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Hypnos: a Hardware and Software Toolkit for
Energy-Aware Sensing in Low-Cost IoT Nodes

Alberto González-Pérez, Sven Casteleyn

Abstract—Through the Internet of Things, autonomous sensing
devices can be deployed to regularly capture environmental and
other sensor measurements for a variety of usage scenarios.
However, for the market segment of stand-alone, self-sustaining
small IoT nodes, long term deployment remains problematic
due to the energy-constrained nature of these devices, requiring
frequent maintenance. This article introduces Hypnos, an open
hardware and software toolkit that aims to balance energy intake
and usage through adaptive sensing rate for low-cost Internet-
connected IoT nodes. We describe the hardware architecture of
the IoT node, an open hardware board based on the Arduino
Uno form-factor packing the energy measurement circuitry, and
the associated open source software library, that interfaces with
the sensing node’s microcontroller and provides access to the
low-level energy measurements. Hypnos comes equipped with a
built-in, configurable, modified sigmoid function to regulate duty
cycle frequency based on energy intake and usage, yet developers
may also plug in their custom duty/sleep balancing function.
An experiment was set up, whereby two identical boards ran
for two months: one with the Hypnos software framework and
built-in energy balancing function to regulate sensing rate and
the other with fixed sensing rate. The experiment showed that
Hypnos is able to successfully balance energy usage and sensing
frequency within configurable energy ranges. Hereby, it increases
reliability by avoiding complete shutdown, while at the same time
optimizing performance in terms of average amount of sensor
measurements.

Index Terms—Constrained Devices, Energy Efficient Devices,
Energy Harvesting, Low Cost Sensors and Devices, In Situ
Processing

I. INTRODUCTION

S INCE the original vision of trackable, connected objects in
the context of supply chain management in 1999 [1], the

Internet of Things (IoT) has evolved to a large heterogeneous
network of so-called IoT nodes, ranging from simple iden-
tifiable objects capable of communicating limited metadata,
to sophisticated computerized devices, comprising application
logic and capable of sensing environmental parameters, com-
municating with other IoT devices and (cloud) servers, and
actuating [2], [3]. The potential of such automated systems
to collect data from connected nodes – real-world objects in
daily life – process it, derive actionable knowledge and act
upon it, is enormous. It should thus not come as a surprise that
the Internet of Things is rapidly becoming a reality. Gartner
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forecasted the amount of IoT nodes to grow to 5.81 billion
by the end of 2020, a yearly increase of 21% since 2018 [4].
Indeed, a plethora of next-generation applications in various
domains sprung into life [5], ranging from smart cities [6],
smart homes [7], health care [8] and agriculture [9], to smart
factories and generally, Industry 4.0 [10].

From an architectural point of view, the IoT can be subdi-
vided in 4 layers (bottom-up) [11]: the perception layer, which
describes the IoT nodes’ sensing and actuation capacities;
the transmission layer, which describes how IoT nodes can
communicate and transmit information; the computation layer,
which describes how hardware and software technologies can
receive and process data to make decisions; and the applica-
tion layer, which describes practical applications in various
domains. Across these layers, the IoT space is highly hetero-
geneous, with a variety of standards, hardware and (software)
platforms available, and major commercial players each im-
plementing and pushing their respective solutions [11]. Never-
theless, open IoT platforms are gaining importance, promoting
the use of open standards, open APIs, open source and open
layers [12]. This article focuses on the latter market segment,
where IoT nodes consist of small, lightweight, self-sustaining
and often low-cost devices, with limited memory, computa-
tional capabilities and battery power. Their deployment ranges
from (hobby) projects in the maker movement [13], where
technically skilled individuals assemble, program and deploy
their own IoT nodes, to citizen science projects, where non-
scientists deploy and use IoT nodes for scientific purposes,
such as crowd-sourced environmental monitoring [14], hydro-
logic monitoring [15] or water quality monitoring [16] in water
management, and small-scale industrial applications, such as
parcel monitoring in agriculture [17] or remote water quality
monitoring [18].

Energy efficiency is hereby – and in the IoT in general
– one of the main challenges to address [19]–[21]. Proposed
solutions range from energy efficient hardware (e.g., microcon-
trollers, chips, sensors) and software (e.g., lightweight com-
munication protocols, batch cloud communication) solutions,
to energy harvesting through renewable energy sources (e.g.,
mainly solar energy) to prolong operation time. In this article,
we contribute to the reliability and performance of such small,
energy-restrained open IoT nodes, by presenting a hardware
and software solution to manage and balance available energy
– obtained through inherently unpredictable energy harvesting
– and computations (usually, sensing). Our system, Hypnos,
resides in the IoT computation layer, and is agnostic of sensing
and actuation (perception layer), communication (transmission
layer) or practical applications (application layer). It consists
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of a hardware and software component. The first is an open-
hardware board, pluggable on any device with the widely
used Arduino pinout, a de facto standard, which measures
energy intake and the overall device energy consumption. The
second component is a C++ software library, which provides
programmatic access to the hardware board capabilities and
manages the device’s duty-cycle by controlling sleep times.
The software comes equipped with a modified, parameterized
sigmoid duty/sleep balancing function, which increases/de-
creases the duty frequency according to energy intake and
consumption, but developers can deploy their own function
to better suit their particular use case.

The main contributions of this work are (i) a fully modular,
integrated and pluggable open-source IoT platform – Hypnos
– based on standards and targeted at small, energy-constrained
single-threaded IoT nodes, consisting of a hardware board to
keep track of the system’s energy availability and a software
library for energy management, tailorable depending on the
use case (ii) a ready-to-use, built-in non-linear battery-centric
reactive energy management algorithm, based on a customiz-
able modified sigmoid function, suitable for variable sensing
rate applications (iii) an evaluation of Hypnos’ deployment and
built-in energy balancing function in real-world conditions,
showing good performance in terms of average amount of
sensor measurements, stable energy consumption and uptime
over a longer time period according to configured parameters.

In the remainder of this article, we discuss related work
(Section II), detail Hypnos’ hardware and software component
(Section III), describe a 2+ months experiment with two
different single-board microcontrollers running in identical
conditions, one equipped with and one without Hypnos (Sec-
tion IV), discuss results and position Hypnos w.r.t other energy
management solutions (Section V).

II. RELATED WORK

One of the main challenges for standalone IoT nodes is
energy efficiency [19]–[21]. In scientific literature, various
approaches aim to save energy and extend operation time in
IoT nodes across all four IoT layers. In the perception layer,
energy optimizations focus on reducing the sensors’ energy
footprint, by improving the sensor units’ designs (e.g., [22]) or
operation time (e.g., [23]). In the transmission layer, a plethora
of network technologies and protocols was specifically created
for energy efficiency in IoT solutions – see [24], [25] for an
overview. In the computation layer, we distinguish hardware
and software-based solutions. In the former, IoT node man-
ufacturers apply several optimization techniques to improve
energy efficiency, such as increased miniaturization, integrat-
ing functionality in the microcontroller’s on-board chips (i.e.,
Systems on a Chip) [26], decoupling processing by using inde-
pendent yet cooperating processing units [27] or task-specific
processor cores [28]. Software-based solutions mainly consist
of power and resource management solutions – given Hypnos
resides at this level, we’ll discuss these solutions in detail
along the remainder of this section. Finally, in the application
layer, IoT applications reside, which may implement domain-
or application-specific optimizations, generally aimed at reduc-
ing network traffic or sensing rate. For example, in the medical

domain, [29] reduces network traffic by delaying transmission
based on medical relevance, and for environmental sensing,
[30] reduces data transmission and adapts sensing rate based
on data variability. Examples of application-specific energy
optimizations include adaptive sensing rate for car parking
applications based on occupancy [31] or energy-efficient IoT
nodes for fall detection [32].

We now shift our attention to software-based solutions, more
specifically energy management algorithms, in the layer where
Hypnos resides – the computation layer. Existing solutions aim
to reduce energy consumption by efficiently managing the IoT
node’s power and resource usage through sleep time regula-
tion. Hereby, the operational time (high power consumption)
is decreased in favor of sleep time (low power consumption)
according to the IoT node’s requirements. Power management
algorithms can be classified in two categories [33]: reactive
and predictive, with some algorithms utilizing techniques from
both.

Reactive algorithms take into account the current state of the
system to decide how much energy can be consumed during an
operation cycle and/or when the next operation cycle should
happen. In an early work related to event detection, Vigorito
et al. [34] considered the trade-off between operation time
and (spatial) coverage as a constrained optimization problem,
where sleep time is maximized w.r.t. minimal detection delay.
In [35], Le et al. proposed a similar idea, but instead using
a proportional integral derivative to adjust the sleep time of a
node to its stored energy. In [36], sensing and transmission are
decoupled, and the authors compare approaches to determine
optimal sensing rate and data throughput, while allowing some
data loss. More recently, the work from Kulau et al. [30] takes
the volatility of the measured sensor values into account when
calculating sleep time. Trilles et al. [17] use a simple, two-
value variable sensing rate as a disaster prevention mechanism,
whereby the IoT node’s battery state of charge (SoC) is
monitored to increase sleep time when the battery level is low.
Hypnos’ built-in modified sigmoid function-based algorithm
falls within the category of predictive algorithms, and aims to
dynamically and continuously balance energy availability (i.e.,
SoC) with sampling rate.

