∈ A there exist at least ε · t/|A| sets Ti ∈ S such that Ti ∩ A = {a}.

3.1. Universally strong selectors of polynomial size

Clearly, universally strong selectors make sense provided they exist and their size is moderate. In the next theorem, we
prove that, for any ε ≤ 1/e, there exists an (n, k, ε)-universally-strong selector of polynomial size.

Theorem 1. For any ε ≤ 1/e, there exists an (n, k, ε)-universally-strong selector of size O (k2 ln n).

Proof. The proof relies on the probabilistic method.
Consider a random matrix M with t rows and n columns, where Mi, j = 1 with probability p and Mi, j = 0 otherwise.

Given a row i and columns j1, . . . , jk , the probability that Mi, j1 = 1 and Mi, j2 = · · · = Mi, jk = 0 (i.e., that node j1’s trans-
mission is not interrupted by nodes j2, . . . , jk in round i) is P = p(1 − p)k−1 and is maximized with p = 1/k. In further
considerations, we use matrix M generated with p = 1/k.

Given columns C = { j1, . . . , jk}, let X(C) be the number of “good” rows i such that Mi, j1 = 1 and Mi, j2 = · · · = Mi, jk = 0.
We will use the following Chernoff bound:

Pr[X(C) ≤ (1 − δ)E[X(C)]] ≤ exp(−E[X(C)]δ2/2) ,

for 0 ≤ δ ≤ 1.
Using E[X(C)] = Pt and δ = (kP − ε)/(kP), we obtain:

Pr[X(C) ≤ εt/k] ≤ exp(−Ptδ2/2) .

Consider a “bad” event E such that for at least one set of columns of size at most k, there are few good rows. More
specifically, X(C) ≤ εt/k for at least one set of columns C , where |C | = k. The probability R of event E happening fulfills
the following inequality:

R ≤ k

(
n

k

)
exp(−Ptδ2/2) .

Therefore R < 1 if

exp(−Ptδ2/2) < 1/

[
k

(
n

k

)]

−Ptδ2/2 < − ln

(
k

(
n

k

))

Pt

(
kP − ε

kP

)2

/2 > ln

(
k

(
n

k

))
.

Let c = kP . Using
(n

k

) ≤
(ne

k

)k
, provided c �= ε , we obtain the following:

t(c − ε)2/(2ck) > ln k + ln
(ne

k

)k

t >
[

2ck ln k + 2ck2 ln
(ne

k

)]
/(c − ε)2 .

Therefore, as long as 0 ≤ δ = c−ε
c ≤ 1 (so that we can use the Chernoff bound) and ε �= c, the probability of generating

a random matrix M such that event E occurs is less than 1. Thus, there exists a matrix M such that, for every set of k
24

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
1. Let d = ⌈
logk n

⌉
and q = c · k · d for some constant c > 0 such that qd+1 ≥ n.

2. Consider all polynomials Pi of degree d over field [q]. Notice that there are qd+1 of such polynomials.
3. Create a matrix M ′ of size q × qd+1. Each column will represent values Pi(x) of each polynomial Pi for arguments x = 0, 1, . . . , q − 1 (corre-

sponding to rows of M ′). Next, matrix M ′′ is created from M ′ as follows: each value y = Pi(x) is represented and padded in q consecutive rows
of 0s and 1s, where 1 is on y-th position, while on all other positions there are 0s. Notice that each column of M ′′ has q2 rows (q rows for
each argument), thus M ′′ has size q2 × qd+1.

4. Remove qd+1 − n arbitrary columns from matrix M ′′ , creating matrix M with exactly n columns remaining.

5. Each row of matrix M will correspond to one set Ti of a universally strong selector {Ti}q2

i=1 over the set {1, . . . , n} of elements.

Fig. 2. The Poly-Universally-Strong algorithm, given parameters n and k.

columns j1, . . . , jk , there are at least εt/k rows such that Mi, j1 = 1 and Mi, j2 = · · · = Mi, jk = 0. Trivially, such matrix M
guarantees the above property for any set of at most k columns. Hence, M represents a (n, k, ε)-universally-strong selector,
provided that ε < c = kP . Next, we calculate which values of ε fulfill that inequality.

Consider a sequence ai = (1 + 1/i)i . ai is known as a lower bound on the Euler’s number e (i.e., ∀i ai < e). Note that
c = kP = (1 −1/k)k−1 = 1/ak−1 > 1/e for all k ≥ 2. This implies that any ε ≤ 1/e fulfills the requirement of δ > 0 and results
in the existence of an (n, k, ε)-universally-strong selector. �
3.2. Obtaining universally strong selectors of polynomial size in polynomial time

In the proof of Theorem 1, we have introduced a family of universally strong selectors of polynomial size. However, ob-
taining them by derandomizing would be very inefficient (all the approaches we know are, at least, exponential in n). Here,
we present an algorithm, which we call Poly-Universally-Strong, that computes universally strong selectors of polynomial
size in polynomial time They only have slightly lower values of ε comparing to the existential result in Theorem 1.

The algorithm, whose code is shown in Fig. 2, has to be executed by each node in the network taking the same polyno-
mials, so that all nodes will obtain exactly the same matrix that defines the transmission schedule.

The next theorem shows that, indeed, it constructs an (n, k, ε)-universally-strong selector of polynomial size with ε =
1/(4 logk n).

Theorem 2. Poly-Universally-Strong constructs (by using c = 2) an (n, k, ε)-universally-strong selector of size 4 · k2 · ⌈
logk n

⌉2

with ε = 1/(4 logk n).

Proof. First, note that two polynomials Pi and P j of degree d with i �= j, can have equal values for at most d different
arguments. This is because they have equal values for arguments x for which Pi(x) − P j(x) = 0. However, Pi − P j is a
polynomial of degree at most d, so it can have at most d zeroes. So, Pi(x) = P j(x) for at most d different arguments x.

Take any polynomial Pi and any k polynomials P j still represented in M , excluding columns/polynomials removed from
consideration in step 4. There are at most k · d different arguments where one of the k polynomials can be equal to Pi . So,
for q − k · d different arguments, the values of the polynomial Pi are unique. Therefore, if we look at rows with 1 in column
i of matrix M (there are q of those rows, one for each argument), at least q − k · d of them have 0s in chosen k columns.
Since there are q2 rows, so a fraction (q − k · d)/q2 of rows have the desired property (i.e., there is value 1 in column i and
value 0 in the chosen k columns):

q − k · d

q2
= (c − 1) · k · d

(c · k · d)2
= c − 1

c2 · k · d
� f (c) .

Let us find the value of c that maximizes the function f . To do it, we compute its differential

f ′(c) = (
c − 1

c2 · k · d
)′ = 1 · (c2 · k · d) − (c − 1) · k · d · 2c

c4 · k2 · d2
=

= −c2 · k · d + 2c · k · d

c4 · k2 · d2
= −c + 2

c3 · k · d
.

