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Abstract
In order to formalize Distributed Ledger Technologies and their interconnections, a recent line of
research work has formulated the notion of Distributed Ledger Object (DLO), which is a concurrent
object that maintains a totally ordered sequence of records, abstracting blockchains and distributed
ledgers. Through DLO, the Atomic Appends problem, intended as the need of a primitive able to
append multiple records to distinct ledgers in an atomic way, is studied as a basic interconnection
problem among ledgers.

In this work, we propose the Distributed Grow-only Set object (DSO), which instead of maintaining
a sequence of records, as in a DLO, maintains a set of records in an immutable way: only Add and
Get operations are provided. This object is inspired by the Grow-only Set (G-Set) data type which
is part of the Conflict-free Replicated Data Types. We formally specify the object and we provide a
consensus-free Byzantine-tolerant implementation that guarantees eventual consistency. We then use
our Byzantine-tolerant DSO (BDSO) implementation to provide consensus-free algorithmic solutions
to the Atomic Appends and Atomic Adds (the analogous problem of atomic appends applied on
G-Sets) problems, as well as to construct consensus-free Single-Writer BDLOs. We believe that the
BDSO has applications beyond the above-mentioned problems.
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1 Introduction

Blockchains (as termed by Nakamoto in [18]) or Distributed Ledger Technologies (DLTs) (as
used in [10] and [20]) became one of the most trendy data structures following the introduction
of crypto-currencies [18] and their recent application in finance and token-economy. Despite
their early wide adoption, little was known initially about the fundamental construction and
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semantic properties of DLTs. A number of research groups attempted to provide rigorous
definitions to characterise the fundamental properties of DLTs as those used in Bitcoin and
beyond [1, 10, 11]. Among those, Fernández Anta et al. [10], was the first to identify and
provide a formal definition of a reliable concurrent object, termed Distributed Ledger Object
(DLO), which conveys the essential building block for many DLTs. In particular, a DLO
maintains a sequence of records, and supports two basic operations: append and get. The
append operation is used to add a new record at the end of the sequence, while the get
operation returns the whole sequence. Implementations of DLOs under client and server
crashes were proposed in [10], and under Byzantine failures in [6].

The introduction to many different DLT systems have led multiple studies [6, 9, 14, 16] to
investigate the possibility of DLT interoperability, i.e., the ability for an action to be applied
over a set of DLTs, rather than in a single DLT at a time. Using the DLO formalism, [9]
introduced the Atomic Appends problem, in which several clients have a “composite” record (a
set of semantically-linked “basic” records) to append. Each basic record has to be appended
to a different DLO, and it must be guaranteed that either all basic records are appended to
their DLOs or none of them is appended.

Consider, for example, two clients A and B, where A buys a car from B. Record rA

includes the transfer of the car’s digital deed from B to A, and rB includes the transfer
from A to B of the agreed amount in some digital currency. DLOA is a ledger maintaining
digital deeds and DLOB maintains transactions in some pre-agreed digital currency. So,
while the two records are mutually dependent, they concern different DLOs. Hence, the
Atomic Appends problem requires that either record rA is appended in DLOA and record
rB is appended in DLOB , or no record is appended in the corresponding DLOs.

In the work presented in [9], the authors assumed that clients may fail by crashing and
showed that for some cases the existence of an intermediary is necessary. They materialized
such an intermediary by implementing a specialized DLT, termed Smart DLO (SDLO).
Using the SDLO, the authors solved the Atomic Appends problem in a client competitive
asynchronous environment, in which any number of clients, and up to f servers implementing
the DLOs, may crash. A subsequent work solved the problem assuming Byzantine failures [6],
by introducing the notion of Byzantine Distributed Ledger Objects (BDLO). Solutions for
implementing BDLOs were presented, with each solution relying on an underlying Byzantine
Total-order Broadcast Service (BToB) [7, 8, 17]. Using BToB and an intermediary SBDLO
the authors demonstrated how Atomic Appends may be achieved in systems that suffer
Byzantine failures. However, BToB is a strong primitive, and requires consensus to be solved.
So one may ask: Is it possible to implement Atomic Appends without solving consensus?

It was shown in [13] that cryptocurrencies do not need consensus to be implemented. From
a theoretical point of view, it was shown in [12] that, assuming one process per account, the
consensus number of cryptocurrencies is 1. A non-sequential specification of money transfer
was introduced in [2]. It follows that Byzantine transactional systems do not necessarily need
consensus, but rather can be implemented on top of less powerful data structures. In a similar
manner, in this work, we observe that intermediary S(B)DLOs and strong primitives like
BToB [17], may not be necessary to allow interoperability between multiple DLOs. Note that
the goal of the intermediate S(B)DLO is to collect the records to be appended atomically, so
that when all the records involved are in the S(B)DLO, then the actual records are appended
in their respective DLOs. It is apparent that, for Atomic Appends, the order of the records
in the intermediary data structure is not important, but rather the membership property
required redirects to a set data structure.