Predictive algorithms, on the other side, use historical data
and scientific models to predict future energy harvesting,
which is used to decide energy consumption. Often, predic-
tive models are complemented with reactive techniques, to
compensate for inaccurate predictions. Pioneering work in
this area was done by Kansal et al. [37], who explored a
prediction model based on an exponentially weighted moving
average to approximate the daily solar cycle, while recognizing
the importance of momentary measurements for corrective
adjustment in sleep time. In other works, authors attempted
to improve on-device predictions using online available solar
maps [38] and wind maps [39]. Other innovative approaches
consider the use of machine learning, more concretely rein-
forcement learning, to compute and adjust the energy avail-
ability predictions online [40]. The newer trend in predic-
tive algorithms is to take into account the utility of a task
when considering its execution. For example, PreAct [33]
takes advantage of prior knowledge on temporal utility of
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sensing data to decide on future energy usage, combined with
corrective actions based on measured SoC. A comparable
work is EmRep [41], which additionally considers low and
high energy-intake periods to decrease/increased workload or
reduce/prolong the duty cycle.

Next to energy management algorithms running on the edge,
as Hypnos and the previously described related work, we also
highlight fog- and cloud-based solutions. In [42], Wang et al.
follow a quality of service (QoS) approach to guarantee that a
service is provided by a minimal subset of networked nodes,
whereby a single node governs the nodes’ wake/sleep time
to achieve this goal. Taneja et al. [43] propose a framework
to reduce nodes’ uptime in non-trivial network topologies
where gateways (GW) and servers can aggregate messages
and predict future requests’ outcomes to reduce node and
GW wakeups. Vo [44] proposes a reactive algorithm which
runs on an IoT gateway to decide the sleep time of nodes
directly dependent on it. This approach takes into account
information quality and history, along with remaining battery
capacity to decide on sleep time. As Hypnos runs on the edge
and is agnostic in the way it interacts with other layers, it may
integrate with such solutions. We cover this in the discussion
(Section V-D).

With respect to the hardware, as circuitry that keeps track
of the system’s SoC, Hypnos uses a widely used interrupt-
based coulomb counter – Linear Technology’s LTC4150 [45]
– to report inbound and outbound charges. Next to coulomb
counters, other types of circuits are possible. For example,
SPOT [46], iCount [47] and Nemo [48] are current-based
energy meter modules that allow to poll energy consumption
measurements. However, such solutions don’t differentiate
inbound from outbound current, so two meter modules would
be required to distinguish power consumption and recharge
in energy harvesting nodes. In this article, we do not further
investigate the accuracy or energy efficiency of different
circuitry.

With respect to Hypnos as an integrated hardware and
software solution, to the best of our knowledge, there is
only one recent comparable solution: ECO [49], an integrated
energy consumption solution for more sophisticated IoT nodes,
with more powerful processing capabilities, multi-threading
and thread-based energy measurement support. The authors
present a modular hardware design which can be integrated in
existing systems running RIOT OS, using the I2C bus to com-
municate with the main MCU, along with a software module to
facilitate the polling of energy usage originating from voltage
and current probes. The Hypnos toolkit is aligned with this
proposal, yet it targets the widespread small, low cost resource-
constrained IoT nodes, without multi-threading capabilities.
Hereby, it offloads the responsibility of continuously tracking
the SoC to a co-processor, allowing the more power-hungry
MCU to sleep more (whereas in ECO, the MCU is required
for multi-threading and energy measurements). Moreover, the
Hypnos software integrates the use of a power management
algorithm, on top of low level energy polling.

After presenting Hypnos (Section III) and empirically
demonstrating its validity in a real setting (Section IV), in
the discussion (Section V) we compare Hypnos with the com-

mensurable solutions presented here at hardware, software and
algorithmic level, and comment the integration possibilities –
see Section V-C and V-D respectively.

III. HYPNOS TOOLKIT

Designing and deploying reliable small, self-sustaining open
IoT nodes is a non-trivial task. In scenarios where such nodes
are deployed, hardware engineers have to properly size energy
storage (e.g. batteries) and energy harvesting (e.g. solar panels)
components, and software engineers face the tedious task of
utilizing their full potential according to the usage scenario.
Exceptional conditions, such as unexpected low energy intake
(e.g. environmental factors causing poorly performing energy
harvesting components) or other irregularities (e.g., energy loss
due to isolated hardware malfunctions), further complicate the
issue.

Until now, addressing those scenarios required ad hoc
solutions. On the hardware side, this implies modifying ex-
isting hardware with a component – if not yet present – to
monitor energy: current energy levels, energy recharge and
consumption rates. This, in turn, allows software developers
to continuously monitor the raw energy status, analyse the
results (over time), and devise an efficient energy usage
policy based on them. Hereby, the responsiveness of an IoT
node is in principle only limited by the clock speed of its
micro processor: current energy levels can be obtained at
the beginning of each iteration of its execution loop, and its
behaviour can be adjusted accordingly. In consequence, this
allows to increase the IoT node’s performance and output
in real time, by boosting activity cycles as the IoT node
approaches full energy availability, while improving reliability
at lower energy levels, by gradually reducing activity cycles
as power depletes.

This is exactly the goal of the Hypnos toolkit: to offer
an out-of-the-box hardware and software solution for fine-
grained energy management in small, self-sustainable open
IoT nodes, and hereby bring increased performance and re-
liability of such IoT nodes within reach of the assemblers and
firmware developers. Hypnos is made up of two components:
a hardware module (board), pluggable on any microcontroller
board supporting the de facto Arduino pinout standard, and
an accompanying software library, which provides API access
to the energy measurements provided through the hardware,
along with a configurable energy balancing function to provide
real-time energy management.

A. Hypnos hardware board

The function of the Hypnos hardware component is to
accurately measure the available amount of energy at the
beginning of each execution cycle iteration.

Contrary to their industrial counterparts, small open IoT
nodes are mainly powered by consumer microcontroller boards
from specialized manufacturing companies, i.e. Arduino,
Adafruit, SeeedStudio or Particle, to mention a few. Those
boards are usually not equipped with a mechanism to measure
the system’s available energy – as a general rule, its battery
charge status. For example, Arduino boards are power source
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agnostic. This means that they do not include a mechanism to
adequately recharge a battery connected to it (e.g. a battery
charger chip), nor a way to determine its charge status (e.g. a
fuel gauge chip).

If a built-in component is present, it often lacks sufficient
granularity to obtain the energy charge at every internal
iteration of the main execution loop. Examples of boards that
include mechanisms to obtain charge information, but lack
sufficient accuracy are MediaTek’s LinkIt One or Adafruit’s
Feather HUZZAH32 - ESP32 board. For example, MediaTek’s
board can only report 4 different charge levels1 (0%, 33%,
66% and 100%), and Adafruit’s board provides access to
three charging thresholds2, without direct access to the battery
charge level through the SDK’s API.

Only exceptionally, a microcontroller board has a built-
in battery charging and fuel gauge chip. Particle’s Electron
board provides an on-board Texas Intrument’s TI’s BQ24195
charging chip3 and the Max Integrated’s MAX170434 fuel
gauge chip, joint with a way to access the system’s battery
charge level through its SDK5.

The Hypnos hardware component is designed for those
systems lacking fine-grained access to energy levels, i.e. both
at quantitative (i.e., Hypnos provides milliampere hour (mAh)
level charge differences in ∼ 1/5 mAh steps) and temporal
level (i.e., Hypnos is only restricted by the clock speed of the
micro co-processor responsible for energy measurement).

1) Requirements: During its design the following require-
ments were taken into consideration:

• R1: energy availability needs to be reported with a
high level of granularity, as to allow detailed energy
management algorithms based on it.

• R2: a data communication protocol supported by the vast
majority of the boards available on the market has to be
used.

• R3: compatibility with existing hardware, to ensure a
seamless integration in new and existing systems, is
required.

To meet the first requirement (R1), from a hardware point
of view, a coulomb counter, which measures the accumulated
energy added or discharged from a battery, fulfills the basic
need. Moreover, given the battery’s capacity, the accumulated
energy count (over time) allows to accurately calculate the
remaining amount of milliampere hour (mAh) available in
the battery. Consequently, the coulomb counter is able to
continuously provide an accurate battery level, only limited by
the underlying clock speed of the microcontroller board. Based
on this, fine-grained energy management (software) strategies
can be built.

To meet the second requirement (R2) the Hypnos hardware
component employed I2C, a widely spread serial protocol

1http://labs.mediatek.com/api/linkit-one/LBatteryClass level.html
2https://learn.adafruit.com/adafruit-huzzah32-esp32-feather/

power-management#measuring-battery-2385442-8
3https://docs.particle.io/datasheets/electron/electron-datasheet/

#pmic-power-management-integrated-circuit-
4https://docs.particle.io/datasheets/electron/electron-datasheet/

#pmic-power-management-integrated-circuit-
5https://docs.particle.io/reference/device-os/firmware/electron/

#batterystate-

implemented in (nearly) every consumer board to connect
peripherals, to enable the communication between the coulumb
counter and the main microcontroller.