Thus, f ′(c) = 0 for c = 0 or c = 2. The value c = 2 maximizes f , giving f (c) ≤ f (2) = 1/(4k · d) = 1/(4k · logk n).
Therefore, we can construct an (n, k, ε)-universally-strong selector with ε = f (2) · k = 1/(4d) = 1/(4 logk n) of length

4k2 · ⌈logk n
⌉2, which means that an f (2) = 1/(4k · logk n) fraction of the selector’s sets have the desired property. �

3.3. Obtaining generalized universally strong selectors of polynomial size

Here, we show how to construct an (n, ε)-generalized-universally-strong selector S , for admissible values of ε ∈ (0, 1/e),
by interleaving specific universally strong selectors. Let γ = �log1+2ε n�. Consider a family {Si}γ −1

i=0 of (n, �n/(1 + 2ε)i�, 2ε)-
universally-strong selectors, each of size t′ . They exist, cf., Theorems 1 and 2. We interleave them to obtain S of size t = t′ ·γ .
More specifically, we define T j ∈ S , the j-th set of S , to be the
 j/γ � set of the universally strong selector S j mod γ .
25

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
1. Choose m and � such that | E(G) | ≤ m and �H
in ≤ �.

2. Obtain an (m, � + 1, ε)-universally-strong selector (for some value of ε) of some length t and use it as the transmission schedule.
3. When there are several packets awaiting in a single queue, choose the packet to be transmitted according to Alg, breaking ties in any arbitrary

fashion.

Fig. 3. The USS-plus-Alg RoSA for a network G .

Theorem 3.

1. For any ε ≤ 1/(2e · �log1+1/e n�), there exists an (n, ε)-generalized-universally-strong selector of size O (n2 ln2 n).

2. For any ε ≤ 1/(8 log2 n · �log1+1/(4 log2 n) n�) = O (1/ ln3 n), an (n, ε)-generalized-universally-strong selector of size O (n2 ln4 n)

could be constructed in polynomial time.

Proof. First, we prove that S is an (n, ε)-generalized-universally-strong selector. Consider a set A ⊆ [n]; it holds n/(1 +
2ε)i+1 < |A| ≤ n/(1 + 2ε)i , for some 0 ≤ i ≤ γ . Hence, for any element a ∈ A, there are at least

(2ε)t′

�n/(1 + 2ε)i� ≥ (2ε)t′

|A|(1 + 2ε)
≥ (ε/γ) · (t′γ)

|A| · 2

1 + 2ε
≥ (ε/γ) · t

|A|
sets T j in (n, �n/(1 + 2ε)i�, 2ε)-universally strong selector Si such that T j ∩ A = {a}. (Recall that t′ is the size of the
universally strong selector, t = t′γ is the size of generalized universally strong selector, and 2ε ≤ 1/e.) Hence, it is an
(n, ε/γ)-generalized-universally-strong selector, of length O (t′γ), for admissible ε ≤ 1/(2e) (i.e., such that for 2ε there are
universally strong selectors) and γ = �log1+2ε n�.

To obtain the first result, we apply to the above argument the bounds from Theorem 1 with ε = 1/e and t′ = O (k2 ln n)

for values k = �n/(1 + 2ε)i� as in the construction, to get the result for the (n, (ε/2)/�log1+1/e n�)-generalized-universally-
strong selector for ε/2 = 1/(2e) and corresponding γ = O (ln n); this generalized universally strong selector automatically
works for smaller values than (ε/2)/�log1+1/e n�.

To obtain the second result, we apply to the above argument the bounds from Theorem 2 with ε = 1/(4 log2 n) and
lengths t′ = O (n2 ln2 n) (which occurs if we take k ≥
e�), to get the result for the (n, (ε/2)/�log1+1/(4 log2 n) n�)-generalized-

universally-strong selector for ε/2 = 1/(8 log n) and corresponding γ = O (ln2 n); this generalized universally strong selector
automatically works for smaller values than 1/(8 log2 n · �log1+1/(4 log2 n) n�), and since log1+1/(4 log2 n) n is asymptotically
�(ln2 n) then we have our result. �

As it can be observed, whereas generalized universally strong selectors do not make use of k (contrary to what happens
with universally strong selectors), they have larger sizes; namely, O (n2 ln2 n) vs O (k2 ln n) and O (n2 ln4 n) vs O (k2
logk n�2),
with k ≤ n. Furthermore, they also provide smaller frequencies of successful transmissions across any link; namely, 1/(2e ·
�log1+1/e n�) vs 1/e and 1/(8 log2 n · �log1+1/(4 log2 n) n�) vs 1/(4 logk n).

4. The USS-PLUS-ALG RoSA

In this section, we introduce a local-knowledge packet-oblivious RoSA that makes use of the family of universally strong
selectors introduced in Section 3 as transmission schedules (i.e., the time instants when packets stored at each one node must
be transmitted to a receiving node). As it has been mentioned previously, local-knowledge RoSAs work without using any
topological information, except for maybe some network’s features that do not require full knowledge of its topology. In our
particular case, that will consist of some upper bounds on the number of links and on the network’s degree.

The code of the proposed RoSA, which we call USS-plus-Alg, is shown in Fig. 3. Given a graph G with a number of
links bounded by m, and an in-degree of its conflict graph H (which we denote as �H

in) bounded by � ≥ 1, it uses an
(m, � + 1, ε)-universally-strong selector as a schedule: assuming the selector is represented by matrix M with t rows, each
link z ∈ EG will transmit at time i iff Mi mod t,z = 1. Notice that here each link is assumed to have an independent queue,
and therefore they will act as a sort of “node” (in terms of selectors, such as it has been stated in the previous section).
This means that each individual link will have its own schedule.

Next, we show that USS-plus-LIS (i.e., USS-plus-Alg where Alg is the Longest-In-System queueing scheduling policy)
guarantees stability, provided a given packets’ injection admissibility condition is fulfilled.

At this point, we note that the transmission schedules provided by our universally-strong selectors can be seen as (ρ, T)-
frequent schedules, as shown in the lemma below.

Lemma 1. The transmission schedule provided by an (m, � + 1, ε)-USS of length t is a (ρ, T)-frequent schedule, with ρ = ε/(� + 1)

and T = t.

Proof. Assume that matrix M represents the used (m, � + 1, ε)-USS of length t . Let us take any arbitrary link z ∈ EG and
consider the set of all other links that conflict with the link z, of which there are at most �. This means that (according to
26

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Definition 3) there exist at least ε · t/(� + 1) rows i in M such that Mi,z = 1 and Mi,c1 = · · · = Mi,c j = 0, where j ≤ � and
{c1, . . . , c j} is the set of links in conflict with the link z. Therefore, at time i, link z will transmit a message, and no link
that conflicts with the link z will transmit. This guarantees that any link z will successfully transmit, at least, ε · t/(� + 1)

messages during any schedule of length t; i.e., this is an (ε/(� + 1), t)-frequent schedule. �
Theorem 4. Given a network G, USS-plus-LIS is stable against any (ρ, b)-adversary, for ρ < ε

�+1 , where ε is the frequency parameter
of the used USS and � is the upper bound on the in-degree of the conflict graph H of the graph G.