A relevant distributed set data structure was presented by Shapiro et al. in [21] with the
introduction of Conflict-Free Replicated Data Types (CRDTs). A CRDT is a data structure
that can be replicated in multiple network locations. CRDTs have the property that each
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replica can be updated independently and concurrently, but it is always mathematically
possible to resolve any inconsistencies between any pair of replicas, leading eventually all
the replicas to a consistent converged value when the communication between the replica
hosts is stabilized. A Grow-Only Set (G-Set) is such a CRDT, that supports operations add
and lookup only. The add operation modifies the local state of the object by a union of the
value of the set with the element we want to insert. Since add is based on union, and union
is commutative, the G-Set implementation converges. In [21] (and other subsequent works),
implementations of G-Sets where given in a crash-prone environment. In order to utilise
a G-Set in more practical setups (like the ones in cryptocurrencies) we need to examine
whether such data structure is possible when Byzantine failures are present in the system.

Chai and Zhao [5] have considered the implementation of CRDTs against Byzantine
failures. In particular, they describe possible threats that clients and servers can either face
or cause to CRDTs, and they show a possible solution to fulfil CRDT requirements in that
failure model. Their solution relies on an external synchronization service for two main
purposes: to guarantee linearizable reads and writes, and to prevent server partitions caused
by Byzantine behaviour. As a consequence, multiple Byzantine failures or slow processes
may lead their approach to essentially always run their “state synchronization” mechanism
letting the whole data structure rely on the synchronisation service. For the implementation
of the synchronisation service they either utilize a central entity, or solve consensus over a
distributed set of nodes.

Contributions. In this work we examine whether G-Sets can be implemented when Byz-
antine processes are assumed in the system, without using consensus. We show that an
implementation of an eventually consistent [22] G-Set is possible, and we demonstrate how
such data structure can be used to solve Atomic Appends and other related problems. In
particular, our itemized contributions are the following:

Provide a formal definition of a Byzantine Grow-only Set Object (BDSO). [Section 2]
Provide an implementation for an eventually consistent BDSO in an asynchronous message
passing system1. We consider such a consistency model since, although it provides weaker
guarantees than other consistency models, it is easier and more efficient to implement,
while being powerful enough to be used in the type of applications we consider (described
next). [Section 3]
Use BDSOs to implement:

Consensus-free Byzantine Atomic Appends. [Section 4.1]
Consensus-free Byzantine Atomic Adds. This is the analogous problem of atomic
appends where records must be added in an atomic way to different BDSOs. This
problem could be applicable in blockchain-like systems in which the ordering of the
records is not important; what is important is that the records are added in the
corresponding unordered blockchains (G-Sets). An example could be a system of
G-Sets that implement personal calendars, so the records in the sets are meetings.
Then, fixing a two-person meeting would imply an Atomic Add of the meeting data in
the calendar of both persons. [Section 4.2]
Consensus-free single-writer BDLOs. This data structure can be suitable to implement
whatever system that requires total order among data produced by a single writer. A
punch in/out system for a company is an example of such an application in which a
single writer, the employee, appends records only to his/her own ledger of presences.

1 Note that in such a system deterministic consensus can’t be solved.
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A cryptocurrency can be another suitable application, with one BDLO per account,
because of the need to order transactions in relation to money transfers issued by the
only transaction signer. [Section 4.3]

2 The G-Set Object

In this section we provide the fundamental definition of a concurrent G-Set object.

2.1 Concurrent Objects and the G-Set Object
An object type T specifies (i) the set of values (or states) that any object O of type T can
take, and (ii) the set of operations that a process can use to modify or access the value of O.
An object O of type T is a concurrent object if it is a shared object accessed by multiple
processes [15, 19]. Each operation on an object O consists of an invocation event and its
unique matching response event, that must occur in this order. A history of operations
on O, denoted by HO , is the sequence of invocation and response events, starting with an
invocation event. (The sequence order of a history reflects the real time ordering of the
events.) We say that a history H ′

O extends a history HO , if HO is a prefix of H ′
O .

An operation π is complete in a history HO , if HO contains both the invocation and
the matching response. A history HO is complete if it contains only complete operations;
otherwise it is partial [15, 19]. An operation π precedes an operation π′ (or π′ succeeds π),
denoted by π → π′, in HO , if the response event of π appears before the invocation event of
π′ in HO . Two operations are concurrent if none precedes the other. A complete history
HO is sequential if it contains no concurrent operations, i.e., it is an alternative sequence
of matching invocation and response events, starting with an invocation and ending with a
response event. A partial history is sequential, if removing its last event (that must be an
invocation) makes it a complete sequential history.

A sequential specification of an object O, describes the behavior of O when accessed
sequentially. In particular, the sequential specification of O is the set of all possible sequential
histories involving solely object O [19].