Finally, regarding the design of the hardware board, the
small amount of required components gave us ample freedom
in choosing an adequate form-factor. To ensure a plug &
play nature in as much microcontroller boards as possible,
we adapted the board’s pin-out and PCB format to the one of
Arduino UNO, one of the most widely adopted microcontroller
boards. Moreover, many different manufacturers have created
their products adhering to it (e.g Sparkfun6, SeeedStudio7) or
offer adapter boards to map their own pin-outs to the one
of Arduino (e.g. SeeedStudio8, Particle9). By doing this we
successfully fulfilled R3.

The resulting PCB design, following the Arduino UNO
shield form factor, can be seen in Fig. 1b. The PCB encloses all
the components of the Hypnos hardware board, to be detailed
next.

2) Hypnos hardware component design: Prior to define
the PCB design, we created the Hypnos hardware schematics
to depict how the different board circuit components work
together. We used a Linear Technology’s LTC4150 coulomb
counter, which senses the current passing through an external
sense resistor and raises an interruption (INT) when a certain
amount of charge has passed through the probe in either
direction: charging or discharging. There is a polarity pin
(POL) to differentiate both.

To accommodate both fine-grained energy readings and
accumulated charge counts over time, we paired the coulomb
counter with a separate microcontroller. Since this additional
microcontroller is powered up all the time, it should use
few energy. We therefore chose the ATtiny85 microcontroller,
configured to be powered at 3.3V and run at 1 MHz, which
consumes between 0.1 mA (while idle) and 1 mA (while
active)10.

To pack everything together, we started from the LTC4150
board design made by M. Grusing for Sparkfun [50]. The
original design has been modified as follows:

• The LTC4150’s interruption (INT) pin has been soldered
to the ATtiny85’s analog 2 (A2) pin, which has support
for hardware interrupts.

• The LTC4150’s polarity (POL) pin has been soldered to
the ATtiny85’s analog 3 (A3) pin, in order to recognise if
the detected charge – the one that raises an interruption
through the INT pin – corresponds to an inbound or an
outbound charge, to or from the battery, respectively.

• The INT and the clear (CLR) pins from the LTC4150 chip
have been soldered together and to the ground (GND).
This enables to automatically clear each interruption.
The result is a faster charge count detection with no
drawbacks, as the ATtiny never enters into sleep mode.

6https://www.sparkfun.com/products/15123
7https://www.seeedstudio.com/LinkIt-ONE-p-2017.html
8https://wiki.seeedstudio.com/Arduino Breakout for LinkIt Smart

7688 Duo/
9https://docs.particle.io/datasheets/accessories/legacy-accessories/

#shield-shield
10http://www.farnell.com/datasheets/1698186.pdf
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• ATtiny’s pins 6 (PWM) and 7 (A1) have been soldered
to the Voltage Common Collector (VCC) with two inter-
mediate 4.7k Ω resistors and configured as the SDA and
the SDL terminals of the I2C protocol respectively.

• All resistor values have been adjusted for the board to
work at 3.3V only – instead of 3.3v / 5v – in order to
reduce the board’s energy consumption to a minimum.

The resulting design can be seen in the form of an EAGLE
schematic in Fig. 1a.

The IoT node’s battery is connected to the connector tagged
as IN on the schematic, the battery charger and the rest of
the system components, i.e. the microcontroller board, the
attached sensors and actuators, is attached to either of the
connectors tagged as OUT. I2C headers from the ATtiny85
are in turn connected to the I2C bus of the IoT node’s main
microcontroller. Finally, the board has to be powered with
3.3V by the IoT node through its VCC pin.

Each time 0.1707 mAh are consumed or recharged, the
LTC4150 chip interrupts the ATtiny85, which in turn in-
crements or decrements (respectively) its internal in-memory
charge counter (an integer). The main microcontroller can ob-
tain the total charge count at anytime by requesting it through
the I2C bus at the 0x4 address. At the main microcontroller’s
end, the Hypnos library multiplies that value by 0,1707 to
obtain the total amount of charge that has been used/charged
and subtracts/adds it from/to the total battery capacity in order
to calculate the remaining battery charge. It is also possible to
divide the obtained value by the total capacity of the battery
to obtain the remaining battery percentage, which the Hypnos
library offers to the developer. The resolution of that value is
astonishingly high. For example, for a battery of 1000 mAh,
we obtain that the Hypnos board can report battery charge
changes of 0.0001707%, or 585823 different values (power
stages) in a range 0 to 1.

The schematics of the Hypnos board circuitry and the
firmware of the ATtiny85 microcontroller have been made
available in a public repository [51].

B. Hypnos software library

The modular nature of the Hypnos hardware board provides
an accurate mechanism to obtain the system’s battery charge
for those microcontroller boards that provide too course-
grained values, or lack this feature altogether. Instinctively,
the Hypnos software library provides programmatic access to
these values and makes it possible to dynamically adjust the
duty-cycle frequency in accordance to the available energy.

In essence, the Hypnos software library provides access to
the fine-grained, real-time energy level provided by Hypnos
hardware component plugged on the IoT node, and it provides
the means to control the wake/sleep time of the IoT node – a
widely spread way to save energy in IoT nodes [2]. The more
the IoT node sleeps the more its battery life is enlarged, yet at
the cost of decreased productivity (e.g. a reduced duty – often
sensing – rate).

As the scenarios in which IoT nodes are deployed widely
vary, so do the requirements for the adopted energy man-
agement strategy. Some require a minimum or maximum

amount of measurements per time unit, others favor a reliable
functioning over a longer period of time.

1) Requirements: In order for the Hypnos library to em-
power the firmware development with the necessary software
tools to define fine-grained energy management strategies, the
following requirements to develop the software library were
taken into account:

• R1: It has to offer a way to read raw energy values,
as well as energy availability as a percentage in terms of
remaining charge (mAh). This allows fine-grained energy
readings and, at the same time, a convenient abstraction
to handle available energy levels.

• R2: It has to allow to put the system in low energy
mode (sleep) for an arbitrary amount of time, whereby the
amount of sleep time is calculated in real time, based on
remaining energy level. This allows to regulate the duty
cycle frequency in function of energy availability, or in
other words, it provides an energy balancing mechanism.

• R3: It has to offer a way to customize the internal energy
balancing mechanism, in order to adapt it to the specific
requirements of each deployment.

• R4: It has to offer a preview on how long the IoT
node will sleep before going into low energy mode. This
ensures predictability and allows internal householding
(e.g., perform critical operations in case of a long fore-
seen sleep time).

In the next subsections, we indicate for each requirement
how it is fulfilled by the Hypnos software library.

2) Balancing energy availability and workload - the Sig-
moid function: As explained in Section II, existing energy
management strategies for small, low cost single-threaded
IoT nodes may consider various parameters as trade-off for
energy saving: sensing coverage, data transmission, data loss
or sensing rate. In the latter category, in lack of hardware
support for energy measuring and/or software support for more
sophisticated energy management strategies, existing systems
often resort to discontinuous sleep-regulation functions, re-
ducing battery stages to a few concrete states (i.e., disaster
management strategies), or fixed sensing rate strategies, both
of which are vulnerable to energy depletion under averse con-
ditions. Nevertheless, with quasi continuous energy readings
available through the Hypnos hardware component (i.e. at the
rate of the microcontroller’s clock speed), the duty-cycling
frequency of an IoT node can be regulated at a much finer
level of detail, using a continuous function.

The Hypnos software library provides a built-in (modified)
sigmoid function for this purpose, which can be customised, or
replaced with the developers’ custom function fitting their par-
ticular scenario. Hereby, we partially fulfill requirements R2
and R3. The modified sigmoid function was chosen for several
reasons: 1/ the typical non-linear S-shape of the function suits
our needs perfectly, resulting in a smooth approximation to
minimal and maximum sleep time at both ends, and a smooth
transition regulating in-between states; 2/ the function lends
itself very well to produce values between 0 and 1, which can
be straightforwardly used as a percentage of the maximum
allowed sleep time; 3/ the function can be used as-is (with
default parameters), yet is easily customizable, modifying
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Fig. 1: Hypnos board EAGLE schemes (following Arduino Shield form factor).

it’s slope inclination and displacement. These respectively
represent the rate of increase in sleep time and the delay
before sleep time is gradually increased. This allows to operate
steadily at fixed time intervals, until the battery level falls
below a user-defined threshold (displacement) and smoothly
transition to lower operational frequency according to a certain
rate (slope inclination). Depending on these customizations, a
conservative or aggressive energy management strategy can be
implemented, as required by the scenario at hand.