Proof. According to Lemma 1, USS-plus-LIS uses an (ε/(� + 1), t)-frequent schedule. By plugging the schedule into
Lemma 5 (in Appendix A), we obtain the desired result. �

By using the selectors provided by the Poly-Universally-Strong algorithm in USS-plus-LIS, we have the following result:

Corollary 1. Given a network G, USS-plus-LIS using a universally strong selector computed by the Poly-Universally-Strong algo-
rithm is stable against any (ρ, b)-adversary, for ρ < 1

4(�+1) log�+1 m .

If instead of the selectors provided by the Poly-Universally-Strong algorithm, we use a selector from Theorem 1, we
have that:

Corollary 2. Given a network G, there exists a universally strong selector that, used in USS-plus-LIS, provides stability against any
(ρ, b)-adversary, for ρ < 1

e·(�+1)
.

We can use an (m, � +1, 1/e)-universally-strong selector from Theorem 1 (unconstructive) as a (ρ ′, T)-frequent schedule
(see Lemma 1) in Lemma 8 (in Appendix A), with ρ ′ = 1

e(�+1)
and T equal to the length of the (m, � + 1, 1/e)-universally-

strong selector.

Corollary 3. By using the (m, � + 1, 1/e)-USS from Theorem 1 (unconstructive), each packet spends at most (b−1)
ρ ·

(
1(

1− ρ
ρ′

)L − 1

)

time slots in the system, where ρ ′ = 1
e(�+1)

, L is the length of the longest simple directed path in the network and ρ is the used injection
rate such that ρ < ρ ′ . Furthermore, each queue contains at most b−1(

1− ρ
ρ′

)L + 1 packets.

Alternatively, we can use an (m, � + 1, 1/(4 log�+1 m))-universally-strong selector from Theorem 2 (constructive) as a
(ρ ′, T)-frequent schedule in Lemma 8 (in Appendix A).

Corollary 4. By using the (m, � + 1, 1/(4 log�+1 m))-USS from Theorem 1 (constructive), each packet spends at most (b−1)
ρ ·(

1(
1− ρ

ρ′
)L − 1

)
time slots in the system, where ρ ′ = 1

4(�+1) log�+1 m , L is the length of the longest simple directed path in the net-

work and ρ is the used injection rate such that ρ < ρ ′ . Furthermore, each queue contains at most b−1(
1− ρ

ρ′
)L + 1 packets.

4.1. On the locality of USS-plus-LIS

As it can be readily seen, USS-plus-LIS for a network G requires some knowledge of the value of the in-degree of its
conflict graph H (i.e., of �H

in). In order to obtain H it is necessary to gather the whole topology of G . However, as the next
lemma shows, �H

in can be bounded by the in-degree of the network G (denoted �G).

Lemma 2. �H
in ≤ �2

G + �G − 1, provided �G > 0.

Proof. If �H
in = 0, then the lemma is trivially true. Otherwise, consider a vertex e in H of maximum in-degree deg(e) = �H

in .
Since �H

in �= 0, there is at least one edge (e′, e) ∈ H such that, in G , e cannot successfully transmit at the same time instant
when e′ transmits. Let us denote e = (u, v) and e′ = (u′, v ′), and let us consider the different scenarios where e and e′ may
conflict.

Now, we make a case analysis regarding the possible conflicts in G (note that its in-degree is equal to its out-degree,
since G is symmetric):
27

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Fig. 4. Example of a tree T (on the left) and tree T2,2 (on the right) for � = 3. Nodes r and l2,2 swapped places, which means that edges (x2, r) and
(x2, l2,2) (marked in blue and red, respectively) swapped their places as well. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

1. u′ = u and v ′ �= v (a node u = u′ cannot transmit messages to 2 different receivers): there are at most �G − 1 such
links e′ , given fixed link e.

2. u′ = v (if u′ transmits, it cannot listen at the same time): there are at most �G such links e′ , given fixed link e.
3. u′ �= u is a neighbor of v (i.e., v can hear both from u and u′): there are at most �G − 1 neighbors of v different than

node u, and each of them has, at most, �G different links. This gives �2
G − �G such links e′ , given fixed link e.

Therefore, in overall there are at most (�G − 1) + �G + (�2
G − �G) = �2

G + �G − 1 such links. �
The previous lemma shows that USS-plus-LIS can be seen as a local-knowledge RoSA, in the sense that it only requires

some knowledge about two basic system parameters: the number of links and the network’s in-degree.

4.2. Optimality of USS-plus-LIS

In the next theorem, we show an impossibility result regarding RoSAs, either based on selectors or not, that only make
use of upper bounds on the number of links and on the network’s degree.

Theorem 5. No RoSA that only makes use of upper bounds on the number of links and on the network’s degree guarantees stability for
all networks of degree at most �, provided the injection rate ρ = ω(1/�2).

Proof. Assume, to the contrary, that there exists an RoSA ALG such that, given any network of which it is aware of both its
number of links and its degree, it guarantees that there are no more than Q max packets in the system at all times against
all adversaries with injection rate ρ = ω(1/�2). Note that Q max could be a function on ρ, n, but a constant with respect to
time.

Consider a complete �-regular tree T of depth 2, rooted at r. Let us denote the nodes at distance 1 from r as xi , for
i = 1, . . . , � and leaves adjacent to xi as l j

i for j = 1, . . . , � − 1. Let us generate a family F of trees Ti, j as follows: swap the
root r of T with leaf li, j of T (see Fig. 4). Note that edges (xi, r) and (xi, li, j) swapped places, edges (xk, r) for k �= i were
removed and in their place edges (xk, li, j) appeared. Other edges, i.e., (xk, lk,a) for a = 1, . . . , � − 1 and (xi, li,b) for b �= j,
remain in the same place in both T and Ti, j .

Note that edges (xk, lk,a) (for k = 1, . . . , � and a = 1, . . . , � − 1) exist in every tree in F ∪ {T }. Let us denote the set of
these edges as E .

Consider an adversary A that, starting from round 0, injects 1 packet into every edge outgoing from xi (for i = 1, . . . , �)
every 1/ρ rounds. Such adversary is a (ρ, 1)-adversary in each tree in F ∪ {T }.

Note that each packet injected into an edge incoming into the root of a tree T ′ ∈ F ∪ {T } cannot be simultaneously
transmitted with any other packet injected by A. In particular, it cannot be simultaneously transmitted with any other
packet on edges in E .