A G-Set GS is a concurrent object that maintains a set GS.S of records and supports two
operations (available to any process p): (i) GS.getp(), and (ii) GS.addp(r). A record is any
value drawn from an alphabet A. A process p invokes a GS.getp() operation to obtain the
set GS.S of records stored in the G-Set object GS 2, and p invokes a GS.addp(r) operation
to insert a new record r in GS.S. Initially, the set GS.S is empty. Deleting or changing a
record from GS.S is not possible, as our objective is for the set to be immutable with respect
to record modifications of any kind.

▶ Definition 1. The sequential specification of a G-Set GS over the sequential history HGS
is defined as follows. Let the initial value of GS.S = ∅. If at the invocation event of an
operation π in HGS the value of the set GS.S = V , then:
1. if π is a GS.getp() operation, then the response event of π returns V , and
2. if π is a GS.addp(r) operation, then at the response event of π, the value of the set in

G-Set GS is GS.S = V ∪ {r}.

By comparing the sequential specification of a G-Set, as defined above, with the sequential
specification of a Ledger Object as defined in [10, Definition 1] (also see Appendix A), it
follows that a Ledger is an ordered G-Set.

2 We define only one operation to access the value of the G-Set for simplicity. In practice, other operations
will also be available, like lookup(r) to check if a record r is in GS.S.
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2.2 Distributed G-Set Objects
We now define distributed G-Set objects, DSO for short, and the class of eventually consistent
DSOs. These definitions are general and do not rely on the properties of the underlying
distributed system, nor on the type of failures that may occur.

A distributed G-Set object (DSO) is a concurrent G-Set object that is implemented in a
distributed manner. In particular, a DSO is implemented by a set of (possibly distinct and
geographically dispersed) computing devices, that we refer as servers. Each server usually
maintains a local copy (replica) of the DSO. We refer to the processes that invoke the get
and add operations of the distributed G-Set as clients.

Distribution and replication intend to ensure availability and survivability of the G-Set,
in case a subset of the servers fails (by crashing or acting maliciously). At the same time,
they raise the challenge of maintaining consistency among the different views that different
clients get of the DSO3. Consistency semantics need to be in place to precisely describe the
allowed values that a get operation may return when it is executed concurrently with other
get or add operations.

We now specify the properties of DSO with respect to eventual consistency [22]. These
properties require that if an add(r) operation completes, then eventually all get() operations
return sets that contain record r. In a similar way, other consistency guarantees such as
sequential, session, causal and atomic consistencies could be formally defined.

▶ Definition 2. A DSO GS is eventually consistent if, given any history HGS ,
(a) EC-Safety: let S be the set of records returned by any complete operation π = get() ∈ HGS .

For each r ∈ S, there is an operation add(r) whose invocation event appears before the
response event of π in HGS , and

(b) EC-Liveness: for every complete operation GS.add(r) ∈ HGS , there exists a history H ′
GS

that extends HGS such that, for every history H ′′
GS that extends H ′

GS , every complete
operation GS.get() in H ′′

GS \ H ′
GS returns a set that contains r.

At this point, we would like to remark that, although eventual consistency provides
weaker consistency guarantees when compared, for example, with linearizability [15], it is
easier and more efficient to implement, while it is powerful enough to be used in the type of
applications that we later consider (see Section 4).

2.3 Distributed Setting and Byzantine-tolerant DSO
We consider a distributed setting consisting of processes (clients and servers) and an underlying
communication graph in which each process can communicate with every other process.

Asynchrony. Both processing and communication are asynchronous. Therefore, each process
proceeds at its own speed, which can vary arbitrarily and remains always unknown to the
other processes. Message transfer delays are arbitrary but finite and remain always unknown
to the processes.

Failure Model. Processes (clients and servers) can fail arbitrarily, i.e., they can be Byzantine.
Specifically, we assume a Byzantine system in which the number of servers that can arbitrarily
fail is bounded by f , and in which the total number of servers, n, is at least 3f + 1. For
clients we assume that any of them can be Byzantine. We assume reliable channels between
non-Byzantine (correct) processes. Specifically, no message is lost, duplicated or modified.

3 This tradeoff is actually captured by the well-known CAP Theorem [4].
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Public and private keys. We assume that each process p (client or server) has a pair of
public and private keys, and that the public keys have been distributed reliably to all the
processes that may interact with each other. Hence, we discard the possibility of spurious
or fake processes (there cannot be Sybil attacks). We also assume that messages sent by
any process (server or client) are authenticated, so that messages corrupted or fabricated by
Byzantine processes are detected and discarded by correct processes [8]. Communication
channels between correct processes are reliable but asynchronous.

Byzantine-tolerant DSOs. Our first aim is to propose an algorithm that implement an
eventual-consistent DSO GS in a Byzantine asynchronous system. Here we present the
properties that a DSO should satisfy with respect to correct processes, given that Byzantine
processes may return any arbitrary set or add any arbitrary record:

Byzantine Completeness (BC): All the get() and add() operations invoked by correct
clients eventually complete.
Byzantine Eventual Consistency (BEC): This is the property of Definition 2 with respect
to all operations invoked by correct clients and the add(r) operations that insert the
records r returned by get() operations invoked by correct clients.