The resulting function (1), whose input and output variables
and parameters are detailed in Table I, is an inverted sigmoid
function, parameterizable in terms of slope inclination and
slope start displacement, with centering and scaling of the
remaining battery value. The inversion ensures mapping of
lower battery values to higher sleep time intervals. Next, the
domain of the sigmoid function at which it fully covers the
0-1 range with 2 decimal point precision (i.e., by default
approximately -6 to 6), is projected to a -0.5 to 0.5 interval.
Then, we decentre the function (i.e. the output value) from the
-0.5 to 0.5 domain (i.e. by default around the Y axis) to the 0
to 1 domain, to map it to the percentage of remaining energy
(i.e. battery level). Finally, the resulting value has been scaled
up by 10 for convenience when adjusting the slope inclination
parameter.

w =
1

1 + d · es·(rb−0.5)·10 (1)

The modified sigmoid function, used as built-in energy man-
agement function in the Hypnos software library.

The visual representation of the modified sigmoid function
using the default configuration values (i.e., displacement 20;
slope inclination 1.5 – see Table I) can be seen in Fig. 2 (red
function).

The default slope displacement (20) and slope inclination
(1.5) parameters are rather conservative, which lead to start
steadily (i.e. due to slope inclination) increasing sleep times
once the system’s battery goes bellow approx 70% (i.e. due to

TABLE I: Hypnos’ custom sigmoid function parameters

Symbol Meaning Type Description

rb Remain-
ing
battery

Input Represents the remaining battery percent-
age of the IoT node. It ranges from 0
(empty) to 1 (full).

d Displace-
ment

Para-
meter

A fixed value that allows to displace the
start of the sigmoid slope in the x-axis.
The higher the value, the further the slope
is away from the 100% battery mark, and
thus the longer the IoT node will work
at the highest frequency (i.e., lowest sleep
time) at maximum energy usage. To keep
the properties of the original function, this
value should always be a positive number
([0 < d ≤ ∞]). In Hypnos, the displace-
ment value is by default set to 20, but it can
be overridden via the developer’s API.

s Slope
inclina-
tion

Para-
meter

It allows to increase or decrease the in-
clination of the sigmoid’s slope. The in-
clination ratio must never go bellow 1
([1 ≤ s ≤ ∞]) and must be re-adjusted
each time the displacement is changed, to
keep the properties of the sigmoid function.
The higher the value, the steeper the slope
inclination, and the more rapidly sleep time
will increase once entering the slope. In
Hypnos, the slope inclination is by default
set to 1.5, but it can be overridden via the
developer’s API.

w Weight Output Is the resulting adjustment – from 0 (full en-
ergy available) to 1 (energy fully depleted)
– with respect to the specified minimum and
maximum sleep time values. It represents
the sleep time, expressed as a percentage
of the permitted sleep time range.

displacement) - red function in Fig. 2. As previously stated,
this can be configured by the developer to adhere to a wide
variety of specific use cases, and the built-in function can be
completely replaced by a custom one if required.

As a matter of example, a displacement value of 2 (instead
of 20) would start increasing sleep times sooner, i.e. starting
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Fig. 2: A comparison of different parameter configurations of
the built-in sigmoid function. In red, Hypnos’ default sigmoid
function (displacement d = 20; slope inclination s = 1.5). In
blue, Hypnos’ sigmoid function with smaller displacement
value (displacement d = 2). In orange, Hypnos’ sigmoid
function with higher slope inclination (displacement d = 20;
slope inclination s = 2).

below approx. 95% (blue function in Fig. 2), whereas a value
of 400 would delay increasing sleep times, i.e. starting from
below 50% (not shown in Fig. 2). On the other hand, a slope
inclination value of 2 (instead of 1.5) would increase the rate
at which sleep time is increased (i.e. make the slope steeper)
- (orange function in Fig. 2).

Note that slope displacement and inclination parameters
are related: significantly increasing the displacement requires
increasing the slope as well in order to properly fit within the
0-1 domain.

3) Implementation of the Hypnos software library: As a
practical implementation, the Hypnos software library was
written in C++, compatible with the node’s main microcon-
troller firmware. It uses the Wire library – available in a wide
variety of platforms, e.g. Arduino11, Mediatek Labs’ SDK
(LinkIt One)12 and Particle’s Device OS13 – to communicate
with the Hypnos board through the I2C protocol in order to
obtain the current charge counter of the system’s battery. Fig. 3
schematically depicts the connection between the Hypnos
software and hardware component.

In order to fulfill the requirements for the software library
(see Section III-B1), the Hypnos library presents a succinct yet
powerful API, enclosed in Hypnos’ main C++ class. Table II
describes its constructor and all its methods.

To illustrate the simplicity of usage of the Hypnos library,
Listing 1 includes a sample code snippet where the basic usage
of the Hypnos library is demonstrated.

1 #include <Hypnos.h>

11https://www.arduino.cc/en/reference/wire
12http://labs.mediatek.com/api/linkit-one/Wire.html
13https://docs.particle.io/reference/device-os/firmware/electron/#wire-i2c-
14https://www.arduino.cc/en/Reference/LowPowerSleep
15https://docs.particle.io/reference/device-os/firmware/photon/

#sleep-sleep-
16https://www.arduino.cc/reference/en/language/functions/time/delay/

IoT node Hypnos Board

Microcontroller Coprocessor

Coulomb
Counter

Battery

Hypnos Library

I2C Protocol

Battery Charger

Fig. 3: Conceptual diagram of a Hypnos-powered IoT node

2 #define BATTERY_MAH 1050 // Must be changed in
accordance to battery specifications

3 Hypnos hypnos(BATTERY_MAH);
4

5 void setup() {
6 Serial.begin(9600); // set data rate per second

for serial data transmission
7 hypnos.setMinDelayMillis(5*60*1000); // 1 minute

by default
8 hypnos.setMaxDelayMillis(5*3600*1000); // 12

hours by default
9 hypnos.setDelayFunction(&delay); // Using

Arduino’s delay function as an example
10 hypnos.init(); // Library must be initialized

after configuration
11 }
12

13 void loop() {
14 Serial.print("Remaining mAh: ");
15 Serial.print(hypnos.getRemainingCapacity());
16 Serial.print(", Remaining %: ");
17 Serial.print(hypnos.getRemainingPercentage() *

100.0); // From 0 to 1
18 Serial.print(", Sleep time: ");
19 Serial.println(hypnos.previewSleepTime()); // In

milliseconds
20 hypnos.sleep(); // Puts the IoT node to sleep

according to sigmoid function calculation
21 }

Listing 1: Hypnos library basic usage sample in an Arduino-
like system

For high projected sleep values, the Hypnos library im-
plements an optimization so it can react to sudden energy
availability during long sleep times. For those occasions, a
threshold sleep value is calculated, which lies at 10% of the
range between the minimum and maximum sleep values. If the
Hypnos board subsequently goes to sleep for a value higher
than two times this value, the threshold value is iteratively
used until arriving to the originally projected sleep value (the
last iteration is shortened to achieve the original sleep value).
At waking up after each of these intermediate iterations, the
IoT node does one of two things (by calling the init method),
depending on the battery level: 1/ in case of further battery
discharge (i.e., the expected situation), immediately put the
system back to sleep for a next iteration; 2/ in case of sufficient
battery recharge, perform a full iteration of the duty-cycle, and
re-calculate the sleep time.

In the best scenario, i.e. when some extra energy gets
acquired, the node will sleep for just a small fraction of the
calculated (long) sleep time, whereas in the worst scenario,
i.e. environmental conditions prevent the node to harvest
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TABLE II: The Hypnos library API

Method name Parameters (Type) Return
type

Description

Hypnos batteryMAh (integer),
*sleepData (SleepData,
optional)

Hypnos The Hypnos library instance constructor. Creates a Hypnos library object with the total
battery capacity passed as a parameter. Enables access to the rest of the API methods and
allows read-only access to the battery capacity. Optionally, a reference to a persistent
sleep data object can be passed, in case of recovering from a crash.

init None void Meant to be called once, at the microcontroller’s setup / initialization step. Establishes
the connection with the Hypnos board via the I2C protocol and puts the device to sleep
immediately if it has been woken up in a long sleep period while the device’s battery
continues to discharge.

sleep None void The method to be called at the end of every duty-cycle iteration. It uses the included
previewSleepTime method to obtain the duration the system is going to sleep and invokes
the sleep function passing the obtained duration as a parameter. Its usage and signature
are similar to other methods with a similar purpose, found in many microcontroller’s
SDKs (see 14 and 15), thus reducing the learning curve of the library and partially
fulfilling requirement R2. The other half is fulfilled by the previewSleepTime and the
setDelayFunction methods.

setDelayFunction *delayFunction
(integer→ void)

void Must be called before calling the sleep method. Allows the developer to specify the
underlying (microcontroller board specific) function to be called by the sleep method,
in order to put the device to sleep. Usually, the function to be passed by parameter is a
hardware specific microcontroller SDK function, such as Arduino’s LowPower.sleep()14,
Particle’s System.sleep()15 or the simpler Arduino’s delay() function16, or any custom
function. The function receives the amount of milliseconds to sleep as a parameter
each time the sleep method is called. By including this method the library’s API aids
to fulfill requirement R2.