Consider a time prefix of length τ rounds. Consider any edge e ∈ E . Edge e is incident to the root in some tree T ′ ∈
F ∪ {T }. ALG must successfully transmit from e in T ′ in at least ρτ − Q max rounds during the considered prefix, since ALG

is stable. This means that all other edges in E must not transmit in those rounds. Since there are �(� − 1) possible choices
of edge e ∈ E , each choice requiring all other edges in E not to transmit in ρτ − Q max rounds, we get that each edge in E
must not transmit in �(� − 1) · (ρτ − Q max) rounds and must transmit in ρτ − Q max rounds, for a total of �2 · (ρτ − Q max)

rounds in the prefix of length τ . Since ρ = ω(1/�2), we can choose τ such that �2 · (ρτ − Q max) > τ , which gives us a
contradiction. �

If we apply Theorem 5 to USS-plus-LIS, then our goal is to find how close to ρ = O (1/�2
G) is its maximum injection

rate for which it guarantees stability.
28

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
1. Choose m such that | E(G) | ≤ m.
2. Obtain an (m, ε)-generalized-universally-strong selector (for some value of ε) of some length t and use it as the transmission schedule.
3. When there are several packets awaiting in a single queue, choose the packet to be transmitted according to Alg, breaking ties in any arbitrary

fashion.

Fig. 5. The GUSS-plus-Alg RoSA for a network G .

If we consider Theorem 4 with � = �H
in , we have that USS-plus-LIS can be stable for ρ = O (1/�H

in). Furthermore,
by Lemma 2 we know that �H

in can be as large as �(�2
G). Then, we have that USS-plus-LIS guarantees stability for ρ =

O (1/�2
G) for all networks G , which matches the result in Theorem 5. This proves that USS-plus-LIS is asymptotically optimal

regarding the injection rate for which stability is guaranteed.

5. The GUSS-PLUS-ALG RoSA

In this section, we extend the results in the previous section so that the new RoSA (which we call GUSS-plus-ALG) does
not need to have any knowledge of �, but only an upper bound on the number of links. The code of GUSS-plus-ALG, is
shown in Fig. 5. As it can be seen, it is very similar to that in Fig. 3, but now it uses an (m, ε)-generalized-universally-strong
selector.

Next, we show that GUSS-plus-LIS guarantees stability, provided a given packets’ injection admissibility condition is
fulfilled. At this point, we note that whereas the injection rates for which GUSS-plus-Alg guarantees stability depend on �
(see Theorem 6), the RoSA itself does not use it.

Assuming that nodes do not know any (linear) estimate on �, observe that Lemma 5 (in Appendix A) still holds, as the
proof is based on existence of a (ρ ′, T)-frequent schedule S . In order to prove a counterpart of Theorem 4 in the setting
without known �, we need to revisit the rate ρ ′ for which (ρ ′, T)-frequent schedule could be constructed.

Theorem 6. Given a network G, GUSS-plus-LIS is stable against any (ρ, b)-adversary, for ρ < ε
�+1 .

Proof. Let us take any arbitrary link z ∈ EG and consider the set of all other links that conflict with link z, of which there
are at most �. This means that there exist at least ε · t/(� + 1) rows i in M such that Mi mod t,z = 1 and Mi mod t,c1 = · · · =
Mi mod t,c j = 0. Therefore, at time i, link z will transmit a message, and no link that conflicts with the link z will transmit.
This guarantees that each link will successfully transmit, at least, ε · t/(� +1) messages during any schedule of length t (i.e.,
we obtained an (ε/(� + 1), t)-frequent schedule S). Then, we can apply the result in Lemma 5 (in Appendix A) to deduce
that such an algorithm is stable against any (ρ, b)-adversary, where ρ < ε

�+1 . �
Now, by using the selectors provided in Theorem 3, we have the following results:

Corollary 5.

1. Given a network G, there exists a universally strong selector that, used in GUSS-plus-LIS, provides stability against any (ρ, b)-
adversary, for ρ < 1

2e·�log1+1/e n�·(�+1)
.

2. Given a network G, there exists a universally strong selector that, used in GUSS-plus-LIS, provides stability against any (ρ, b)-
adversary, for ρ < 1

8 log2 n·�log1+1/(4 log2 n) n�)·(�+1)
= O (1

� ln3 n
).

Corollary 6.

1. By using the first GUSS from Theorem 3 (unconstructive), each packet spends at most (b−1)
ρ ·

(
1(

1− ρ
ρ′

)L − 1

)
time slots in the

system, where ρ ′ = 1
(2e·�log1+1/e n�)·(�+1)

, L is the length of the longest simple directed path in the network and ρ is the used

injection rate such that ρ < ρ ′ . Furthermore, each queue contains at most b−1(
1− ρ

ρ′
)L + 1 packets.

2. By using the second GUSS from Theorem 3 (constructive), each packet spends at most (b−1)
ρ ·

(
1(

1− ρ
ρ′

)L − 1

)
time slots in the

system, where ρ ′ = 1
8 log2 n·�log1+1/(4 log2 n) n�·(�+1)

= O (1
� ln3 n

), L is the length of the longest simple directed path in the network

and ρ is the used injection rate such that ρ < ρ ′ . Furthermore, each queue contains at most b−1(
1− ρ′

)L + 1 packets.

ρ

29

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
1. Use optimal coloring of graph H as the transmission schedule, and repeat it indefinitely.
2. When there are several packets awaiting in a single queue, choose the packet to be transmitted according to Alg, breaking ties in any arbitrary

fashion.

Fig. 6. The Coloring-plus-Alg RoSA for graph G .

6. The COLORING-PLUS-ALG RoSA

In this section, we introduce a global-knowledge packet-oblivious RoSA, which we call Coloring-plus-Alg, that is based
on using graph coloring as transmission schedules. Such an RoSA does not take into account any historical information.
However, it has to be seeded by some information about the network topology (i.e., it is a global-knowledge protocol).

Next, we show that Coloring-plus-LIS (i.e., Coloring-plus-Alg where Alg is the Longest-In-System queueing scheduling
policy), guarantees stability, provided a given packets’ injection admissibility condition is fulfilled. But before we introduce
Coloring-plus-Alg, we state the following fact regarding the relationship between vertex coloring in a conflict graph, and
its use as a transmission schedule.

Note that every set of vertices of same color can be extended to a maximal independent set. The resulting family of
independent sets is still a feasible schedule that guarantees no conflicts and is no worse than just coloring. In fact, it may
allow some links to transmit more than once during the schedule, without increasing the length of the schedule.

Following, we show that coloring of a collision graph can be used to obtain a transmission schedule, where each link is
guaranteed to regularly transmit.

Lemma 3. A k-coloring of collision graph H provides a (1/k, k)-frequent schedule.

Proof. Let us split the vertices V H of the graph H into sets V i
H for i = 0, 1, . . . , k − 1, where every vertex in V i

H is assigned
the i-th color in the vertex coloring of graph H . Each link in the graph G is represented by one vertex in V H , and therefore
each link is assigned a unique color. According to the definition of the conflict graph H , if there is no edge (u, v) ∈ E H , then
links u ∈ EG and v ∈ EG can deliver their packets simultaneously, without a collision. Therefore, if at a given round t only
links of (t mod i)-th color transmit, then no collision occurs. Since each link has a color i ∈ {0, 1, . . . , k − 1} assigned to it,
then each link will successfully transmit a packet once each k consecutive rounds (as far as there is one packet waiting in
its queue). �

Since χ(H)-coloring is an optimal coloring of graph H , we have the following result.

Corollary 7. An optimal coloring of collision graph H provides a (1/χ(H), χ(H))-frequent schedule.

