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Abstract: Taste perception is a primary driver of food choices; however, little is known about how
perception of all five tastes (sweet, salt, sour, bitter, umami) collectively inform dietary patterns. Our
aim was to examine the associations between a multivariable measure of taste perception—taste
perception profiles—and empirically derived dietary patterns. The cohort included 367 community-
dwelling adults (55–75 years; 55% female; BMI = 32.2 ± 3.6 kg/m2) with metabolic syndrome
from PREDIMED-Plus, Valencia. Six taste perception profiles were previously derived via data-
driven clustering (Low All, High Bitter, High Umami, Low Bitter and Umami, High All But Bit-
ter, High All But Umami); three dietary patterns were derived via principal component analysis
(% variance explained = 20.2). Cross-sectional associations between profiles and tertials of dietary
pattern adherence were examined by multinomial logistic regression. Overall, there were several
significant differences in dietary pattern adherence between profiles: the vegetables, fruits, and whole
grains pattern was significantly more common for the High All But Umami profile (OR range for
high vs. low adherence relative to other profiles (1.45–1.99; 95% CI minimum lower, maximum upper
bounds: 1.05, 2.74), the non-extra virgin olive oils, sweets, and refined grains pattern tended to be less
common for Low All or High Bitter profiles (OR range: 0.54–0.82), while the alcohol, salty foods, and
animal fats pattern tended to be less common for Low Bitter and Umami and more common for High
All But Bitter profiles (OR range: 0.55–0.75 and 1.11–1.81, respectively). In conclusion, among older
adults with metabolic syndrome, taste perception profiles were differentially associated with dietary
patterns, suggesting the benefit of integrating taste perception into personalized nutrition guidance.

Keywords: taste; taste perception; dietary patterns; sweet; salt; sour; bitter; umami; data-driven;
individual differences; personalized nutrition
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1. Introduction

Over the past few decades, efforts to promote healthy dietary patterns have had
limited impact [1]. Globally, suboptimal diet quality has become a leading risk factor for
cardiometabolic diseases [2] across age, sex, and socioeconomic groups [3]. From a public
health perspective, this has created a need for more effective dietary modification efforts
which can better promote health and reduce the burden of diet-related chronic diseases.

Traditionally, dietary modification efforts have primarily employed “one size fits all”
approaches through the dissemination of population-wide dietary guidelines [4]. Alterna-
tively, there has been mounting interest in using more personalized nutrition approaches,
which leverage information on individual characteristics to develop targeted advice which
may be more effective [5,6]. Support for this approach has been accumulating [7], specifi-
cally for guidance tailored to individuals’ responses to food [8], dietary habits [9], or genetic
traits [10]. Less studied, however, are the individual-level drivers of food choices which
may better promote long-term adherence to personalized diet advice [11].

Among the myriad factors driving food choices is taste perception—an individual’s
ability to perceive the five basic tastes: sweet, salt, sour, bitter, and umami. Evolutionarily,
perception of all five tastes was vital for mediating nutrient intakes and protecting against
noxious substances [12,13]. In the modern food environment, individual differences in taste
perception have been related to preferences for and intakes of various food groups. For
example, differences in bitter, sweet, or salt perception have been independently associated
with intakes of cruciferous vegetables [14–17], desserts and sugar-sweetened beverages
(SSBs) [18,19], red meat and olive oil [20], and alcoholic beverages [21]. However, the
dearth of evidence on the relations of sour and umami perceptions with food choices, and
the paucity of studies evaluating the simultaneous associations between perception of
multiple tastes and dietary intake, limit our ability to leverage these individual traits when
developing personalized nutrition guidance aimed at reducing chronic disease risk.

Consistent with the shift towards studying dietary patterns rather than single foods
or nutrients to capture the overall effects of diet on health outcomes [22,23], one approach
to better capture the relations between taste perception and diet may be to study “taste
perception profiles”, a multivariable measure of perception for all five tastes, rather than
considering each taste separately. Previously, we demonstrated that a data-driven clustering
approach could be used to derive valid and stable taste perception profiles from sweet,
salt, sour, bitter, and umami taste perception scores. Using this approach, we identified six
distinct taste perception profiles among a cohort of community-dwelling older adults with
metabolic syndrome [24]. A critical next step for this work is to evaluate dietary behaviors
among individuals with different taste perception profiles [25] to determine whether
individuals with similar taste perception profiles make similar food choices. Therefore, our
present aim was to explore the associations between taste perception profiles and habitual
dietary patterns. To accomplish this, we derived empirical dietary patterns from habitual
food group intakes and examined the associations between taste perception profiles and
adherence to these dietary patterns, using cross-sectional data from community-dwelling
older adults with metabolic syndrome.

2. Materials and Methods
2.1. Study Design and Participants

The present study was a site-specific project in the PREDIMED (PREvención con DIeta
Mediterránea)-Plus Valencia study. PREDIMED-Plus is an ongoing, multicenter, random-
ized controlled trial testing the effect of an energy-restricted Mediterranean diet coupled
with a physical activity intervention for the primary prevention of cardiovascular disease,
compared to a control group [26]. PREDIMED-Plus Valencia was one of the recruiting
centers and the only site conducting taste perception tests. Participants were recruited
to be high risk community-dwelling older women (60–75 years) and men (55–75 years)
residing in Spain, with elevated BMI (>27 and <40 kg/m2) and metabolic syndrome [26,27].
In total, 381 participants completed the taste perception tests at baseline [28], of whom,
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2 were excluded for implausible total energy intake determined based on prior studies
(>4000 kcal/day for women and >4500 kcal/day for men) [29] and 12 for incomplete data
for some taste perception tests, resulting in a sample size of 367 for this cross-sectional
analysis (see flow chart in Figure S1).