setMinDelayMillis minDelayMillis
(integer)

void Allows to override the default minimum sleep time value (60000 ms, i.e. 1 minute).
By including this method, the API partially fulfills requirement R3. The other half is
fulfilled by the setMaxDelayMillis, setSlope and setDisplacement methods.

setMaxDelayMillis maxDelayMillis
(integer)

void Allows to override the default maximum sleep time value (43200000 ms, i.e. 12 hours),
thus partially fulfilling requirement R3.

setSlope slope (float) void Allows to modify the steepness ratio of the built-in modified sigmoid function used by
the previewSleepTime method – and in turn, by the sleep method. See Section III-B2
for a detailed explanation. The default ratio is 1.5. Allowing to customize the slope
inclination of the modified sigmoid partially fulfills requirement R3.

setDisplacement displacement (float) void Allows to displace the start of the built-in sigmoid function slope used by the
previewSleepTime method – and in turn, by the sleep method. The default displacement
is 20 units, applied on the X axis. See Section III-B2 for a detailed explanation.
This method, jointly with setMinDelayMillis, setMaxDelayMillis and setSlope methods,
successfully fulfill requirement R3.

previewSleepTime None integer Allows to query the amount of time that the system is going to sleep, by evaluating
the built-in custom sigmoid function, using the current remaining battery percentage
– reported by the getRemainingPercentage method. This method, in conjunction with
the sleep and setDelayFunction methods, successfully fulfill the R2. In addition, the
present method by itself fulfills the R4.

getRemainingCapacity None float Allows to read the remaining system’s battery capacity (in mAh), on demand. It does
so by asking the Hypnos board for the accumulated value of LTC4150’s charge ticks
that have been consumed, then multiplying them by 0.1707 (i.e. the amount of mAh
that each tick represents) and deducting the resulting amount from the total battery
capacity. This API’s method partially fulfills requirement R1.

getRemainingPercentage None float Allows to read the remaining system’s battery percentage on demand, in a continuous
float value ranging from 0 to 1. It does so by calling the getRemainingCapacity
method to obtain the remaining battery charge, then dividing the returned value by
the total capacity of the IoT node battery. This method in conjunction with the
getRemainingCapacity method, successfully fulfill requirement R1.
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more energy, the node will marginally loose energy (due
to performing the lightweight intermediate iterations) while
sleeping as foreseen and perform the planned operation cycle.

The Hypnos’ library code has been open sourced and
granted with a permissive license [52]. This allows firmware
developers to use and adapt it to their needs. The code has
been structured to seamlessly allow its modification to support
new microcontroller boards, replace the connection with the
Hypnos board or, in cases it does not fit the specific use case’s
needs, replace the built-in sigmoid function with a custom
function.

C. Integration scenarios

To integrate the Hypnos toolkit in existing microcontroller
systems, we envision three different integration scenarios:

• The main microcontroller board is directly supported.
While designing and developing the Hypnos toolkit, the
first prototype was tested in three different platforms:
Arduino UNO R3, MediaTek’s LinkIt One and Particle’s
Photon. For the latter, a Shield-Shield adapter is required
in order to map the Feather-like headers to the Arduino
pin-out. If the main microcontroller uses one of those
platforms, Hypnos works out-of-the-box.

• The main microcontroller board is compatible. In case
a microcontroller board has a compatible pinout (or per-
mits its remapping) and SDK library, the Hypnos toolkit
works out-of-the-box as well. This is not an uncommon
situation, as certain board manufacturers create their
hardware using a similar PCB to the popular and widely
used Arduino UNO (e.g. Sparkfun or Alorium17). Others
offer adapters to map their custom pinout to an Arduino
UNO compatible one. Moreover, the development APIs
of some of them follow the same interface18. As long
as those microcontrollers have a 3.3v output pin and the
I2C interface accessible from the two first analog pins
(A0 and A1), the Hypnos toolkit will be compatible.

• The main microcontroller board is not compatible.
In case the microcontroller board has a different pin-out
that cannot be remapped and/or its SDK uses a different
API, some additional work is needed to still integrate the
Hypnos toolkit. In case of an incompatible pin-out, an
adapter needs to be designed and assembled, taking into
account that the Hypnos board requires a 3.3V power
source and a I2C header to enable data communication
between the boards. Hypnos’ board original design can
also be altered to adjust it to the target system’s needs.
In case the integration friction originates from an in-
compatible software API, it needs to be mapped on the
Hypnos software library. For example, if the SDK lacks
the Wire library, the source code of the software library
needs to be modified in order to integrate a different
I2C communication interface. In any case, given the
simplicity of interaction of the Hypnos board with the
main microcontroller’s board, an integration solution is
likely to be possible.

17https://www.aloriumtech.com/arduino-compatible/
18https://www.sparkfun.com/products/13975

IV. HYPNOS EVALUATION

The main goal the Hypnos toolkit is to offer a seamless
energy management solution, which allows to improve per-
formance and reliability of small, low-cost, self-sustainable
open IoT nodes. In order to evaluate Hypnos, we set up an
experiment, whereby two identical IoT nodes ran over a large
time period in a real-world setting, one running Hypnos for
energy management and the other without it. Theoretically,
we expect to see the node running Hypnos to show a more
stable battery consumption, ideally reaching a balance between
energy recharge and consumption, and (ideally) never running
out of battery, regardless of environmental conditions.

In summary, the main goals of the experiment are as
follows:

• O1: To detect any reliability differences, in terms of
continuous up-time and more stable energy consumption,
between the two systems in a real-world setting.

• O2: To compare the performance, in terms of number of
completed duty cycles, of the two systems.

These goals need to be studied in conjunction, as indeed
we are seeking a balance between energy consumption and
performance, while increasing reliability.

A. Setup

To perform the evaluation, two identical IoT nodes were
deployed in identical conditions. Both devices use an assem-
bled Hypnos board (see Fig. 4) to collect the remaining battery
level. In order to exclude external factors to influence results,
the nodes’ complexity was reduced to a minimum, and only
implemented a single task to perform: collect atmospheric
temperature and send it to a central server. To do so, both
IoT nodes used a standard temperature sensor plugged onto the
microcontroller board and an on-board WiFi module connected
to the Internet through a nearby WiFi Access Point (∼ 3
meters away, with a double partition wall in between). For
diagnostics purposes, along with the atmospheric temperature,
battery level and sleep value were sent over WiFi to a
university server during each duty cycle. Both IoT nodes were
powered by a 3.7V Lithium Ion battery, which was charged
by a 3W solar panel. A fully assembled node can be seen in
Fig. 5, and the detailed bill of materials is shown in Table III.

Software-wise, only one of the two IoT nodes employed
the Hypnos library to dynamically regulate sleep time. The
other node employed a fixed sleep duration of 5 minutes
after each duty-cycle iteration, a common and straightforward
implementation in real-world applications in lack of more
sophisticated out-of-the-box solutions.

The IoT node running the Hypnos sleep functionality was
configured with a minimum sleep delay of 20 seconds, a
maximum delay of 12 hours, a slope inclination of 1.5 and
a displacement of 5.5. We hereby deliberately reduced the
minimum sleep time (from the default 60 to 20 seconds) to
stress the battery, and we also reduced the displacement (from
20 to 5.5) to allow the Hypnos energy balancing to kick in
sooner (i.e. more conservative strategy). Fig. 6 shows how the
balancing function is expected to behave during the experiment
based on the previously detailed configuration. Given the
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TABLE III: Bill of materials for the IoT sensing node assem-
bled for the experiment

Component Description

Particle Photon An ARM Cortex M3 powered microcontroller
manufactured by Particle served as the IoT
node’s microcontroller. It possesses an on-
board WiFi chip which allows direct con-
nection to Internet. The IoT nodes run the
DeviceOS v0.6.0 system firmware.

Particle Shield-Shield
adapter

Was used to map Photon’s Feather pin-out to
the the Arduino UNO pin-out.

SeeedStudio’s Solar
Charger Shield v2.2

An energy harvester enclosed in an Arduino
Shield form factor, directly placed on top of
the Shield-Shield adapter and the Photon. Fea-
tures a built-in maximum power point tracker
(MPPT) algorithm to maximize the efficiency
of the solar panel. Outputs up to 600mAh@5V
to power the system and recharge a Lithium
battery.

3W Solar Panel The sole energy entry point of the system. Its
constrained dimensions (138x160 mm) allow
to keep the IoT node reduced in size. It has an
energy transformation efficiency of 17%.

3.7V Lithium Ion Bat-
tery

The main power storage of the system. It has
a capacity of 2200 mAh, enough to power the
system for several consecutive cloudy days.

Hypnos Board Proto-
type

Features the Arduino Shield form-factor and
is placed on top of the energy harvester board,
wired in the middle of the battery and the rest
of the system, including the battery charger.

SeeedStudio’s Base
Shield V2

Is stacked on top of the Hypnos board and
offers 16 Grove ports through the Arduino pin-
out. Allows to seamlessly attach a plethora of
sensors and actuators.