Once we have made it clear that coloring of a collision graph can be used to obtain a transmission schedule, the code of
the Coloring-plus-Alg algorithm is shown in Fig. 6.

Now, we show that Coloring-plus-LIS (i.e., Coloring-plus-Alg where Alg is the Longest-In-System scheduling policy),
guarantees stability, provided a given packets’ injection admissibility condition is fulfilled.

Theorem 7. Coloring-plus-LIS is stable provided ρ < 1/χ(H), where χ(H) is the chromatic number of the conflict graph H of the
network G.

Proof. We start the proof with referring to Corollary 7, which shows that coloring of a collision graph can be used to obtain
a (1/χ(H), χ(H))-frequent schedule C .

Let us take any ρ = 1/χ(H) − ε , for some ε > 0. We can use Lemma 5 with S = C (so, ρ ′ = 1/χ(H)) to show that
Coloring-plus-LIS is stable against any (ρ, b)-adversary in the radio network model. �

Observe that, contrary to USS-plus-LIS, Coloring-plus-LIS requires global-knowledge of the structure of the graph: first,
to construct H , and then to obtain its optimal coloring.

We can use the optimal coloring of the conflict graph H as a (1/χ(H), χ(H))-frequent schedule (see Corollary 7) in
Lemma 8 (in Appendix A) to obtain the following result regarding both the maximum latencies and queue lengths provided
by Coloring-plus-Alg.

Corollary 8. By using Coloring-plus-LIS, each packet spends at most (b−1)
ρ ·

(
1(

1− ρ
ρ′

)L − 1

)
time slots in the system, where

ρ ′ = 1/χ(H), L is the length of the longest simple directed path in the network and ρ is the used injection rate such that ρ < ρ ′ .
Furthermore, each queue contains at most b−1(

1− ρ′
)L + 1 packets.
ρ

30

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Table 1
Maximum injection rates and required knowledge.

RoSA Required
knowledge

Maximum
injection rate

USS-plus-LIS Bounds on the
number of links
and on the
network’s degree

O (1/(e · �H))

(asymptotically optimal)

GUSS-plus-LIS Bound on the
number of links

O (1/(2 · �log1+1/e n� · e · �H))

(close to asymptotically optimal)

Coloring-plus-LIS Full topology O (1/�H)

(optimal)

6.1. Optimality of Coloring-plus-LIS

Now, we show that Coloring-plus-LIS is optimal regarding the injection rate, in the sense that no algorithm can guar-
antee stability for a higher injection rate than that provided by it.

Theorem 8. No RoSA can be stable for all networks against a (ρ, b)-adversary for ρ > 1/χ(H).

Proof. Let us consider a network graph G on n nodes that is a clique. For such network, the collision graph H is also a
clique, since each link is in conflict with each other link. Collision graph H has n2 − n vertices and requires n2 − n colors to
be colored, i.e., χ(H) = n2 − n.

Consider a (1/χ(H) + ε, 2)-adversary for some ε > 0 that after every χ(H) rounds injects one packet into each link
(starting in round 0) and simultaneously after each 1/ε rounds injects another packet into each link (starting in round 0).
Therefore, in any prefix of T = k · χ(H) rounds for k ∈ N , the adversary injects (k + 1) + �T /ε� + 1 packets into each link,
i.e., I = (k + �T /ε� + 2) · (n2 − n) packets into the system.

On the other hand, since G is a clique, any RoSA can successfully transmit at most 1 packet per round in the entire
network. Therefore, in T = k · χ(H) = k · (n2 − n) rounds at most k · (n2 − n) packets can be transmitted. So, at the end
of a prefix of length T , there are at least I − k · (n2 − n) = (�T /ε� + 2) · (n2 − n) packets remaining in the system. For T
approaching infinity, the number of packets remaining in the queues grows to infinity. This means that the queues are not
bounded and the RoSA is not stable. �
7. Injection rates vs required knowledge

In this section, we compare the maximum injection rates for which the RoSAs introduced in the previous sections
guarantee stability.

Regarding USS-plus-LIS, from the result in Corollary 2 we have that it can only guarantee stability for ρ = O (1/(e ·�H
in)).

Analogously, from the result in Corollary 6 we have that GUSS-plus-LIS can only guarantee stability for ρ = O (1/(e · �H
in · 2 ·

�log1+1/e n�)).
On another hand, it can be observed that the injection rate for which GUSS-plus-LIS guarantees stability is just

2 · �log1+1/e n� times greater than the guaranteed by USS-plus-LIS, which shows that GUSS-plus-LIS is close to be asymp-
totically optimal regarding the injection of packets for which stability is guaranteed.

Furthermore, in Section 6 we have introduced a global-knowledge RoSA, which we called Coloring-plus-LIS, and we
have shown that the maximum injection rate for which it guarantees stability is 1/χ(H), where χ(H) is the chromatic
number of the conflict graph H of the network (see Theorem 7). In addition, it has been also proved that this bound
is optimal (see Theorem 8). By the Brooks’ theorem [11], we have that χ(H) ≤ �H + 1. Let indeg H (e) (and outdeg H (e))
denote the indegree (outdegree) of node e in graph H . Recall that each edge in the network graph was replaced by two
oppositely directed links. This means that, if a link e blocks outdeg H (e) other links, then the opposite link e′ is blocked
by indeg H (e′) = outdeg H (e) links. Therefore, �H = �(�H

in). Then, Theorem 7 guarantees stability for ρ = O (1/�H
in). This

implies that, by using Coloring-plus-LIS, it is possible to guarantee stability for a wider range of injection rates than by
using the both GUSS-plus-LIS and GUSS-plus-LIS; namely, the injection rate for which stability is guaranteed is e times
greater in the case of USS-plus-LIS, and e · 2 · �log1+1/e n� times greater in the case of GUSS-plus-LIS.

Table 1 summarizes the results regarding the maximum injection rates and the required knowledge of each considered
RoSA.

8. Extension of the results to other queueing scheduling policies

In this section, we show that the results obtained in Sections 4, 5 and 6 for routing combined with LIS (Longest In
System) can be extended to other queueing scheduling policies; namely, NFS (Nearest-From-Source), SIS (Shortest-In-System)
and FTG (Farthest-To-Go).
31

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
8.1. Reduction to the failure model

First, let us explain the (wired) failure model [1]. Given is a network graph G . A (ρ, b)-adversary in the failure model
injects paths (packets) into G and generates failures in such a way that in any interval I the following inequality holds:

Arre(I) + Faile(I) ≤ ρ|I| + b ,

where Arre(I) is the number of packets injected during interval I that pass through edge e and Faile(I) is the number of
failures on edge e generated during interval I . Each link e that has some packets waiting in its queue can transmit a packet
in every round, i.e., there are no collisions between edges.

There are known stable algorithms for packet queueing scheduling in the failure model, such as NFS (Nearest-From-
Source), SIS (Shortest-In-System), or FTG (Farthest-To-Go) against (ρ, b)-adversary with any ρ < 1 [1].