In the remainder, we say that a DSO is Byzantine Tolerant, denoted BDSO, and eventually
consistent if it satisfies properties BC and BEC.

Byzantine Reliable Broadcast. The algorithms presented in the next section to implement
BDSOs are based on an underlying Byzantine Reliable Broadcast (BRB) service [3, 20], which
ensures that a message sent by a correct process is received by all correct processes, and that
all correct processes eventually receive the same set of messages. The service provides two
operations, BRB-broadcast and BRB-delivery; the first broadcasts a message to all processes,
and the second delivers a message that was previously broadcast. The service is used by the
servers, and from their point of view, the BRB service guarantees the following properties
(as given in [20]):

Validity: if a correct process pi BRB-delivers a message m from a correct process pj , then
pj BRB-broadcast m.
Integrity: a message is BRB-delivered at most once by a correct server.
Termination 1 (local): if a correct process BRB-broadcasts a message, it BRB-delivers it.
Termination 2 (global): if a correct process BRB-delivers a message, all correct processes
BRB-deliver it.

Validity relates outputs to inputs. Validity and integrity concern safety. Termination is on
the fact that messages must be BRB-delivered; it concerns liveness. It follows (cf. [20]) that
all correct processes BRB-deliver the same set of messages, which includes all the messages
they BRB-broadcast.

3 Eventually Consistent BDSO Implementation

In this section we provide the implementation of eventually consistent distributed G-Sets in
an asynchronous distributed system with Byzantine failures. The implementation builds on
a generic deterministic Byzantine-tolerant reliable broadcast service [3, 20], which provides
the properties given in the previous section. Our implementation is optimally resilient, in
the sense that it can tolerate up to f Byzantine servers, out of n ≥ 3f + 1 servers.

Algorithm 1 presents the code of a client process, while Algorithm 2 presents the code
of a server. We now present a high level description of how the two algorithms together
implement an eventually consistent BDSO.
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Algorithm 1 Client API and algorithm for Eventually Consistent Byzantine-tolerant Distributed
G-Set Object GS. Code for Client p.

1: Init: c← 0
2: function GS.get( ) ▷ Invocation event
3: c← c + 1
4: send request get(c, p) to 3f + 1 different servers
5: wait responses getResp(c, i, Si) from 2f + 1 different servers
6: S ← {r : record r is in at least f + 1 sets Si}
7: return S ▷ Response event
8: function GS.add(r) ▷ Invocation event
9: c← c + 1

10: send request add(c, p, r) to 2f + 1 different servers
11: wait responses addResp(c, i, ack) from f + 1 different servers
12: return ack ▷ Response event

Algorithm 2 Server algorithm for Eventually Consistent Byzantine-tolerant Distributed G-Set
Object. Code for Server i.

1: Init: Si ← ∅
2: receive (get(c, p)) from process p ▷ Signature of p is validated
3: send response getResp(c, i, Si) to p

4: receive (add(c, p, r)) from process p ▷ Signature of p is validated
5: if (r /∈ Si) then
6: BRB-broadcast(propagate(i, add(c, p, r)))
7: wait until r ∈ Si

8: send response addResp(c, i, ack) to p

9: upon (BRB-deliver(propagate(j, add(c, p, r)))) do ▷ Signatures of j and p are validated
10: if (r /∈ Si) and (add(c, p, r) was received from f + 1 different servers j) then
11: Si ← Si ∪ {r}

When processing a GS.add(r) operation a client sends add messages to a set of 2f + 1
servers, which guarantees that at least f + 1 correct servers process it. These correct
servers broadcast the record r to all servers using the BRB service, which leads to all
correct servers i adding r to their replicas Si of the set. When f + 1 acknowledgement
messages are received from the servers, the operation completes.
When processing a GS.get() operation, a client need to ensure that the elements he
returns have been received from at least 1 correct server. For this reason the client returns
an element only if it was present in responses from f +1 different server. In order to avoid
the malicious behavior of f colluding servers that never return a correctly added element,
at least 2f + 1 responses are needed out of which take the f + 1 consistent getResp
containing the element. So, since 2f + 1 are required, at least 3f + 1 get messages must
be sent in order to always eventually get the number of needed responses.
Every server i maintains a replica Si of the set GS.S. When server i receives a get(c, p)
message from a process p it returns its current set Si to p. When i receives a message
add(c, p, r) from p, it makes sure r has been included in its replica Si before sending an
acknowledgment. Server i adds a record r to its replica Si only if a corresponding add
request has been processed by at least one correct server. This is guaranteed by the BRB
service and the requirement of receiving propagate(j, add(c, p, r)) from f + 1 different
servers. This also prevents Byzantine servers from adding spurious records in the set of
correct servers. The properties of the BRB service also guarantee that once a record r is
delivered, then all correct servers will eventually add record r to their replicas.