Grove DHT22 Tem-
perature & Humidity
Sensor

A high accuracy temperature and humidity
sensor. Presents a Grove interface enclosing a
I2C data communication header.

200x200x100mm
Plastic Case

A transparent case to protect the electronic
components from water and dust, while at the
same time allowing sunlight to pass through.

displacement value of 5.5, the sigmoid function starts to slowly
rise below 80% available battery level, increasing sleep time
to reach 30 minutes when battery level reaches 60% (see
green box in Fig. 6). From 60% downwards, according to
the slope inclination of 1.5, the sleep time rises rapidly to
two hours (50%) (see orange box in Fig. 6) and above (red
box in Fig. 6). This implements a conservative scenario, in
which we consider a frequency of over 30 minutes undesirable,
yet building in robustness by setting 30 minutes sleep time at
60% battery level. Our aim is thus to start energy balancing
around 80%, and allow 60% of battery to compensate for
unfavorable conditions (while accepting rapidly increasing
penalties between 60% and 20%). The chosen built-in function
used to put both devices to sleep was Particle’s DeviceOS
System.sleep() method in deep sleep mode, using retained
variables to keep the Hypnos state while sleeping, i.e. the
SleepData struct.

At the server side, the server was running a RabbitMQ
broker (v3.7.3) with the MQTT plugin, used to define an
entry point for the nodes to deliver their readings. The server

Fig. 4: A Hypnos board prototype assembled for the experi-
ment

Fig. 5: A fully assembled experiment’s IoT node

was also running one instance of Apache Flume (v1.7.0),
configured to read from an AMQP source – the RabbitMQ
topic receiving the data from the IoT nodes – and write the
readings to a MongoDB (v3.6) collection hosted on the same
server.

The experiment started on the 30th of April and ended
on the 11th of July, running for 71 days. Both nodes ran
under identical climatic conditions: they were located out-
doors – placed next to each other – in the city of Castellón
(Spain), with their solar panels east oriented and tilted at
∼ 30◦. Throughout the duration of the experiment, both
nodes received an average of 7 hours of sunlight, with direct
incidence during 4 consecutive hours, from approx. 6h30 am
to 10h30 am (due to partial coverage by a roof and complete
occlusion by a west-placed wall). Cloud conditions further
determined the variance in daily solar irradiance. The weather
was mostly clear, with notable episodes of cloudy days and
sporadic heavy rains (2 or more days of consecutive rains). No
exceptional environmental or climatic events occurred during
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Fig. 6: Experiment’s customized balancing function. Repre-
sents the amount of hours (h) that the node sleeps depending
on its remaining battery level. The three boxes (green, orange,
red) show high, medium and low duty cycling frequencies
respectively.

the experiment which could interfere with the solar panel’s
intake (e.g., solar eclipse, volcanic eruption), nor was there
any human interference with the devices. Figures 7a and 7b
show how both IoT nodes were deployed.

The gathered battery, sleep and temperature data collected
from the two IoT nodes were extracted from the MongoDB
database via a Python script and converted to a more man-
ageable CSV data format. Solar irradiance data, taken from
NASA’s POWER dataset [53], for the time span and location
of the experiment deployment, were used to complement the
IoT measurements in our experiment. Particularly, we used the
“All Sky Surface Longwave Downward Irradiance” dataset,
which reports solar irradiance (in watts per square meter,
W/m2) taking into account environmental conditions such as
cloudiness. The irradiance values for the whole period have
been normalized to represent them as percentage of irrandiance
(min: 0 W/m2; max: 980.88 W/m2).

B. Results

Before processing the results, a data tidying procedure was
performed on the obtained dataset. In particular, for the IoT
node not running Hypnos, misaligned battery power values
were reported each time the device came back online after an
unexpectedly shut down due to lack of power. In those cases,
the previous battery power value was not updated as the duty
cycle did not complete (note that they were correctly updated
in the next cycle). In the tidying procedure, these values were
set to 0%. This was not a problem in the Hypnos library and
furthermore did not influence the experiment. Experiment data
and its subsequent analysis have been made available in an
online repository [54].

The resulting dataset, summarized using common descrip-
tive statistic values in Table IV, was stored as a CSV file for
analysis.

From the device with Hypnos, 34182 battery values were
collected over 71 days, after which it was manually shut down.

The mean of the battery power values was 81.67%, with a
standard deviation of 7.32%. The minimum recorded battery
value was 45%, whereas the maximum was 100%. The 50%
percentile for battery power was 83%, whereas the Q1 and Q3
values were 77% and 87% respectively.

On the other hand, from the IoT node running without
Hypnos, we first need to state that the device depleted its
battery after 33 days (after a stretch of low-sun days), and after
various failed attempts to boot up again over time, became
unresponsive. During those 33 days, 7751 battery values were
collected. The mean of the battery power values was 54.05%,
significantly lower. The standard deviation shows a noticeable
difference too, with a value of 34.79%. The minimum recorded
value was of -5%, meaning that the battery (which had slightly
more capacity than announced by the manufacturer) was
depleted, whereas the maximum value remained identical at
100%. The Q1, Q2 and Q3 values fell in the 16%, 59%, 87%
respectively, thus showing a wider dispersion in the recorded
values in comparison with the data recorded from the IoT node
running Hypnos.

In order to analyze the reliability differences between the
two IoT nodes in more detail (O1), the extracted battery values
are represented as a scatter plot (see Fig. 8), with a different
series for each device, i.e. in blue for the device running with
Hypnos sleep mechanism, and in red for the device running
without it. A trend line has been added to each series to
clearly see the tendency of the two series. The remaining
battery values of the device running without Hypnos show
a clear trend towards 0 (% of remaining battery), whereas the
same trend in the values of the device running with Hypnos
follow a practically straight line around the 83% value. In
addition, a series with the average daily percentage of solar
irradiance, represented as a bar chart, was added. We observe
that the battery of the device without Hypnos is unable to
recover from the first consecutive series of days with low sun
irradiance (i.e. cloudy/rainy conditions on 10 - 12 May), and
subsequently continues to deteriorate to finally stop on the 3rd
of June, during two consecutive low sun irradiance days. On
the contrary, the Hypnos board’s battery value closely follows
the sun irradiance pattern, due to Hypnos’ energy management
solution.

This latter aspect can be more clearly observed in the
distribution plot shown in the Fig. 9. Here, the battery power
values recorded from the device running without Hypnos do
not follow a clear trend, only showing two probability peaks on
the lower and higher battery values, along with a testimonial
presence in the middle values. However, the values recorded
from the device running with Hypnos follow a clear trend
around the 83% of remaining battery, with values ranging
from the 60% to the 100% and a higher prevalence in the
80% to 90% range. Note that these concrete values correspond
with the displacement configuration parameter set for the
experiment (see Section IV-A); a higher displacement value,
denoting a more risky strategy, would aim to balance battery
level around a lower percentage. We can hereby conclude that,
with respect to up-time and energy balancing, the Hypnos IoT
node is stable and reliable, more so than the node without
Hypnos.

Authorized licensed use limited to: Univ jaume I. Downloaded on March 14,2022 at 15:11:51 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3145338, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX XXXX 12

(a) (b)

Fig. 7: The two experiment’s nodes deployed on a real-world setting

TABLE IV: Descriptive statistics of the readings acquired during the experiment

Device Reading type
Reading value

Count Mean S.D. Min Q1 Q2 Q3 Max

Device w\Hypnos Battery 34182 81.67% 7.32% 45% 77% 83% 87% 100%

Sleep 34182 2 min &
31s

3 min &
56s

25s 50s 1 min &
20s

2 min &
40s

195 min &
16s

Temperature 34182 30.20 ◦C 4.75 ◦C 15.13 ◦C 27 ◦C 30.76 ◦C 34.53 ◦C 37.49 ◦C

Device w\o Hypnos Battery 7751 54.05% 34.79% -5% 16% 59% 87% 100%

Sleep 7751 5 min 0 min 5 min 5 min 5 min 5 min 5 min

Temperature 7751 25.8 ◦C 5.83 ◦C 14.22 ◦C 20.83 ◦C 25.17 ◦C 29.8 ◦C 37.3 ◦C

Fig. 8: The recorded battery power values of the two sensing
nodes, along with the average daily solar irradiance percentage

An important aspect to offset against the up-time and energy
consumption is the time spent sleeping, or in other words, the
duty-cycle rate. Fig. 10 shows the collected sleep values as a
line chart. Additionally, the average daily percentage of solar
irradiance is added as a separate series (bar chart).

Evidently, the sleep value of the device running without
Hypnos remains stable around the 5-minute mark. In contrast,
the sleep values of the device running with Hypnos show

Fig. 9: The battery distribution of the recorded battery values
of the two IoT nodes throughout the experiment

a higher variability, with values ranging from 24 seconds
to 3 hours and 15 minutes. Large sleep time spikes visibly
correspond with lower solar irradiance (i.e. heavy rain periods
and consequent lack of sunlight), whereby the first such spike
was responsible for completely depleting the battery from the
node without Hypnos due to the lack of sunlight (day 33).