Lemma 4. Suppose we have a stable RoSA (called Alg) against any (ρ ′′, b)-adversary AD V f ail in the failure model on graph G. Suppose
we have a (ρ ′, T)-frequent schedule S . Then we can build a stable RoSA (called S-Plus-Alg) against any (ρ, b)-adversary AD V RN in
the radio network model on graph G, for any ρ such that ρ < ρ ′ and ρ ′′ ≥ 1 + ρ − ρ ′ .

Proof. The stable RoSA in each round has two steps:

1. Determine which links transmit, according to a (ρ ′, T)-frequent schedule S for some parameters ρ ′ and T ,
2. Determine, for each link e, which packet awaiting in a queue of link e to transmit, according to Alg.

We can think of rounds when S does not successfully transmit a packet via link e due to a collision as failures on link
e in the failure model. Schedule S guarantees that each link e has at most (1 − ρ ′)T transmission blocked in any interval I
of length T . This means that each link e has at most Faile(I) ≤ (1 − ρ ′)T failures during I . Furthermore, AD V RN can inject
at most Arre(I) ≤ ρT + b packets passing through each edge e during I:

Arre(I) + Faile(I) ≤ ρT + b + (1 − ρ ′)T = T (1 + ρ − ρ ′) + b .

Therefore, the graph G with packet arrivals from AD V RN and failures being collisions generated by S is an instance of the
failure model with a (1 + ρ − ρ ′, b)-adversary. That means that using Alg to compute which packet to choose for each link
at each round guarantees stability, provided ρ ′′ ≥ 1 + ρ − ρ ′ . �
8.2. Stability results for NFS, SIS and FTG

Theorem 9. Given a network G, USS-plus-Alg (where Alg ∈ {NFS,SIS,FTG}) is stable against any (ρ, b)-adversary, for ρ < ε
�+1 . The

same result applies to GUSS-plus-Alg and Coloring-plus-Alg

Proof. The proof is similar to these in Theorems 4, 6 and 7. The only difference is that, instead of Lemma 5 (in Appendix A),
we can apply the results in Lemma 4 for NFS, SIS and FTG to deduce that such RoSAs are stable against any (ρ, b)-adversary,
where ρ < ε

�+1 . �
9. Conclusions

In this work, we studied the fundamental problem of stability in multi-hop wireless networks. We introduced a number
of routing scheduling algorithms which, making use of certain knowledge about the network’s structure, guarantee stability
for certain injection rates.

We first introduced two new families of combinatorial structures, that were used to provide a set of transmission sched-
ules. Making use of these structures, we proposed two local-knowledge packet-oblivious routing scheduling algorithms. The
first proposed routing scheduling algorithm only needs to know some upper bounds on the number of links and on the
network’s degree, and it was shown to be asymptotically optimal regarding the injection rate for which it guarantees stabil-
ity. The second proposed routing scheduling algorithms was close to be asymptotically optimal, but it only needs to know
an upper bound on the number of links. For such algorithms, we also provided some results regarding both the maximum
latencies and queue lengths. Furthermore, we also evaluated how the lack of global knowledge about the system topology
affects the performance of the routing scheduling algorithms.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
32

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
Appendix A. Stability results for the Longest-In-System queueing scheduling policy

In this section, we introduce some auxiliary results regarding the Longest-In-System queueing scheduling policy. First,
we show that LIS, combined with a transmission schedule that guarantees a number of successful transmissions in some
time interval, guarantees stability for a certain injection rate (these lemmas are adapted versions of analogous results about
universal stability of the LIS protocol in wired network [4]).

Lemma 5. If there exists a (ρ ′, T)-frequent schedule S , then using LIS as the queueing policy guarantees stability against any (ρ, b)-
adversary for ρ < ρ ′ .

Before we prove this lemma, we will introduce some additional notations and auxiliary lemmas.
Let L be the length of the longest route in the system. Let us denote by class i the set of packets injected during i-th

window. A class i is said to be active during a window w if and only if at some time during window w there is some
packet in the system of class i′ ≤ i.

Consider some packet p injected during window W0, whose path crosses links e1, e2, . . . , eL , in this order. We use W i
to denote the window, during which p crossed link ei . Let cw denote the number of active classes during window w . We
define c = maxw∈[W0,W L) cw . Then, we can bound the number of windows to deliver p.

Lemma 6.

W L − W0 ≤
1 −

(
1 − ρ

ρ ′
)L

ρ · T
· (b − 1) + c ·

[
1 −

(
1 − ρ

ρ ′

)L
]

.

Proof. The packet p reaches link ei for the first time in window W i−1. Since p is in the system, during window W i−1 all
classes [W0, W i−1] are active. Therefore, according to the definition of c, there are at most c − (W i−1 − W0) active classes
with packets older than packet p. Packets in those classes are the only packets that take priority over packet p on link
ei . The oldest such packet was injected during window w f irst = W0 − [c − (W i−1 − W0)] = W i−1 − c. Since its injection,
at most (W0 − w f irst) · ρ · T + b = [c − (W i−1 − W0)] · ρ · T + b packets older than p could be injected into the system.
Therefore, there are at most [c − (W i−1 − W0)] · ρ · T + b − 1 packets that will take priority over packet p on link ei . Since
each link transmits at least ρ ′T times per window, the number of windows until p transgresses link ei is at most

W i − W i−1 ≤ ρ · T · (c + W0 − W i−1) + b − 1

ρ ′ · T
.

Hence,

W i ≤
(

1 − ρ

ρ ′

)
W i−1 + ρ

ρ ′ (c + W0) + b − 1

ρ ′ · T
.

Therefore, solving the recurrence, we get:

W L ≤ W0 + c

[
1 − (1 − ρ

ρ ′)
L
]

+
1 − (1 − ρ

ρ ′)L

ρ · T
(b − 1),

which proves the lemma. �
Now we have a bound on how long packet p can be in the system, depending on value c. We will show that c is

bounded by a constant, depending only on network and adversary parameters, i.e., L, ρ and b, and value ρ ′ from Lemma 5.

Lemma 7. There are never more than

(b − 1) ·
1 − (1 − ρ

ρ ′)L

(1 − ρ
ρ ′)L · ρ · T

active classes in the system.

Proof. Let c′ = (b − 1) · 1−(1− ρ
ρ′)L

(1− ρ
ρ′)L ·ρ·T + 1

(1− ρ
ρ′)L . Assume, by contradiction, that a window w is the first window during which

there are at least c′ + 1 active classes. Hence, at the end of window w − 1, there is a packet q that was in the system for c′
windows, and no more than c′ classes were active until the end of window w − 1.
33

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
According to Lemma 6, packet q is delivered in at most

c′
[

1 − (1 − ρ

ρ ′)
L
]

+
1 − (1 − ρ

ρ ′)L

ρ · T
(b − 1) =

= c′
[

1 − (1 − ρ

ρ ′)
L
]

+
(

c′ − 1

(1 − ρ
ρ ′)L

)
· (1 − ρ

ρ ′)
L =

= c′ − 1

windows, which gives a contradiction. �
Now that we have proven that any packet p spends bounded time in the system, we can prove Lemma 5.