FAB 2021



2:8 Byzantine-Tolerant Distributed Grow-Only Sets: Specification and Applications

We now provide the complete proof that the combination of Algorithms 1 and 2 implement
an eventually consistent BDSO. In the proofs we consider that an operation π is invoked in
Lines 2 or 8 of Algorithm 1, and responds in Lines 7 or 12 (resp.) of the same algorithm. Let
us first show that Byzantine Completeness holds, i.e., that all operations invoked by correct
processes eventually complete.

▶ Lemma 3. Algorithms 1 and 2 guarantee Byzantine Completeness (BC) in a system in
which at most f out of n ≥ 3f + 1 servers are Byzantine.

Proof. Consider an operation GS.getp() invoked by a correct client p. We claim that the
operation eventually completes. From Algorithm 1, Line 4, p sends a request get(c, p) to
3f + 1 servers and waits for responses getResp(c, i, Si) from 2f + 1 different servers. From
the 3f + 1 servers to which the request is sent, at most f can be Byzantine, so at least 2f + 1
are correct servers that will eventually receive the get(c, p) message. These servers will
immediately send the corresponding response getResp(c, i, Si) to p (Line 3 of Algorithm 2).
When these responses are received eventually, the waiting in Line 5 of Algorithm 1 will end.
Since there is no other waiting condition, the operation will execute the return instruction
and complete.

Consider now an operation π = GS.addp(r) invoked by a correct client p. Then, the
request add(c, p, r) is sent to 2f + 1 servers (Algorithm 1, Line 10), and p waits until
responses addResp(c, i, ack) are received from f + 1 different servers. Since at most f

servers can be Byzantine, at least f + 1 correct servers will receive and process the request.
We prove that all these correct servers will send the corresponding response, the waiting in
Line 11 will end, and operation π will complete.

Let us consider the set C of correct servers that receive request add(c, p, r). Assume first
that there is some server i ∈ C that has r ∈ Si when the request is received and processed.
Then, server i sends immediately response addResp(c, i, ack) to p. Moreover, r was inserted
in Si in Line 11 of Algorithm 2, which implies that i received via BRB-deliver at least f + 1
messages propagate() from different servers containing add(c, p, r) requests. From the
Termination 2 property of the BRB service, all correct processes will receive the same f + 1
messages propagate(). Consider any other correct server j ∈ C that receives request add(c,
p, r). If r ∈ Sj when the request is received and processed, server j sends the response
addResp(c, j, ack) to p immediately. Otherwise, r /∈ Sj when the request is received and
processed, and j waits in Line 7. From the above argument, eventually r will be inserted in
Sj , the waiting will end, and j will send response addResp(c, j, ack) to p.

Assume now that no correct server i ∈ C has r ∈ Si when it receives request add(c, p,
r). Then, all the (at least f + 1) correct servers in C that receive and process the request
invoke BRB-broadcast(propagate(i, add(c, p, r))) and start waiting in Line 7. From the
Termination 1 property of the BRB-service, if a correct server BRB-broadcasts a message,
it also eventually BRB-delivers it. Moreover, from Termination 2, if it BRB-delivers the
message, all correct servers also BRB-deliver it. So each correct server i ∈ C will process
in Lines 9-11 messages propagate(j, add(c, p, r)) from at least f + 1 different servers j.
Hence, server i will insert r in Si in Line 11, the waiting will end, and i will send response
addResp(c, i, ack) to p. ◀

▶ Theorem 4. Algorithms 1 and 2 implement an Eventually Consistent BDSO, in a system
in which at most f out of n ≥ 3f + 1 servers are Byzantine.

Proof. We need to prove that Algorithms 1 and 2 guarantee Byzantine Completeness (BC)
and Byzantine Eventual Consistency (BEC). BC is shown to be satisfied in Lemma 3.
Regarding Byzantine Eventual Consistency, we need to demonstrate properties (a) and (b)
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of Definition 2 with respect to all the operations invoked by correct clients and the add(r)
operations that insert the records r returned in the get() operations invoked by correct clients.
Let HGS be any history including only invocation and response events of these operations.

Property (a): Consider a complete operation π = getp() ∈ HGS invoked by a correct
client p, let S be the set returned by π, and consider any r ∈ S. From Line 6 of Algorithm 1,
r belongs to at least f + 1 sets Si received in responses getResp(c, i, Si) from a set C of
different servers. All these responses must have been sent before the response event of π

(Line 7 of Algorithm 1).
Observe that C contains at least one correct server i. This mean that some correct server

i had r ∈ Si when it sent the response getResp(c, i, Si). A server i only adds a record to
its local set Si if that record was BRB-delivered in propagate(j, add(c′, p′, r))) from f + 1
different servers j (Line 10 of Algorithm 2). From the Validity property of the BRB service,
this means that at least f + 1 servers called BRB-broadcast(propagate(j, add(c′, p′, r)) in
Line 6. Again, since at least one of them is correct, at least one invocation of BRB-broadcast
was done by a process because it previously received a request add(c′, p′, r) from client p′.
Hence the invocation of add(r) must have preceded the reception of this request, and by
transitivity must have preceded the response event of π.