Despite the spikes in sleep time for the IoT node with
Hypnos, where the Hypnos algorithm gradually compensated
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Fig. 10: The sleep times of the two IoT nodes, along with the
average daily solar irradiance percentage

for periods of insufficient energy harvesting, the overall fre-
quency of duty cycles is higher. The device running with
Hypnos slept 2 minutes and 30 seconds on average, with
a standard deviation of 3 minutes and 56 seconds, and Q1,
Q2 and Q3 values falling in 0.83, 1.33 and 2.66 minutes
respectively (see Table 8), which means that the device running
with Hypnos stayed more active, on average, than the device
running without it.

This leads us to compare the two systems in terms of
performance, i.e. performed duty cycles (O2). To achieve this
goal, the number of collected temperature readings (one per
duty cycle) were aggregated by experiment day, and plotted
in a bar chart, see Fig. 11. As a separate series, we also add
the average raw solar irradiance value in W/m2.

Fig. 11: The number of daily collected observations by the
two devices, along with the average daily solar irradiance

Further analysis of this data shows that the device running
without Hypnos reported a daily mean of 221 observations,
with a standard deviation of 75, a minimum value of 1 and
a maximum value of 268. Q1, Q2 and Q3 values fall in 181,
267 and 267 values respectively, meaning that the node has
performed an operation every 5 minutes and 23 seconds at
least 50% of the days, more or less as expected. Note that at
day 33, the node stopped functioning with a depleted battery.

In contrast, for the device running with Hypnos, we visibly
notice a clear correlation between the amount of daily col-
lected data and the solar irradiance. As a result, the Hypnos
node reported more than two times the daily mean of records,
with 468 records, a standard deviation of 169, a minimum
value of 33 and a maximum value of 950 reported measure-
ments during the first full day. Q1, Q2 and Q3 values fall in
368, 505 and 590 respectively, meaning that a least 75% of the
days the device running with Hypnos has reported more values
than the maximum amount reported by the device running
without Hypnos. At least 50% of the days, the node running
with Hypnos reported an observation every 2 minutes and 51
seconds. This clearly indicates an overall better performance
for the IoT node with Hypnos.

Finally, we analyse the distribution of the performed duty
cycles (collected amount of temperature measurements) per
hour of the day. In order to do so, the series of captured
observations from the Hypnos board was first reduced to
the same time interval as the non-Hypnos board (which
prematurely failed) for a more fair comparison.

The results were plotted as a comparative bar chart, which
can be seen in Fig. 12. In addition, the hourly average battery
level of the two IoT nodes is depicted in two separate series
in order to disclose the relation between performed duty
cycles and remaining battery. Furthermore, the average hourly
percentage of solar irradiance is also included as a separate
series.

Fig. 12: The hourly distribution of the measurements collected
by each device during the experiment, along with their average
battery level and solar irradiance percentage

From Fig. 12, we observe that for the node running with
Hypnos, (i) the amount of collected values is closely correlated
with the average solar irradiance (direct sunlight starting at
approx 6h30; shadow starting from approx 10h30 - see IV-A),
(ii) the amount of collected values is directly correlated with
the battery level. Indeed, the IoT nodes’ batteries start re-
charging at sunrise, which is reflected by an increase in
data collection frequency in the Hypnos node, and slowly
discharges once the direct sunlight window passed (approx.
10h30). The device running without it does not follow a
clear trend. Regarding the distribution of average duty cycles
per hour, we observe that during the day and some hours
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beyond daylight, the Hypnos IoT node produces vastly more
observations. Only from 1 to 7 in nighttime, the IoT node with-
out Hypnos slightly outperformed its counterpart in amount
of duty cycles. We hereby need to take into consideration
that the IoT node without Hypnos stopped reporting after
33 days, and the aforementioned average observations were
calculated over those 33 days. We furthermore note that the
node without Hypnos underperforms (w.r.t. the configured 5
minutes frequency) in nightly hours, as it suffers downtimes
due to lack of battery.

V. DISCUSSION AND SUMMARY

A. Experimental results

The results of the experiment show that the IoT node
running Hypnos is reliable and efficient, more so than the
IoT node not running Hypnos. The experiment implemented a
typical simple strategy deployed in practice (i.e. a fixed sleep
time – and sensing rate – of 5 minutes) versus a relatively
conservative version of Hypnos (i.e. aiming at maximizing
performance at an average ∼ 20% battery usage, i.e., ∼ 80%
remaining battery power).

The IoT node running Hypnos performed 2.25 times more
operations on average than the one without it, employing the
same hardware. Whilst the device running without Hypnos
depleted its battery shortly after a month of operation (33
days), the device running with Hypnos predominantly kept
its battery in a range of 60% to 100% (45% with bad
weather) during the whole experiment, as configured through
the modified sigmoid function. Nevertheless, during the night
hours (1am - 7am), when no energy intake from the solar
panels was available, the Hypnos node’s duty cycle rate slowed
down (due to the configured sigmoid slope displacement),
slightly below the IoT node without Hypnos, fixed to a 5-
minute rate. However, this came at the cost of depleting
battery and decommissioning of the node without Hypnos due
to overspending and insufficient energy intake under adverse
power harvesting conditions (i.e. a long series of cloudy days
jointly with a few consecutive raining days), while the Hypnos
IoT node showed itself resilient and was manually stopped at
the end of the experiment.

A more general observation is that both IoT nodes are highly
dependent on their configuration and conditions in the real-life
deployment. Each particular use case will determine how to
balance competing concerns, i.e., performance and reliability.
Some use cases require high frequency measurements gener-
ally aligned with energy harvesting (e.g. in city air quality
monitoring, with higher variability during the day), while
others require adapted strategies (e.g. meteorological sensors
that require a minimum amount of measurements even under
adverse conditions).

B. Toolkit features summary

Considering the Hypnos toolkit as a whole, we summarise
the features it offers. On the hardware side, the Hypnos board
is a reliable way to continuously obtain energy availability
information for the IoT node to operate. The use of well-
known standards, such as the I2C data communication protocol

and the Arduino UNO pin-out and its PCB form factor, enables
seamless hardware integration in a wide variety of small IoT
nodes. The library has been used seamlessly with Arduino,
Particle and LinkIt One microcontroller boards, yet due to its
open hardware and software nature, it’s possible for anyone to
customize it, adapt it to other platforms and assemble it [51].

On the software side, the Hypnos library provides a flexible,
more fine-grained alternative to existing energy management
protocols. Its familiar API, which uses common patterns
applied in many widely used microcontroller board’s SDKs,
smooths the learning curve for firmware developers to use it.
It comes with a built-in modified sigmoid energy-balancing
function which is in charge of regulating the duty-cycling
frequency of the IoT node in order to improve its up-time,
duty cycles and overall reliability, always having in mind
the system’s energy availability. As such, the software library
alleviates the burden for the developer to (manually) handle
energy management (i.e., wake and sleep times). The sigmoid
function can be customized to meet different usage scenarios’
needs, allowing for more conservative or aggressive strategies,
or be replaced by a custom function in case the offered degree
of customization is not sufficient for a specific use case [52].

C. Related work comparison

In Table V, we explicitly compare the features of com-
mensurable works introduced in Section II with Hypnos. We
exclude non general-purpose solutions and solutions which
cannot be executed on the edge.

From Table V, we observe that Hypnos is the only solution
which integrates hardware to measure energy availability,
software as unified API to access energy measurements and
govern duty cycling, and a built-in algorithmic solution for
energy management in small, low cost IoT nodes. Along
with ECO [33], it is the only solution whose code and
schematics are open-sourced and readily available for use, alter
or contribute. ECO, however, is aimed at more sophisticated
multi-threaded IoT nodes (and thus performs thread-based
energy management), doesn’t deploy a dedicated hardware
board microprocessor for energy measurements (preventing its
more power hungry MCU longer sleep intervals) and doesn’t
provide an out-of-the-box energy management algorithm. With
respect to the algorithmic solution, Hypnos implements a
reactive algorithm based on a continuous function (in contrast
with Joseph et al. [36]), allowing for fine-grained energy man-
agement. It’s hardware design based on energy measurements
at the clock-speed of the independent co-processor doesn’t
suffer from coarse-grained duty cycling (as in [35]). Hypnos’
energy management solution is furthermore not dependent on
other (scenario-specific) parameters (such as spatial coverage
in [34] or data variability in [30]); it only relies on energy
availability. Even though – given its open nature – such
parameters could be integrated in Hypnos’ energy management
function, out-of-the-box, Hypnos here trades generality for
case-specific optimizations.

19System’s SoC is automatically obtained by the Hypnos’ software without
needing the developer to explicitly obtain it.