All participants provided written informed consent in accordance with ethical stan-
dards of the Declaration of Helsinki. PREDIMED-Plus study protocols were approved by
the Human Research Ethics Committee of Valencia University, and the current analysis by
the Tufts University Institutional Review Board.

2.2. Anthropometric and Biochemical Parameters

Anthropometric and biochemical parameters were measured by trained study staff
in accordance with PREDIMED-Plus operations protocols [26]. Weight and height were
measured using calibrated scales and a wall-mounted stadiometer, respectively. Waist
circumference was measured with anthropometric tape after normal exhalation. Blood pres-
sure was measured using a validated semiautomatic oscillometer (Omron HEM-705CP),
in triplicate, in a seated position after 5 min of rest. Fasting blood glucose and plasma
triglyceride and total, HDL, and LDL cholesterol (HDL-c and LDL-c, respectively) concen-
trations were measured using samples collected after a 12 h overnight fast, as previously
described [30].

2.3. Taste Perception Assessment

Taste perception was assessed by trained technicians in a standardized environment as
previously described, in detail [28]. Briefly, one representative tastant was used for each of
sweet, salt, sour, and umami (sucrose, NaCl, citric acid, and monopotassium L-glutamate
(MPG), respectively); two representative tastants were used for bitter (phenylthiocarbamide
(PTC) and 6-n-propylthiouracil (PROP)). Tastants were provided in a standardized order
(sucrose, NaCl, citric acid, MPG, PTC, PROP) to minimize context effects. All tastant
solutions were prepared in distilled water. Sweet, salt, sour, and umami solutions were
provided using a wooden cotton bud applicator and bitter solutions were provided on
solution-soaked filter papers. Each tastant was applied to the tongue, and the participants
were instructed to mix them with saliva for 30 s then spit them out. After which, participants
rated the intensity of each solution using a categorical scale which had been previously
validated in this population [28] and was chosen instead of a general Labeled Magnitude
Scale (gLMS) because of its simplicity which may make it easier to understand. The scale
ranged from 0 to 5: 0 = “no taste”, 1 = “weak”, 2 = “moderate”, 3 = “strong”, 4 = “very
strong”, 5 = “extremely strong.” On this basis, higher taste perception scores indicated
greater perception intensity of the tastant solutions. Of note, although both PTC and
PROP were used to assess bitter taste perception, only PTC was used to represent bitter
taste in the taste perception profiles so that each taste could be represented by only one
tastant and PTC was provided before PROP in the taste perception tests. Additionally,
although five solutions of increasing concentrations were used per tastant [28], only the
most concentrated solutions (400 mM sucrose, 200 mM NaCl, 34 mM citric acid, 200 mM
MPG, and 5.6 mM PTC, respectively) were used to derive the taste perception profiles
because they elicited the highest inter-individual variability in taste perception scores.

2.4. Taste Perception Profiles

Taste perception profiles were previously derived from sweet, salt, sour, bitter, and
umami perception scores using a data-driven clustering approach, as described in detail [24].
Briefly, cluster analysis was used to identify sub-groups of individuals with a common taste
perception profile. The selection of the cluster algorithm, number of clusters, and specific
set of clusters (herein referred to as taste perception profiles) was informed by quantitative
criteria to limit subjectivity. Based on the criteria, a k-means clustering algorithm was
selected and six taste perception profiles were derived. Radar plots were used to visualize
the characteristics of each profile relative to the overall cohort. The six taste perception
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profiles were: Low All (n = 85, 23%), High Bitter (n = 59, 16%), High Umami (n = 61, 17%),
Low Bitter and Umami (n = 72, 20%), High All But Bitter (n = 49, 13%) and High All But
Umami (n = 41, 11%) (Figure 1). For example, the Low All profile was characterized by
mean perception scores for all five tastes roughly 1 SD below the cohort means, while the
High All But Umami profile was characterized by mean perception scores for four tastes
roughly 1 SD above the cohort means with a mean perception score for umami close to the
cohort mean. As previously reported, all taste perception profiles had high internal validity
and stability and were well-fitted to the data [24].
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Figure 1. Six taste perception profiles derived via a data-driven clustering approach in the
PREDIMED-Plus Valencia cohort; N = 367 (adapted with permission [24]). Mean perception of
each taste for each profile is depicted in solid black lines; mean ± 1 SD perception of each taste for
the overall cohort is represented by dark gray lines and shaded areas, respectively. Taste perception
scores ranged from 0–5; 0 is the innermost pentagon and 5 is the outer most pentagon.

2.5. Dietary Assessment

Participants’ dietary intake during the prior year was assessed at baseline using a
validated, culturally specific, 143-item semi-quantitative food frequency questionnaire
(FFQ), in Spanish [31]. The FFQ was administered via face-to-face interviews. Nine
food frequency categories were offered ranging from never or <1 serving per month to
≥6 servings per day. These data were then converted into number of servings per week
for all subsequent analyses. FFQ items consumed by fewer than 5% of participants were
not considered part of the habitual diet for the cohort and were omitted from analyses
(14 items).

2.6. Empirically Derived Dietary Patterns

Empirically derived dietary patterns were identified using principal component anal-
ysis (PCA). PCA was selected because it is the most widely used approach for deriving
a posteriori dietary patterns in nutritional epidemiology. Briefly, PCA is a dimension reduc-
tion technique that seeks to identify the fewest number of robust latent factors (i.e., dietary
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patterns) which capture the most variability in the original data (i.e., food group intakes).
First, FFQ data were collapsed into 40 food groups, defined based on nutrient composition,
culinary usage, and with consideration of food items’ taste (e.g., cruciferous (Brassica)
vegetables were separated from green leafy and red/orange vegetables, and citrus fruits
were separated from non-citrus fruits) (Table S1). Since a majority of food groups were
non-normally distributed, a square root transformation was applied to the data prior to
all statistical analyses. Prior to performing PCA, food groups were energy adjusted using
the residual method, by regressing each food group onto total energy intake [32]. Model
residuals were extracted then entered into PCA. Eigenvalues (>2), the break in the Scree
plot, and the interpretability of identified patterns were used to determine the number
of patterns to retain. A Varimax rotation was then applied to the identified patterns to
increase separation and improve interpretability [33]. Derived patterns (herein referred to
as empirically derived dietary patterns) were labeled according to which food groups had
high (>|0.20|) rotated factor loadings, consistent with prior work [34,35].