Proof of Lemma 5. In Lemma 7, it has been shown that c is bounded. By Lemma 7, this implies that W L − W0 is also
bounded. This result guarantees that each packet spends a bounded time in the system. That means that such system is
stable against any (ρ, b)-adversary, provided that ρ ′ > ρ , which completes the proof of the lemma. �

Regarding both the maximum latencies and queue lengths, we have the following result.

Lemma 8. Assume we have a (ρ ′, T)-frequent schedule S . Then, each packet spends at most (b−1)
ρ ·

(
1(

1− ρ
ρ′

)L − 1

)
time slots in the

system, where L is the length of the longest simple directed path in the network and ρ is the used injection rate such that ρ < ρ ′ .
Furthermore, each queue contains at most b−1(

1− ρ
ρ′

)L + 1 packets.

Proof. From Lemmas 6 and 7, we have that:

W L − W0 ≤
1 −

(
1 − ρ

ρ ′
)L

ρ · T
· (b − 1) + c ·

[
1 −

(
1 − ρ

ρ ′

)L
]

≤

≤
1 −

(
1 − ρ

ρ ′
)L

ρ · T
· (b − 1) + (b − 1) ·

1 − (1 − ρ
ρ ′)L

(1 − ρ
ρ ′)L · ρ · T

·
[

1 −
(

1 − ρ

ρ ′

)L
]

=

= (b − 1)

ρ · T
·
(

1 −
(

1 − ρ

ρ ′

)L
)⎡

⎢⎣1 + 1(
1 − ρ

ρ ′
)L

− 1

⎤
⎥⎦ =

= (b − 1)

ρ · T
·
(

1 −
(

1 − ρ

ρ ′

)L
)⎡

⎢⎣ 1(
1 − ρ

ρ ′
)L

⎤
⎥⎦ =

= (b − 1)

ρ · T
·
⎡
⎢⎣ 1(

1 − ρ
ρ ′

)L
− 1

⎤
⎥⎦ ,

which provides the maximum number of windows in which a given packet is in the system. Since windows have a length
of T then the maximum number of time slots that any packet spends in the system is:

T · (b − 1)

ρ · T
·
⎡
⎢⎣ 1(

1 − ρ
ρ ′

)L
− 1

⎤
⎥⎦ = (b − 1)

ρ
·
⎡
⎢⎣ 1(

1 − ρ
ρ ′

)L
− 1

⎤
⎥⎦ .

Using the previous result, it is immediate to find that no queue contains more than

ρ · (b − 1)

ρ
·
⎡
⎢⎣ 1(

1 − ρ
ρ ′

)L
− 1

⎤
⎥⎦ + b = (b − 1) ·

⎡
⎢⎣ 1(

1 − ρ
ρ ′

)L
− 1

⎤
⎥⎦ + b = b − 1(

1 − ρ
ρ ′

)L
+ 1

packets. �

34

V. Cholvi, P. Garncarek, T. Jurdziński et al. Theoretical Computer Science 921 (2022) 20–35
References

[1] Carme Àlvarez, Maria J. Blesa, Josep Díaz, Maria J. Serna, Antonio Fernández, Adversarial models for priority-based networks, Networks 45 (1) (2005)
23–35.

[2] Carme Àlvarez, Maria J. Blesa, Maria J. Serna, A characterization of universal stability in the adversarial queuing model, SIAM J. Comput. 34 (1) (2004)
41–66.

[3] Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, Mariusz A. Rokicki, Packet latency of deterministic broadcasting in adversarial multiple
access channels, J. Comput. Syst. Sci. 99 (2019) 27–52.

[4] Matthew Andrews, Baruch Awerbuch, Antonio Fernández, Frank Thomson Leighton, Zhiyong Liu, Jon M. Kleinberg, Universal-stability results and per-
formance bounds for greedy contention-resolution protocols, J. ACM 48 (1) (2001) 39–69.

[5] Matthew Andrews, Lisa Zhang, Scheduling over a time-varying user-dependent channel with applications to high-speed wireless data, J. ACM 52 (5)
(2005) 809–834.

[6] Matthew Andrews, Lisa Zhang, Routing and scheduling in multihop wireless networks with time-varying channels, ACM Trans. Algorithms 3 (3) (2007)
33.

[7] Rajat Bhattacharjee, Ashish Goel, Zvi Lotker, Instability of FIFO at arbitrarily low rates in the adversarial queueing model, SIAM J. Comput. 34 (2) (2004)
318–332.

[8] Maria J. Blesa, Daniel Calzada, Antonio Fernández, Luis López, Andrés L. Martínez, Agustín Santos, Maria J. Serna, Christopher Thraves, Adversarial
queueing model for continuous network dynamics, Theory Comput. Syst. 44 (3) (2009) 304–331.

[9] Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, David P. Williamson, Adversarial queuing theory, J. ACM 48 (1) (2001) 13–38.
[10] Allan Borodin, Rafail Ostrovsky, Yuval Rabani, Stability preserving transformations: packet routing networks with edge capacities and speeds, J. Inter-

connect. Netw. 5 (1) (2004) 1–12.
[11] Rowland Leonard Brooks, On colouring the nodes of a network, Math. Proc. Camb. Philos. Soc. 37 (2) (1941) 194–197.
[12] B.S. Chlebus, V. Cholvi, P. Garncarek, T. Jurdziński, D.R. Kowalski, Routing in wireless networks with interferences, IEEE Commun. Lett. 21 (9) (2017)

2105–2108.
[13] Bogdan S. Chlebus, Vicent Cholvi, Dariusz R. Kowalski, Universal stability in multi-hop radio networks, J. Comput. Syst. Sci. 114 (2020) 48–64.
[14] Bogdan S. Chlebus, Dariusz R. Kowalski, Andrzej Pelc, Mariusz A. Rokicki, Efficient distributed communication in ad-hoc radio networks, in: Proceedings

of the 38th International Colloquium on Automata, Languages and Programming (ICALP), Part II, in: Lecture Notes in Computer Science, vol. 6756,
Springer, 2011, pp. 613–624.

[15] Bogdan S. Chlebus, Dariusz R. Kowalski, Mariusz A. Rokicki, Maximum throughput of multiple access channels in adversarial environments, Distrib.
Comput. 22 (2) (2009) 93–116.

[16] Bogdan S. Chlebus, Dariusz R. Kowalski, Mariusz A. Rokicki, Adversarial queuing on the multiple access channel, ACM Trans. Algorithms 8 (1) (2012) 5.
[17] Vicent Cholvi, Juan Echagüe, Stability of FIFO networks under adversarial models: state of the art, Comput. Netw. 51 (15) (2007) 4460–4474.
[18] Vicent Cholvi, Pawel Garncarek, Tomasz Jurdzinski, Dariusz R. Kowalski, Optimal packet-oblivious stable routing in multi-hop wireless networks, in:

Structural Information and Communication Complexity - 27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020,
Proceedings, Springer, 2020, pp. 165–182.