20Default values are provided.
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TABLE V: Comparison of Hypnos with existing solutions

Solution Components Code
avail-
ability

Node
can
sleep

Sleep value
nature

Input requirements Config options Drawback

Vigorito
et al. [34]

Reactive
Algorithm

✗ ✓ Continuous Min. and max. duty frequency, battery
level

Variance Unpredictable
duty cycling

Joseph
et al. [36]

Reactive
Algorithm

✗ ✓ Discontinuous Harvested energy, queued packets, de-
livered packets, packets’ utility statistics

Energy, data and sleep
buffer sizes, buffer
slot timespan

Data loss

Le
et al. [35]

Reactive
Algorithm

✗ ✓ Continuous Max. and current capacitor capacity, ca-
pacitor voltage, max. sleep time

Proportional integral
derivative parameters

Coarse
duty cycling

Kulau
et al. [30]

Reactive
Algorithm

✗ ✓ Continuous Current sensed value, observed sensed
value history, max. wait time

Wait time exponent Battery drain
under prolonged
data variability

Kansal
et al. [37]

Predictive
Algorithm

✗ ✓ Discontinuous Min., max. and initial duty cycling fre-
quency, current available energy, energy
availability history

Harvested energy and
sleep buffer sizes,
buffer slot timespan

Non-optimal
duty cycling

Buchli
et al. [38]

Predictive
Algorithm

✗ ✗ N/A Solar panel location, orientation and in-
clination, average system energy con-
sumption, battery capacity, voltage and
max. current draw, harvested and con-
sumed energy

Average meteorologi-
cal conditions

Underperforming
in more favorable
conditions

Pro-
Energy-
VLT [39]

Predictive
Algorithm

✗ ✗ N/A Harvested energy history Number of time slots
per day, number of
days stored, observa-
tions considered for
predictions

Underperforming
in more favorable
conditions

SARSA [40] Predictive
Algorithm

✗ ✗ N/A Battery level, distance from neutral bat-
tery level, harvested energy, weather
forecast

Reinforcement model
convergence rate

Underperforming
in more favorable
conditions

PreAct [33] Predictive
Algorithm

✗ ✗ N/A Solar panel location and dimensions,
defined utility at specific times of day,
harvested energy, system energy con-
sumption, state of charge, ideal state
of charge, target state of charge, ideal
energy consumption, battery capacity

Number of time slots
per day

Unpredictable
duty cycling

EmRep [41] Predictive
Algorithm

✗ ✓ Continuous Solar panel location and dimensions,
defined utility at specific times of day,
harvested energy, solar panel efficiency,
capacitor state and specs (voltage, size,
leakage current)

Number of time slots
per day

Unpredictable
duty cycling

ECO [49] Hardware/
Software

✓ ✗ N/A – I2C bus mode Continuous
uptime

SPOT [46] Hardware/
Software

✗ ✓ N/A – – N/A

iCount [47] Hardware/
Software

✗ ✓ N/A – – N/A

Nemo [48] Hardware/
Software

✗ ✓ N/A – – N/A

Hypnos Hardware/
Software/
Reactive
Algorithm

✓ ✓ Continuous Battery capacity, node’s sleep function
reference 19

Min. and max. delay,
sigmoid function’s
displacement and
slope parameters20

Unpredictable
duty cycling
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With respect to predictive algorithms, Hypnos shares the
same trade offs with other reactive algorithms: easier setup
and configuration, less processing-intensive (e.g., statistical
analysis over historical data, machine learning and/or predic-
tive models) or dependent on external sources (e.g., solar or
wind maps/predictions), versus better adjustment to “normal”
(predicted) scenarios or under utility-variant conditions (i.e.
high sensing necessity independent of energy availability).
Indeed, under highly predicable (which sustainable energy
harvesting solutions typically are not) or utility-specific con-
ditions, predictive models may be better suited than purely
reactive systems.

Regarding Hypnos’ ease of setup, it only requires the capac-
ity of the system’s battery and the sleep function reference of
the underlying MCU. Hereby note that even though other so-
lutions do not require the latter, as they do not provide an out-
of-the-box energy management solution, instead they require
the sleep management system to be implemented. As other
systems that rely on dynamic duty cycling – and by extension,
reactive algorithms – one drawback is an unpredictable wake
time of the IoT node. While this is acceptable in many scenar-
ios, in some it is not (e.g., time-specific measurements, utility-
based measurements). In such cases, Hypnos’s extensibility
allows to integrate such scenario-specific constraints.

D. Integrability

Next we explore how Hypnos could integrate or be in-
tegrated in existing solutions at algorithmic, software and
hardware level. Given the Hypnos’ built-in sleep function is
interchangeable, any sleep regulation function that relies on
energy availability readings could replace Hypnos’ built-in
sleep regulation function. From the identified related work,
the algorithms proposed by [33]–[35], [40], [41] could thus
be implemented and used. For algorithms which do not rely
on energy intake/usage, such as [30] which only considers
the volatility of sensed data, integrating Hypnos’ sigmoid
function could add the additional dimension of achieving
a good balance between data quality and battery depletion
prevention.

At a software level, Hypnos could furthermore be integrated
with cloud and fog-based solutions, by using Hypnos at IoT
node (edge) level in harmony with a global, network-based
solution. For example, Hypnos could be used as a backup in
case the central (fog) actor calculating the sleep time of each
node becomes unavailable, as in [42], [44], or to calculate and
report sleep time locally at IoT network node level to report
it to the (closest) gateway as in [43].

At the hardware level, we provide a pluggable solution, yet
in case a coulomb counting chip is available in the microcon-
troller board (see Section III-C), it can replace the Hypnos
hardware board, only requiring to replace the reference to the
energy measurement function in the Hypnos software library.

E. Limitations

The presented work has some limitations, mainly in the
extent of the evaluation. The experiment only tested one spe-
cific setup, which aimed to demonstrate Hypnos’ functioning

and features, set off against a typical fixed rate alternative.
However, many configurations, both for the Hypnos and non-
Hypnos board, are possible and could be tested and compared.
Even though we only tested Hypnos with solar panels, alterna-
tive energy harvesting technologies (e.g., based on hydraulic or
eolic power) are possible, and we expect that – by design – the
Hypnos energy management strategy would be unaffected. Fi-
nally, while we explicitly reported on the relationship between
climatic conditions (cloud cover) and the experiment results,
and set up the experiment to exclude external factors by using
an identical setup, we acknowledge that the working of the
microcontroller boards may still be influenced by external
factors specific to each experiment (e.g., dust accumulation on
solar panels). A wider range of experiments, testing different
configurations according to different use cases (i.e., conser-
vative versus aggressive) comparing with other compatible
algorithms (see next subsection), under various conditions
(i.e., climatically-different environments or crowded areas) and
using different energy harvesting technologies, could provide
further insights in the robustness, efficiency and reliability of
Hypnos.

VI. CONCLUSION

In the Internet of Things’ ample subdomain of small,
stand-alone, self-sustaining single-threaded IoT nodes, energy
optimization strategies are essential to ensure their prolonged,
reliable functioning. In this article, we presented Hypnos,
an integrated hardware and software solution to balance
energy availability and consumption for such IoT nodes.
Hardware-wise, Hypnos offers a hardware board, pluggable
on any microcontroller board supporting the de facto Ar-
duino pinout standard, which delivers reliable, continuous
energy availability readings. Software-wise, Hypnos offers a
software library, which provides API access to the energy
measurements provided by the hardware board, along with a
built-in, configurable sigmoid-based energy balancing function
which regulates the IoT node’s duty cycle (sensing) rate, with
zero (default parameters) or low configuration (customizing
the Sigmoid function’s slope inclination and displacements –
respectively representing the rate of increase in sleep time and
the delay before sleep time is gradually increased). Hereby,
Hypnos ensures low effort, reliable, fine-grained energy man-
agement. Hypnos resides at the IoT computation layer, where
it operates at the level of an independent IoT node and is
agnostic of data transmission or application-specific parame-
ters. Nevertheless, Hypnos’ default sigmoid-based balancing
function can be customised, or replaced altogether, to include
support for domain- and application-specific scenarios. Being
agnostic from other IoT layers, Hypnos can thus integrate
or be integrated with other energy management solutions,
either by replacing its built-in sigmoid function with existing
energy balancing functions, or cooperate with fog/cloud-based
solutions at node level. Overall, Hypnos provides an inte-
grated, open hardware and software solution to continuously
collect and react upon energy availability, hereby improving
reliability, in terms of more stable energy consumption and
uptime, and performance, in terms of average amount of sensor
measurements.
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Hypnos was validated in a two month experiment in real-
word conditions. The experiment showed that the Hypnos
board was able to cope with unstable energy harvesting,
including adverse conditions (i.e., several cloudy/raining days,
preventing sufficient energy intake via solar panels), and
overall provides a reliable, efficient solution through energy-
aware variable rate sensing. Hypnos’s energy balancing func-
tion is furthermore customizable, allowing more aggressive
(trading increased sensing rate for a reduced buffer against
prolonged low energy availability) or conservative (trading a
faster decrease of sensing rate for an increased energy buffer
to promote prolonged reliability) energy-usage strategies, de-
pending on the sensing needs of the particular application.

REPRODUCIBILITY AND AVAILABILITY

Data collected during the experiment, data tidying pro-
cedures, analyses scripts and resulting figures are available
online in a public repository [54].

The Hypnos software library code and the schematics of its
hardware counterpart are available online with a permissive
license, thus allowing their reuse and modification [51], [52].
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