Property (b): This property holds if, for every complete operation GS.add(r) ∈ HGS ,
there exists a time t after which every GS.get() operation invoked after t returns sets S that
contains r. Let us first consider a complete operation π = GS.addp(r) ∈ HGS invoked by a
client p (which can be correct or Byzantine). We claim that there is some correct server i

that eventually adds record r to its replica Si. This is true when p is Byzantine, since that is
the requirement for an add(r) operation of a Byzantine client to be considered.

On the other hand, if p is correct, let us assume for contradiction that no correct server
i adds record r to its replica Si. Process p sends request add(c, p, r) to 2f + 1 servers,
out which at least f + 1 are correct. By assumption, r /∈ Sj when each of these servers j

processes the request, and hence all of them execute BRB-broadcast(propagate(j, add(c, p,
r))) (Line 6 of Algorithm 2). Then, from the Termination 1 and Termination 2 properties of
the BRB service, some correct server i will BRB-deliver at least f +1 messages propagate(j,
add(c, p, r)) from different servers j, and then record r will be added to Si in Line 11. This
is a contradiction, and some correct server i eventually adds record r to its replica Si when
client p is correct.

Hence, we have that, independently of whether p is correct, some correct server i added
record r to its set Si. Observe that a correct process i only adds records to its replica Si, in
Line 11, when BRB-deliver at least f +1 messages propagate(j, add(c, p, r)) from different
servers j. Then, if i adds r to Si, from the Termination 2 property all correct servers will
eventually BRB-deliver at least f + 1 messages propagate(j, add(c, p, r)) from different
servers j, and they will all add r to their replicas.

Let t be the first time all correct servers have r in their corresponding replica. Then,
for every GS.get() operation invoked after t, the responses from correct servers collected in
Line 5 of Algorithm 1 have replicas Si with record r. Since there at least f +1 responses from
correct servers, in Line 6 r is included in the set S, which is then returned by GS.get(). ◀

4 Applications of BDSOs

In this section we demonstrate the usability of BDSOs by using them to provide consensus-free
solutions to the Atomic Appends and Atomic Adds problems, as well as a consensus-free
construction of a Single-Writer Byzantine-tolerant Distributed Ledger Object (BDLO).

FAB 2021



2:10 Byzantine-Tolerant Distributed Grow-Only Sets: Specification and Applications

4.1 The Atomic Appends Problem
The Atomic Appends problem was introduced in [10] as a basic interconnection problem
among distributed ledgers (DLOs); see Appendix A for basic definitions with respect to
DLOs. Informally, Atomic Appends requires that several records must be appended in their
corresponding DLOs, so that either all records are appended (each in the appropriate DLO)
or none is appended to any DLO. In [6], the problem was formulated (and solved) in the
presence of Byzantine servers and clients.

Definition of the problem. For completeness, we provide the formal definition as given
in [6]. A record r depends on a record r′ if r may be appended on its intended BDLO, say L,
only if r′ is appended on its intended BDLO, say L′. Two records, r and r′ are mutually
dependent if r depends on r′ and r′ depends on r.

▶ Definition 5 (2-AtomicAppends [6]). Consider two clients, p and q, with mutually dependent
records rp and rq. We say that records rp and rq are appended atomically in BDLO Lp and
BDLO Lq, respectively, when:

AA-safety (AAS): The record rp of a correct client p is appended in Lp only if the record
of the other client q (which may be correct or not) is also appended in Lq.
AA-liveness (AAL): If both p and q are correct, then both records are appended eventually.

Observe that it is not possible to prevent a faulty client q from appending its record
rq, even if the correct client p does not append its record. What the safety property AAS
guarantees is that the opposite cannot happen. This is analogous of the property in atomic
cross-chain swaps [14] that a correct process cannot end up worse than at the beginning.

We say that an algorithm solves the 2-AtomicAppends problem4 under a given system, if
it guarantees properties AAS and AAL of Definition 5 in every execution. Since we consider
Byzantine failures, our system model with respect to the Atomic Appends problem is such
that the correct processes want to proceed with the append of the records (to guarantee
liveness AAL), while the Byzantine processes may try to get correct clients to append without
the Byzantine clients doing so (to prevent safety AAS).