[19] Vicent Cholvi, Dariusz R. Kowalski, Bounds on stability and latency in wireless communication, IEEE Commun. Lett. 14 (9) (2010) 842–844.
[20] Andrea E.F. Clementi, Angelo Monti, Riccardo Silvestri, Distributed broadcast in radio networks of unknown topology, Theor. Comput. Sci. 302 (1) (2003)

337–364.
[21] Juan Echagüe, Vicent Cholvi, Antonio Fernández, Universal stability results for low rate adversaries in packet switched networks, IEEE Commun. Lett.

7 (12) (2003) 578–580.
[22] Antonio Fernández Anta, Miguel A. Mosteiro, Christopher Thraves, Deterministic recurrent communication in restricted sensor networks, Theor. Comput.

Sci. 418 (2012) 37–47.
[23] David Gamarnik, Stability of adaptive and nonadaptive packet routing policies in adversarial queueing networks, SIAM J. Comput. 32 (2) (2003)

371–385.
[24] Pawel Garncarek, Tomasz Jurdziński, Dariusz R. Kowalski, Local queuing under contention, in: Proceedings of the 32nd International Symposium on

Distributed Computing (DISC), in: Leibniz International Proceedings in Informatics, vol. 121, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
28.

[25] Pawel Garncarek, Tomasz Jurdziński, Dariusz R. Kowalski, Stable memoryless queuing under contention, in: Proceedings of the 33rd International
Symposium on Distributed Computing (DISC), in: Leibniz International Proceedings in Informatics, vol. 146, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, 17.

[26] Ashish Goel, Stability of networks and protocols in the adversarial queueing model for packet routing, Networks 37 (4) (2001) 219–224.
[27] Dimitrios Koukopoulos, Marios Mavronicolas, Sotiris E. Nikoletseas, Paul G. Spirakis, The impact of network structure on the stability of greedy proto-

cols, Theory Comput. Syst. 38 (4) (2005) 425–460.
[28] Sungsu Lim, Kyomin Jung, Matthew Andrews, Stability of the max-weight protocol in adversarial wireless networks, IEEE/ACM Trans. Netw. 22 (6)

(2014) 1859–1872.
[29] Zvi Lotker, Boaz Patt-Shamir, Adi Rosén, New stability results for adversarial queuing, SIAM J. Comput. 33 (2) (2004) 286–303.
35

http://refhub.elsevier.com/S0304-3975(22)00185-2/bibB8C588321F659AA149F10D78DB985342s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibB8C588321F659AA149F10D78DB985342s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib512CCDF9DBEC36B272B21BA5AA90A5FDs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib512CCDF9DBEC36B272B21BA5AA90A5FDs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibEF6776ADE1DAB2BF63BA63540AFC7353s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibEF6776ADE1DAB2BF63BA63540AFC7353s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib0CB18FC0BB6D7BBD1CAA099936C13AB5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib0CB18FC0BB6D7BBD1CAA099936C13AB5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibF1610EAB09108FA64BC9CD0CCE7EA13Es1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibF1610EAB09108FA64BC9CD0CCE7EA13Es1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibEE2E4B3E8FA45E7D04BF252E9788E8F2s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibEE2E4B3E8FA45E7D04BF252E9788E8F2s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibFBB2929A3AB301E7F0993E7BF4913AAEs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibFBB2929A3AB301E7F0993E7BF4913AAEs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib6642AF9C14C9403D724A7C45638A04D0s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib6642AF9C14C9403D724A7C45638A04D0s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibD91E9BFD733795C08EF69CC055E52BFAs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib71FB49303C85150486769B3A63356567s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib71FB49303C85150486769B3A63356567s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib7FC62E0C16AD9C1B09CA2A34E46A352Fs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib3BCF885A90EE40D317C1696B6A36CC1Ds1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib3BCF885A90EE40D317C1696B6A36CC1Ds1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib6AFDE1378FF7B741E509F310913E10DEs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib5FECFB680A888496C19CFF782957A605s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib5FECFB680A888496C19CFF782957A605s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib5FECFB680A888496C19CFF782957A605s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib2E1A60BC64258D669387528EA5ACFBA5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib2E1A60BC64258D669387528EA5ACFBA5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib9A09C30F32BCFF3E67677C134F2CF349s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib647EF9F5A4BB188021A1866153527A02s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib26772C25BF20DDCB9DC3693FB89EB9D5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib26772C25BF20DDCB9DC3693FB89EB9D5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib26772C25BF20DDCB9DC3693FB89EB9D5s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibFB7D3EC26593350DD2ED6D4A0F678238s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib2524FAD8180451ABA7FD9F0B73F663AEs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib2524FAD8180451ABA7FD9F0B73F663AEs1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib91AD557DD68B81BBCA948637197D5BF3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib91AD557DD68B81BBCA948637197D5BF3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib03DB668D8A9FC797CC366E8EACD22546s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib03DB668D8A9FC797CC366E8EACD22546s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib61FA7DE17594A96AB6A5DE473052B128s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib61FA7DE17594A96AB6A5DE473052B128s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibE83D724BD1351E9750436653A8D21AE3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibE83D724BD1351E9750436653A8D21AE3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibE83D724BD1351E9750436653A8D21AE3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib02DF26E43D15932BB0327005EEED7BE7s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib02DF26E43D15932BB0327005EEED7BE7s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib02DF26E43D15932BB0327005EEED7BE7s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibD7AB5A28F05C1CB8976B9216079276C3s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibF0B11876FC4496864A71BBA351DEC8C9s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibF0B11876FC4496864A71BBA351DEC8C9s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib7FB06B303F9D61DF98BAEA64E000A3A1s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bib7FB06B303F9D61DF98BAEA64E000A3A1s1
http://refhub.elsevier.com/S0304-3975(22)00185-2/bibF709818309321D8DCFC0250D55B1A6F0s1

	Stable routing scheduling algorithms in multi-hop wireless networks
	1 Introduction
	2 Model and problem definition
	2.1 Wireless radio network
	2.2 Conflict graphs
	2.3 Routing scheduling algorithms
	2.4 Adversaries
	2.5 (ρ,T)-frequent schedules

	3 Selectors as transmission schedulers
	3.1 Universally strong selectors of polynomial size
	3.2 Obtaining universally strong selectors of polynomial size in polynomial time
	3.3 Obtaining generalized universally strong selectors of polynomial size

	4 The USS-PLUS-ALG RoSA
	4.1 On the locality of USS-plus-LIS
	4.2 Optimality of USS-plus-LIS

	5 The GUSS-PLUS-ALG RoSA
	6 The COLORING-PLUS-ALG RoSA
	6.1 Optimality of Coloring-plus-LIS

	7 Injection rates vs required knowledge
	8 Extension of the results to other queueing scheduling policies
	8.1 Reduction to the failure model
	8.2 Stability results for NFS, SIS and FTG

	9 Conclusions
	Declaration of competing interest
	Appendix A Stability results for the Longest-In-System queueing scheduling policy
	References