For each participant, an adherence score was computed for each empirically derived
dietary pattern by summing their reported food group intakes weighted by the food group’s
factor loading for each respective dietary pattern, as follows:

Adherence score f or dietary pattern i = ∑[Intakej × Factor Loadingji] (1)

where Intakej is the reported intake (servings/week) of the jth food group and Factor
Loadingji is the PCA-derived factor loading for the jth food group on the ith empirically
derived dietary pattern [22,33]. On this basis, higher adherence scores reflected greater
alignment to the empirically derived dietary patterns (i.e., food groups with positive factor
loadings were consumed more often and food groups with negative factor loadings were
consumed less often) and vice versa. Based on these calculations, participants were classi-
fied into tertials of adherence for each dietary pattern: scores in tertial 1 were considered
“low adherence”, scores in tertial 2 were considered “moderate adherence”, and scores in
tertial 3 were considered “high adherence.” For the primary analysis, only the extreme
comparisons (high vs. low adherence) were conducted. This approach was taken to provide
greater discriminatory power and to allow for comparisons to be conducted among those
with the greatest differences in dietary patterns.

2.7. Covariates

Covariates were selected a priori based on previously established relations with the
exposures and outcomes of interest. Demographic and lifestyle measures, such as age,
sex, smoking status and history, and medication use, were assessed via participant ques-
tionnaires, described previously [28]. Physical activity in metabolic equivalents (METs)
per week was estimated using a validated questionnaire [36]. Type 2 diabetes status was
defined as having a clinical diagnosis of type 2 diabetes, use of glucose medications (insulin
or Metformin), or fasting blood glucose ≥7.0 mmol/L [30]. BMI was calculated from weight
and height in kg/m2. Regarding energy intake, given the cross-sectional study design,
an a priori decision was made to model it as downstream of dietary patterns rather than
as a confounder of taste-diet relations. On this basis, energy intake was not treated as a
covariate in primary analyses, though it was explored as a covariate in sensitivity analyses
to rule out the potential for confounding.

2.8. Statistical Analysis

Descriptive statistics—expressed as means ± SDs or n (%) unless otherwise specified—
were used to examine central tendency and dispersion of demographic, clinical, and lifestyle
characteristics overall and according to taste perception profile and level of adherence to
each empirically derived dietary pattern. Variable distributions were examined for normal-
ity both visually, using histograms, and statistically, using Shapiro–Wilk tests. Violations
were addressed via appropriate transformations. ANOVA tests were used to evaluate
differences in means of continuous variables; chi-square tests were used to evaluate dif-
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ferences in proportions of categorical variables. When ANOVA p-values < 0.05, Student’s
t-tests were used for post hoc pairwise comparisons of continuous variables.

Primary statistical analyses included generalized linear models with taste perception
profiles treated as a 6-level categorical predictor. All regression models were adjusted for
covariates, such as age, sex, physical activity (METs/wk), smoking status (current/non-
smoker), medication use (antihypertensive and cholesterol lowering as two separate co-
variates), type 2 diabetes, and BMI. A BMI2 term was also entered into the model based on
observed non-linear trends in BMI in preliminary regression models.

To examine differences in dietary pattern adherence across individuals with different
taste perception profiles, multinomial logistic regression models were employed using low
adherence and each taste perception profile as reference groups. On this basis, models were
used to estimate the adjusted odds ratios (ORs) and corresponding 95% CIs of having high,
relative to low, adherence to each empirically derived dietary pattern for individuals with
each taste perception profile, relative to other taste perception profiles. Likelihood ratio
tests were then used to examine the overall or “joint” significance of relations between
taste perception profiles and adherence to each empirically derived dietary pattern by
determining whether fully adjusted regression models, including all taste perception
profiles and covariates, outperformed regression models including covariates alone.

To rule out the potential for confounding by energy intake, post hoc sensitivity analyses
were conducted by entering an energy intake term (kcal/day) as a covariate into each of
the multinomial logistic regression models. Regression estimates and model fit statistics
were subsequently evaluated and compared.

All statistical analyses were conducted in R (v3.5.1). Two-sided p-values < 0.05 were
considered statistically significant. Given the exploratory nature of this analysis and small
sample size, no corrections were made for multiple comparisons as this may increase the
risk of obtaining false negative results.

3. Results
3.1. Participant Characteristics by Taste Perception Profile

The participant characteristics were consistent with the recruitment criteria (22). Their
mean age was 65 ± 5 years (mean ± SD), their mean BMI was 32.3 ± 3.6 kg/m2 and they
had several metabolic syndrome risk factors (Table 1).

When stratifying by taste perception profile, participants with a Low All profile
were most likely to be male, current or former smokers, and to have type 2 diabetes (all
p < 0.05) (Table 1). Those with a High All But Bitter or High All But Umami profile were
most likely to be female and to have never smoked. Those with a High All But Umami
profile were also least likely to have type 2 diabetes (p = 0.011) and they had the highest
mean total and LDL-c concentrations, while those with a High All But Bitter or Low Bitter
and Umami profile had the lowest mean total and LDL-c concentrations (p = 0.011 and
0.037, respectively). Blood pressure and fasting blood glucose, triglyceride, or HDL-c
concentrations were similar across participants with different taste perception profiles.
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Table 1. Selected demographic, clinical, and lifestyle characteristics for the PREDIMED-Plus Valencia cohort, overall and according to taste perception profile 1.