Prior solution. The solution of 2-AtomicAppends in [6], following the work in [10], uses an
auxiliary, special purpose BDLO, called Smart BDLO (SBDLO) to aggregate and coordinate
the append of multiple records. In a nutshell, the solution in [6] is as follows. Consider two
clients, p and q, that wish to append atomically two mutually dependent records, rp and rq,
in BDLOs Lp and Lq, respectively. Then, they both send matching atomic append requests
to the SBDLO. Once both requests are received by the SBDLO (otherwise the atomic append
never takes place), the servers implementing the SBDLO proceed to append each record
to the appropriate BDLOs. In particular, the servers of the SBDLO now become clients
issuing the corresponding appends to the servers implementing the DBLOs Lp and Lq (each
BDLO could be implemented by different servers, as these are essentially different distributed
ledger systems). The whole process involves several algorithms: the algorithm run by the
clients to issue the atomic append request, the algorithm run by servers to implement the
SBDLO, and the algorithm run by the servers of the SBDLO (as clients) with the servers of
each individual BDLO. Once both append operations are completed, the SBDLO servers
acknowledge this to clients p and q. It is shown that the combination of these algorithms
guarantee Properties AAS and AAL above, despite having Byzantine servers and clients.

4 The k-AtomicAppends problem, for k ≥ 2, is a generalization of the 2-AtomicAppends that can be
defined in the natural way: k clients, with k mutually dependent records, to be appended to k BDLOs.
To keep the presentation simple, we focus in the case of k = 2.
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Algorithm 3 API for the 2-AtomicAppend of records rp and rq in ledgers Lp and Lq by clients p

and q, respectively, using SBDSO GS. Code for Client p.

1: function AtomicAppends(p, {p, q}, rp,Lp, rq)
2: GS.add(⟨p, {p, q}, rp,Lp, rq⟩)
3: return ack
4: // Client p will know the Atomic Appends operation was completed successfully when it receives

notifications from f + 1 different SBDSO servers. //

Algorithm 4 Server algorithm for Smart Byzantine-tolerant DSO. Code for Server i.

1: Init: Si ← ∅
2: receive (get(c, p)) from process p ▷ Signature of p is validated
3: send response getResp(c, i, Si) to p

4: receive (add(c, p, r)) from process p ▷ Signature of p is validated
5: if (r /∈ Si) then
6: BRB-broadcast(propagate(i, add(c, p, r)))
7: wait until r ∈ Si

8: send response addResp(c, i, ack) to p

9: upon (BRB-deliver(propagate(j, add(c, p, r)))) do ▷ Signatures of j and p are validated
10: if (r /∈ Si) and (add(c, p, r) was received from f + 1 different servers j) then
11: Si ← Si ∪ {r}
12: if (r.v = ⟨p, {p, q}, rp,Lp, rq⟩) and
13: (∃r′ ∈ Si : r′.v = ⟨q, {p, q}, rq,Lq, rp⟩) then
14: Lp.append(rp); Lq.append(rq)
15: Notify clients p and q that records rp and rq have been appended to Lp and Lq

Our approach. In this work we treat the part of the individual BDLOs (Lp and Lq)
implementations as black boxes and we focus on the auxiliary entity that is used for
coordinating the atomic append requests. In [6], the SBDLO, being a Distributed Ledger
object, required the use of a Byzantine Total-order Broadcast [17] service. It was shown
in [10] that consensus is required for implementing a (B)DLO; this is because of the strong
prefix property of (B)DLOs (see Appendix A), which requires that records must be totally
ordered. Hence, atomic appends was solved using consensus to implement the SBDLO.
However, one can notice that in the auxiliary entity, the atomic append requests do not need
to be totally ordered. It is sufficient to only keep track whether both requests have been
made. In other words, why keeping these requests in a sequence, and not in a set?

In this respect, we show that instead of using a special purpose BDLO as the auxiliary
entity, we can simply use a special purpose eventually consistent BDSO, which we will be
referring as SBDSO. As we have seen in Section 3, eventually consistent BDSOs can be
implemented without consensus (instead of a Byzantine total-order broadcast service, we use
only a Byzantine reliable broadcast service), yielding a consensus-free solution to Atomic
Appends (with respect to the actual atomic append requests).

Our solution. Algorithm 3 specifies how processes p and q delegate the task of appending
their records in the respective ledgers. They do so by adding in the SBDSO a description
of the Atomic Appends operation to be completed. Client p uses the GS.add operation to
provide the SBDSO with the data it requires to complete the Atomic Appends, namely the
participants in the Atomic Appends, the record rp, the BDLO Lp, and the record rq the
other client is appending. (The other client must do the same.)
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For the SBDSO, it suffices to implement an eventually consistent BDSO in which up to f

servers out of n ≥ 3f + 1 are Byzantine, but that only allows the creator of a record to add
it (signatures are used for this purpose). Algorithm 4 describes the processing of the add
message by the SBDSO. As expected, it is very similar to the implementation of a BDSO, but
with an important difference: every time a record r is added to the sequence Si, it is checked
whether a matching record r′ is already there. This is the case if r.v = ⟨p, {p, q}, rp, Lp, rq⟩,
and r′.v = ⟨q, {p, q}, rq, Lq, rp⟩. If so, the corresponding append operations are issued in the
respective BDLOs Lp and Lq (the implementation of this part is the one described in [6]).
So, essentially the servers implementing the SBDSO, become proxies of clients p and q, and
once the above condition is met, they issue the corresponding appends. When these appends
are successful, the servers implementing the ledgers Lp and Lq, acknowledge the SBDSO
servers. In turn, the SBDSO servers notify clients p and q that records rp and rq have been
appended to Lp and Lq, respectively. Clients p and q will know that the Atomic Appends
operations was completed successfully when they receive these notifications from at least
f + 1 different SBDSO servers.