Overall

Taste Perception Profiles 2

Low All High
Bitter High Umami Low Bitter

and Umami
High All
But Bitter

High All
But Umami p

n (%) 367 85 (23) 59 (16) 61 (17) 72 (20) 49 (13) 41 (11) –
Female 202 (55) 36 (42) 30 (51) 33 (54) 42 (58) 34 (69) 27 (66) 0.031
Age (years) 65 ± 4.7 64.5 ± 4.5 65.4 ± 4.9 64.1 ± 4.6 65.2 ± 4.6 66.2 ± 4.9 65.3 ± 4.5 0.217
BMI (kg/m2) 32.3 ± 3.6 33.2 ± 3.8 32 ± 3.3 32.4 ± 3.9 32.1 ± 3.5 31.4 ± 3.2 32.4 ± 3.6 0.106
Waist circumference (cm)

Females 102 ± 9 103 ± 9 103 ± 9 101 ± 11 104 ± 8 101 ± 8 100 ± 9 0.508
Males 111 ± 9 113 ± 9 109 ± 7 113 ± 9 109 ± 9 109 ± 7 112 ± 10 0.095

Fasting glucose (mmol/L) 3 6.5 ± 1.8 6.5 ± 1.3 6.3 ± 1.6 6.4 ± 1.4 6.5 ± 2.5 7.0 ± 2.2 6.1 ± 1.4 0.241
SBP (mmHg) 3 140 ± 17 142 ± 17 139 ± 17 141 ± 19 138 ± 11 140 ± 19 143 ± 18 0.457
DBP (mmHg) 80 ± 9 80 ± 9 80 ± 10 81 ± 8 79 ± 9 80 ± 7 81 ± 10 0.838
Triglycerides (mmol/L) 3,4 9.2 ± 4.6 9.2 ± 4.4 9.8 ± 5.0 9.4 ± 4.5 8.9 ± 5.0 9.0 ± 4.6 8.4 ± 4.0 0.383
Total cholesterol (mmol/L) 3 11 ± 2.4 11 ± 2.6 ac 11.4 ± 2. 0 bc 11.2 ± 2.4 abc 10.5 ± 2.1 ad 10.3 ± 2.5 a 11.9 ± 2.6 b 0.011
HDL-c (mmol/L) 3 2.7 ± 0.6 2.7 ± 0.6 2.7 ± 0.5 2.6 ± 0.6 2.7 ± 0.7 2.8 ± 0.6 2.9 ± 0.5 0.305
LDL-c (mmol/L) 3 6.7 ± 2.0 6.6 ± 2.2 ab 7.0 ± 1.7 ac 6.8 ± 2.0 ab 6.2 ± 1.8 b 6.3 ± 1.8 bc 7.3 ± 2.3 a 0.037
Type 2 diabetes 154 (42) 46 (54) 22 (37) 26 (43) 29 (40) 23 (47) 8 (20) 0.011
PA (MET, min/wk) 1798 ± 1665 1661 ± 1522 1645 ± 1471 1733 ± 1966 1804 ± 1466 2330 ± 2104 1753 ± 1419 0.288
Smoking status & history 0.031

Current/former (<5 yr) 75 (20) 17 (20) 10 (17) 16 (26) 18 (25) 9 (18) 5 (12)
Former (>5 yr) 123 (34) 39 (46) 23 (39) 20 (33) 20 (28) 9 (18) 12 (29)
Never smoked 169 (46) 29 (34) 26 (44) 25 (41) 34 (47) 31 (63) 24 (59)

Glucose medications 5 118 (32) 32 (38) 20 (34) 20 (33) 24 (33) 17 (35) 5 (12) 0.111
Blood pressure medications 289 (79) 66 (78) 47 (80) 48 (79) 56 (78) 39 (80) 33 (80) >0.99
Cholesterol medications 240 (65) 62 (73) 35 (59) 37 (61) 49 (68) 31 (63) 26 (63) 0.535

Abbreviations: DBP, diastolic blood pressure; HDL-c, HDL cholesterol; LDL-c, LDL cholesterol; MET, metabolic equivalents; PA, physical activity; SBP, systolic blood pressure; wk, week;
yr, year. 1 Values are mean ± SD or n (%); N = 367. Means without a common letter differ significantly; p < 0.05. No adjustment was made for multiple comparisons. 2 Taste perception
profiles were derived via data-driven clustering from taste perception scores; names reflect the defining characteristics of each profile relative to the overall cohort (e.g., Low All had
mean perception scores for all 5 tastes roughly 1 SD below the cohort means while High All But Umami had mean perception scores for 4 tastes roughly 1 SD above the cohort means
with umami close to the cohort mean). 3 7 values were missing for LDL-c, 4 for HDL-c, 3 for fasting glucose and triglycerides, and 2 for SBP and total cholesterol. 4 Triglycerides were
log-transformed for normality for statistical comparisons. 5 Glucose medications included insulin and Metformin.
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3.2. Empirically Derived Dietary Patterns

Three empirically derived dietary patterns were identified with eigenvalues >2, al-
together, accounting for 20.2% of total variance in food group intakes (Figures 2 and S2
and Table S2). The first dietary pattern, termed “Vegetables, Fruits, and Whole Grains”
(Veg/Fruit/WG), accounted for 8.6% of total variance. It was characterized by high positive
factor loadings for other vegetables, leafy green vegetables, red and orange vegetables,
non-citrus fruits, whole grains, canned and salted fish, cruciferous vegetables, low-fat dairy,
tea, poultry and fresh fish, and high negative factor loadings for refined grains, croquettes,
spirits, and beer. The second dietary pattern, termed “Non-Extra Virgin Olive Oils (EVOOs),
Sweets, and Refined Grains” (Non-EVOO/Sweet/RG), accounted for 6.3% of total variance.
It was characterized by high positive factor loadings for refined olive oil, vegetable oil,
biscuits, pastries and cakes, refined grains, croquettes, butter and mayonnaise, chocolate
and dairy desserts, SSBs, and canned and salted fish, and high negative factor loadings
for EVOO, nuts, fresh fish, legumes, whole grains, and wine. The third dietary pattern,
termed “Alcohol, Salty Foods, and Animal Fats” (Alch/Salt/AnimFat), accounted for 5.3%
of total variance. It was characterized by high positive factor loadings for wine, olives, beer,
spirits, eggs, shellfish, canned and salted fish, red meat, processed meat, and butter and
mayonnaise, and high negative factor loadings for low-fat dairy and whole grains. Only
two food groups had high positive factor loadings on multiple dietary patterns (canned
and salted fish, and butter and mayonnaise), indicating strong separation between patterns.
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3.3. Participant Characteristics by Level of Adherence to Empirically Derived Dietary Patterns

Several participant characteristics differed significantly across levels of adherence to
the empirically derived dietary patterns (Table 2). Participants with high adherence to the
Veg/Fruit/WG dietary pattern were most likely to be female and older (p = 0.01 and 0.018,
respectively), have never smoked (p = 0.012), and yet, have higher LDL-c concentrations
(p = 0.038). Participants with high adherence to the Non-EVOO/Sweet/RG dietary pattern
were least physically active (p = 0.003) and most likely to have type 2 diabetes and report
the use of glucose control medications (p = 0.007 and 0.009, respectively). In contrast,
participants with high adherence to the Alch/Salt/AnimFat dietary pattern were most
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likely to be male and younger (p ≤ 0.001 and 0.004, respectively), be a current or former
smoker (p < 0.001) and have the highest diastolic blood pressure and total cholesterol
concentrations (p = 0.013 and 0.047, respectively).

3.4. Association between Taste Perception Profiles and Empirically Derived Dietary Patterns

The regression models which included all six taste perception profiles (in addition
to the other covariates), did not significantly outperform models that included the co-
variates alone (likelihood ratio test p-values = 0.631, 0.372, 0.350 for the Veg/Fruit/WG,
Non-EVOO/Sweet/RG, and Alch/Salt/AnimFat dietary patterns, respectively) (see full
regression results in Tables S3–S5). Although this suggested a non-significant joint asso-
ciation between all six taste perception profiles and adherence to the empirically derived
dietary patterns, this may result from the relatively small sample or profile sizes, which
could limit discriminatory power. Nonetheless, in the fully adjusted models, pairwise
comparisons between individuals with different taste perception profiles identified sev-
eral significant differences in adherence to all three empirically derived dietary patterns,
indicating potentially important trends to explore (Figure 3).
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Figure 3. Heat map showing the odds (in log(odds)) of having high, relative to low, adherence
to each empirically derived dietary pattern among participants with each taste perception profile
(N = 367 participants included in each heat map). Regression models were adjusted for age, sex,
physical activity, smoking status, medication use, type 2 diabetes, and BMI. The profiles on the
vertical axis are the test profiles and those on the horizontal axis are the reference profiles; together
they lay the grid for all unique pairwise comparisons. Colors indicate the magnitude of association;
darker purple indicates higher odds of having high adherence and darker orange indicates lower
odds of having high adherence relative to the reference profile. For example, in the left panel, the dark
purple square at the lower left indicates that relative to individuals with a Low All profile (reference),
those with a High All But Umami profile had significantly higher odds of having high, relative to
low, adherence to the Veg/Fruit/WG dietary pattern. * p < 0.05, ** p < 0.01.
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Table 2. Selected demographic, clinical, and lifestyle characteristics, according to levels of adherence to each empirically derived dietary pattern 1.

Veg/Fruit/WG 2 Non-EVOO/Sweet/RG 2 Alch/Salt/AnimFat 2

Low Moderate High p2 Low Moderate High p2 Low Moderate High p2

Dietary pattern score −1.11 ± 0.60 a 0.06 ± 0.26 b 1.06 ± 0.44 c <0.001 −1.10 ± 0.49 a −0.02 ± 0.30 b 1.13 ± 0.42 c <0.001 −1.06 ± 0.66 a 0.00 ± 0.24 b 1.07 ± 0.50 c <0.001
Female 49 (40) 68 (56) 85 (70) 0.001 60 (49) 69 (57) 73 (60) 0.202 91 (74) 71 (58) 40 (33) <0.001
Age (years) 64 ± 5 a 65 ± 5 ab 66 ± 5 b 0.018 65 ± 5 65 ± 4 64 ± 5 0.172 66 ± 5 a 65 ± 4 ab 64 ± 5 b 0.004
BMI (kg/m2) 32.6 ± 3.6 32.5 ± 3.8 31.9 ± 3.3 0.206 32.2 ± 3.6 32.1 ± 3.7 32.7 ± 3.5 0.327 32.6 ± 3.8 32.1 ± 3.4 32.3 ± 3.6 0.551
Waist circumference (cm)

Females 104 (9) 103 (10) 101 (8) 0.064 102 (8) 101 (9) 104 (9) 0.084 103 (9) 102 (9) 102 (9) 0.533
Males 111 (9) 113 (9) 109 (8) 0.157 110 (8) 111 (9) 113 (9) 0.426 111 (9) 111 (8) 111 (9) 0.987

Fasting glucose (mmol/L) 3 6.6 ± 1.8 6.3 ± 1.5 6.5 ± 2.1 0.516 6.4 ± 2.0 6.5 ± 1.5 6.6 ± 1.8 0.554 6.5 ± 1.9 6.6 ± 2.0 6.4 ± 1.4 0.662
SBP (mmHg) 3 141.9 ± 18 140.8 ± 16 138.2 ± 17 0.209 142 (16) 142 (17) 137 (17) 0.054 140 (18) 141 (15) 140 (17) 0.922
DBP (mmHg) 81.3 ± 10 79 ± 10 79 ± 7 0.142 81 (9) 80 (9) 79 (9) 0.398 79 (9) a 79 (9) ab 82 (9) b 0.013
Triglycerides (mmol/L) 3,4 10.0 ± 5.3 8.9 ± 3.9 8.6 ± 4.4 0.066 8.7 ± 3.9 9.5 ± 4.8 9.4 ± 5.0 0.399 8.5 ± 3.2 8.9 ± 4.2 10.2 ± 5.9 0.123
Total cholesterol (mmol/L) 3 11.0 ± 2.6 10.7 ± 2.2 11.4 ± 2.3 0.065 10.9 ± 2.5 11.4 ± 2.4 10.8 ± 2.3 0.119 10.9 ± 2.2 10.7 ± 2.5 11.4 ± 2.5 0.047
HDL-C (mmol/L) 3 2.7 ± 0.6 2.7 ± 0.6 2.8 ± 0.6 0.460 2.8 ± 0.6 2.6 ± 0.6 2.7 ± 0.7 0.105 2.7 ± 0.6 2.7 ± 0.6 2.7 ± 0.6 0.917
LDL-C (mmol/L) 3 6.6 ± 2.1 ab 6.4 ± 1.9 a 7.0 ± 2.0 b 0.038 6.5 ± 2.0 7.0 ± 2.1 6.5 ± 1.8 0.097 6.6 ± 2.0 6.5 ± 2.0 6.9 ± 2.1 0.249
Diabetes 51 (41) 51 (42) 52 (43) 0.982 39 (32) 52 (43) 63 (52) 0.007 50 (41) 56 (46) 48 (39) 0.547
Energy intake (kcal/d) 2371 (561) 2418 (535) 2392 (472) 0.776 2425 (539) 2301 (492) 2455 (528) 0.052 2419 (572) 2314 (473) 2448 (513) 0.111
PA (MET, min/wk) 1836(2035) 1795 (1417) 1763 (1484) 0.943 2165 (1829) a 1778 (1454) ab 1447 (1624) b 0.003 1741 (1797) 1920 (1527) 1734 (1666) 0.615
Smoking status & history 0.012 0.528 <0.001

Current/former (<5 yr) 36 (29) 17 (14) 22 (18) 26 (21) 20 (16) 29 (24) 20 (16) 20 (16) 35 (29)
Former (>5 yr) 43 (35) 44 (36) 36 (30) 45 (37) 41 (34) 37 (30) 27 (22) 47 (39) 49 (40)
Never smoked 44 (36) 61 (50) 64 (52) 52 (42) 61 (50) 56 (46) 76 (62) 55 (45) 38 (31)

Glucose medications 5 40 (33) 38 (31) 40 (33) 0.958 31 (25) 35 (29) 52 (43) 0.009 37 (30) 45 (37) 36 (30) 0.390
Blood pressure medications 99 (80) 92 (75) 98 (80) 0.544 100 (81) 92 (75) 97 (80) 0.513 99 (80) 96 (79) 94 (77) 0.805
Cholesterol medications 82 (67) 84 (69) 74 (61) 0.378 77 (63) 81 (66) 82 (67) 0.720 70 (57) 87 (71) 83 (68) 0.046

Abbreviations: DBP, diastolic blood pressure; HDL-c, HDL cholesterol; LDL-c, LDL cholesterol; MET, metabolic equivalents; PA, physical activity; SBP, systolic blood pressure; wk, week;
yr, year. 1 Values are mean ± SD or n (%); N = 367. Means without a common letter differ significantly; p < 0.05. 2 Cut-offs for low, moderate, and high adherence were determined based
on tertials; tertial 1, low (n = 123); tertial 2, moderate (n = 122); tertial 3, high (n = 122). 3 7 values were missing for LDL-c, 4 for HDL-c, 3 for fasting glucose and triglycerides, 2 for SBP
and total cholesterol. 4 Triglycerides were log-transformed for normality for statistical comparisons. 5 Glucose medications included insulin and Metformin.
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For the Veg/Fruit/WG dietary pattern (Table S3), high (relative to low) adherence
was significantly more common among participants with a High All But Umami profile
relative to those with any other profile (range of ORs: 1.45–1.99; 95% CI minimum lower
bound: 1.05, maximum upper bound: 2.74; all p < 0.05), with greatest differences observed
relative to those with a Low All profile (OR (95% CI) for High All But Umami vs. Low
All: 1.99 (1.55, 2.74); p < 0.001). For the Non-EVOO/Sweet/RG dietary pattern (Table S4),
participants with a Low All profile were significantly less likely to have high adherence
than those with all other profiles except High Bitter, who likewise tended to have low
adherence (range of ORs: 0.55–0.66; 95% CI minimum lower bound: 0.40, maximum upper
bound: 0.88; all p < 0.01). Finally, for the Alch/Salt/AnimFat dietary pattern (Table S5),
participants with a High All But Bitter profile were most likely to have high adherence,
though they were only significantly more likely than those with a Low Bitter and Umami or
High All But Umami profile (OR (95% CI) = 1.81 (1.33, 2.47), p < 0.001 and 1.37 (1.01, 1.85),
p = 0.045, respectively). In contrast, participants with a Low Bitter and Umami profile were
least likely to have high adherence, and they were significantly less likely than those with
all other profiles except High All But Umami, who likewise tended to have low adherence
(range of ORs: 0.55–0.71; 95% CI minimum lower bound: 0.40, maximum upper bound:
0.92; all p < 0.05). These data indicate that a healthier dietary pattern, the Veg/Fruit/WG
pattern, was most common among participants with a High All But Umami profile, whereas
less healthy dietary patterns, such as the Non-EVOO/Sweet/RG or Alch/Salt/AnimFat
patterns, tended to be more common among those with a High All But Bitter profile and
less common among those with a Low All, High Bitter, or Low Bitter and Umami profile.

In post hoc sensitivity analyses, no evidence of confounding by energy intake was
detected (mean ± SD % change in ORs: 4.55 ± 3.36), nor did the addition of an energy intake
term substantially improve the predictability of regression models (data not shown). On
this basis, no revisions were made to the original causal diagram, and hence, no additional
adjustment was made for energy intake in the final statistical models.

4. Discussion

Using taste perception profiles previously derived in the PREDIMED-Plus Valencia
cohort of community-dwelling older adults with metabolic syndrome [24], this cross-
sectional exploratory analysis found that adherence to three empirically derived dietary
patterns—Veg/Fruit/WG, Non-EVOO/Sweet/RG, Alch/Salt/AnimFat—tended to differ
among participants with different taste perception profiles. After adjusting for confounders,
participants with high perception of all tastes except umami were most likely to report
following a healthier, prudent-style dietary pattern [4,37,38] characterized by frequent
intake of a variety of vegetables, fruits, whole grains, and low-fat dairy, and less frequent
intake of refined grains and products made thereof. In contrast, those with high perception
of all tastes except bitter were more likely to report following a less healthy, Western-style
dietary pattern [4,37,38] characterized by frequent intake of wine, beer and spirits, salty
foods, and red and processed meats, and less frequent intake of whole grains and low-fat
dairy. Participants with lower taste perceptions were less likely to follow unhealthy dietary
patterns; instead, those with low overall or only high bitter perception tended to report
frequent intakes of legumes, fresh fish, and nuts, while those with low bitter and umami
but average sweet, salt, and sour perception tended to report more frequent intakes of
whole grains and low-fat dairy.

Although statistically significant joint associations between the taste perception pro-
files and empirically derived dietary patterns were not detected, the observed between-
profile differences in dietary pattern adherence may be of clinical relevance. In this cohort,
individuals with similar taste perception profiles tended to follow more similar dietary
patterns relative to those with different taste perception profiles. From a clinical perspec-
tive, these findings suggest that taste perception profiles may serve as an additional tool
to promote adherence to personalized nutrition recommendations by identifying target
areas for improvement. Based on the present findings, this could involve emphasizing
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recommendations to choose poultry or fish over red and processed meats and limit high
sodium foods for individuals with high perception of all tastes except bitter who tended
to follow the Alch/Salt/AnimFat pattern; and emphasizing recommendations to choose
whole over refined grains and consume a variety of vegetables and fruits for those with
low perception of all five tastes who tended not to follow the Veg/Fruit/WG pattern [4].

Previous studies have reported several associations between taste perception and food
intake [14–21,39]. In adults, higher bitter perception has been associated with lower intake
of vegetables [14–16], alcoholic beverages [21], and sweets [17]. A recent study also found
that that higher umami perception was associated with higher intake of vegetables [39].
However, several findings in the present study were not consistent with those previously
reported on taste perception and diet [14–21,39]. In this study, participants with high
bitter perception and moderate umami perception—those with a High All But Umami
profile—were more likely to follow a vegetable-rich dietary pattern than those with lower
bitter or higher umami perception. They were also more likely to follow a dietary pattern
with frequent wine, beer, or spirits than those with a Low Bitter and Umami profile who
had lower bitter perception. Although, as expected, participants with high bitter perception
(High Bitter profile) were less likely to follow a dietary pattern rich in sweets and desserts
than most others, in this cohort, participants with lower bitter perception (Low All profile)
unexpectedly followed similar dietary habits.

A potential explanation for these new findings may be that the multivariable measure
of perception for all five tastes used in this study allowed for the capture of different aspects
of taste-diet relations than prior studies which evaluated each taste separately. Myriad
taste compounds are present in foods and beverages. Thus, considering all five tastes
simultaneously when relating taste perception to diet may provide a more comprehensive
representation of taste-diet relations—similarly to how dietary patterns better represent
overall diet quality than single food groups or nutrients [22]. Multivariable approaches can
also account for within-individual variability in taste perception, whereas these underlying
differences may confound relations emanating from single taste studies or those using total
taste scores (sum of multiple taste perceptions) [24].

Of note, the specific taste perception profiles and dietary patterns identified in the
PREDIMED-Plus cohort of older, overweight adults with metabolic syndrome may differ
from those found in cohorts of younger, healthier adults with different lifestyle characteris-
tics [28,40]. Taste perception profiles and associations with dietary patterns may also be
sex specific. In this cohort, taste perception profiles and levels of dietary pattern adherence
differed significantly by sex, similar to prior reports [37,41]. Post hoc exploratory analy-
ses further suggested several interactions by sex in regression models predicting dietary
pattern adherence; however, there was insufficient statistical power to conduct stratified
analyses by sex in this study. Additionally, in contrast to many Westernized countries, this
cohort does not consume large quantities of processed hyperpalatable foods [42], which
may have influenced their taste perception profiles and food choices. To fully understand
the impact of taste perception profiles on diet quality will require the replication of this
analysis in multiple, diverse cohorts and in various food environments.

Limitations of this study include the cross-sectional design which prevents causal infer-
ences and the self-reported nature of the dietary data which may be subject to measurement
errors. However, the dietary data were collected using a validated and culturally specific
FFQ which was specifically designed to estimate habitual intake in this cohort [31]. While
the percent variance explained by the dietary patterns may not appear high, it is similar
to prior studies [33,43] and expected given that adjusting food groups for energy prior to
PCA may attenuate the variance explained [44]. While the lack of energy adjustment in
statistical models may increase the risk of measurement error [32], the intent was to focus
on ad libitum intakes as opposed to dietary composition at isocaloric levels. Still, to reduce
the risk of measurement error, BMI was controlled for in all models as a more objective
indicator of misreporting than energy derived from an FFQ [45]. All food groups were also
energy-adjusted prior to PCA, and in post hoc sensitivity analyses, energy did not appear to
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confound observed taste-diet relations. The lack of adjustment for multiple comparisons
may have also increased the potential for spurious associations. However, this study was
exploratory in nature and intended to generate hypotheses to be tested in larger, more
representative cohorts.

In the PREDIMED-Plus study, perception intensity rather than sensitivity (e.g., detec-
tion or recognition thresholds), was assessed given prior evidence that it may better capture
relations with dietary intake [46,47]. To measure perception intensity, a six-point categorical
scale was used rather than a gLMS with cross-modality standards because it was judged as
more suitable for older adults given its simplicity which makes it easier to understand [48].
The scale was also validated in this population (dose-response, internal consistency, and
association with genetic markers) [28]; and when used in a GWAS of taste perception, both
PTC and PROP scores successfully identified top-ranked SNPs in the TAS2R38 bitter taste
receptor gene which have been previously identified using gLMS [49,50]. This suggested
that the category scale was valid and comparable to the gLMS for detecting individual
differences in taste perceptions. PTC and PROP were the bitter tastants used in the parent
study since they are the most frequently used bitter tastants in the literature [51,52]. Had
other tastants for bitter been used, such as quinine or caffeine, the results may have been
different [53]. Only PTC was used to derive the taste perception profiles because one
tastant was chosen per taste and PTC was the first bitter stimuli to which participants
were exposed. However, it is unlikely this selection impacted the results given the strong
correlation between PTC and PROP taste perceptions [54]. Also, although all 5 basic tastes
were included in the taste perception profiles, one potential limitation is the lack of data
for what has been suggested as a sixth taste for oral fat sensitivity [55,56] which was not
feasible to assess in the parent study.

As previously reported, all six taste perception profiles were statistically valid when
assessed by rigorous quantitative criteria; and when bootstrapping was applied to generate
100 permutations of the data, identical profiles were detected 78–91% of the time (Jaccard
similarity index range: 0.78–0.91) [24]. However, we cannot rule out the possibility that
the profiles identified in the PREDIMED-Plus Valencia cohort do not represent those in
other cohorts with other dietary patterns. That assessment awaits future work. As all
participants in the PREDIMED-Plus cohort had metabolic syndrome, they were all at
elevated cardiometabolic risk. This diminished the variability among participants, hence,
the ability to detect associations between dietary patterns and cardiometabolic risk factors.
Nevertheless, the cohort represents a clinically relevant group and the use of empirical,
rather than a priori, dietary patterns allowed for a focus on actual food intake.

Notwithstanding these limitations, this study is the first to examine how individual
differences in perception of all five tastes collectively, rather than separately, relate to
empirically derived dietary patterns. This allowed for a more robust exploration of the
role of taste perception in habitual food choices and diet quality, and to our knowledge,
provided some of the first evidence that taste perception profiles may differentially associate
with dietary patterns. The use of a data-driven clustering approach to derive the taste
perception profiles in our prior study minimized subjectivity in the analysis, thereby
increasing internal validity [24]. However, as this is a statistical study, later mechanistic
studies will be required to analyze in greater detail the biological basis of the reported
associations. While we could not determine whether taste perception profiles drove food
choices in this study, using innovative statistical techniques, significant associations were
identified between taste perception profiles and empirical dietary patterns, suggesting
important trends to explore in the future. Finally, given the unique study cohort, findings
from this work may particularly extend towards high-risk individuals who may benefit
most from personalized dietary modification interventions to reduce chronic disease risk.

5. Conclusions

In conclusion, among older adults with metabolic syndrome, we found that taste
perception profiles were differentially associated with empirically derived dietary patterns.
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Participants with high perception of all tastes except umami, generally low, or only high
bitter perception tended to follow healthier, prudent-style dietary patterns, though the
specific food choices differed by profile. In contrast, participants with high perception of
all tastes except bitter tended to follow less healthy, Western-style dietary patterns. These
data demonstrate the complexity of taste-diet relations and suggest that integrating taste
perception profiles into personalized nutrition efforts may help develop more targeted
and specific dietary guidance where more generalized approaches have been less effective.
While additional work is needed to translate these initial findings into direct clinical practice,
these data support the contention that knowing an individual’s taste perception profile
may allow for the development of more effective dietary modification strategies to improve
diet quality and reduce chronic disease risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14010142/s1, Figure S1: Flowchart of PREDIMED-Plus Valencia
participants, Figure S2: Scree plot of the eigenvalues used to determine the number of principal
components to retain, Table S1: Food groups and food items for dietary pattern analysis, Table S2:
Rotated factor loadings for all food groups from principal component analysis, Table S3: ORs and
corresponding 95% CIs of moderate or high relative to low adherence to the Veg/Fruit/WG dietary
pattern among participants with each taste perception profile, Table S4: ORs and corresponding 95%
CIs of moderate or high relative to low adherence to the Non-EVOO/Sweet/RG dietary pattern
among participants with each taste perception profile, Table S5: ORs and corresponding 95% CIs
of moderate or high relative to low adherence to the Alch/Salt/AnimFat dietary pattern among
participants with each taste perception profile.
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