▶ Theorem 6. The combination of Algorithms 3 and 4 solves the 2-AtomicAppends problem.

The proof follows from the one in [6], taking into consideration the above discussion.
▶ Remark. Following the approach described in [6, Section IV-B], the SBDSO can be replaced
by a “classical” BDSO GS and the use of a set of “helper” processes. The helper processes
take upon themselves the task of consulting GS periodically in order to find new matching
descriptions of and Atomic Appends operation. When such a match is found, they complete
the corresponding appends (as done in Lines 13-15 of Algorithm 4).

4.2 The Atomic Adds Problem
Inspired by the Atomic Appends problem, one could define the analogous problem on BDSOs,
Atomic Adds: several records must be added in their corresponding BDSOs, and either all
records are added (each in the appropriate BDSO) or none is added. The formal definition
follows that of the Atomic Appends.

▶ Definition 7 (2-AtomicAdds). Consider two clients, p and q, with mutually dependent
records5 rp and rq. We say that records rp and rq are added atomically in BDSO GSp and
BDSO GSq, respectively, when:

AAd-safety (AAdS): The record rp of a correct client p is added in GSp only if the record
of the other client q (which may be correct or not) is also added in GSq.
AAd-liveness (AAdL): If both p and q are correct, then both records are added eventually.

The k-AtomicAdds problem can be defined in the natural way: k clients, with k mutually
dependent records, to be appended to k BDSOs. It is not difficult to see that a consensus-free
algorithmic solution for this problem can be derived by simple modifications of our solution
to the Atomic Appends problem and the use of the BDSO implementation of Section 3.

Atomic Adds API and server code. The Atomic Adds API, shown in Algorithm 5, is very
close to Algorithm 3. The main difference is the content of the data to be added (since now
we have G-Sets and not ledgers). The code run by the servers of SBDSO is the same as
in Algorithm 4, with the difference that Lines 12 and 13 check for matching atomic add

5 The definition of mutually dependent records is as in the case of Atomic Appends, but for BDSOs
instead of BDLOs.
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Algorithm 5 API for the 2-AtomicAdds of records rp and rq in BDSOs GSp and GSq by clients p

and q, respectively, using SBDSO GS. Algorithm for Client p.

1: function AtomicAdds(p, {p, q}, rp,GSp, rq)
2: GS.add(⟨p, {p, q}, rp,GSp, rq⟩)
3: return ack
4: // Client p will know the Atomic Adds operation was completed successfully when it receives

notifications from f + 1 different SBDSO servers. //

Algorithm 6 Client API and algorithms for Eventually Consistent Single-Writer BDLO L with
n ≥ 4f + 1 and writer process w. Code for Client p.

1: Init: c← 0, k ← 0
2: function L.get( )
3: c← c + 1
4: send request get(c, p) to 3f + 1 different servers
5: wait responses getResp(c, i, Si) from 2f + 1 different servers
6: A← {r : record r is in at least f + 1 sets Si}
7: S ← {r ∈ A : (r.k = 1) ∨ (∃r′ ∈ A : r.k = r′.k + 1)}
8: return sequence ⟨ρ1, . . . , ρm⟩, where m = |S| and rℓ = (ℓ, ρℓ) ∈ S

9: function L.append(ρ) ▷ Can only be called by process w

10: c← c + 1, k ← k + 1
11: r ← (k, ρ)
12: send request add(c, w, r) to ⌊n/2⌋+ 2f + 1 different servers
13: wait responses addResp(c, i, ack) from f + 1 different servers
14: return ack

requests, and once found, in Line 14 will call the corresponding add operations, GS.add(rp)
and GS.add(rq), which are implemented by the algorithms in Section 3. Note that the
condition in Line 10 of Algorithm 2 may have to be expanded in order to prevent the (up to
f) Byzantine servers that implement the SBDSO from adding spurious records in GSp and
GSq. This may be achieved adding a record r in these DSOs only if at least f + 1 clients
(the servers of the SBDSO) request it to be added, similarly as done in [6].

The sequence of events is now as described in the Atomic Appends solution, with the
difference that no BDLOs are now involved, only BDSOs. Putting everything together, we
obtain the following, whose proof details are omitted (it is essentially a restatement of the
corresponding observations in the atomic appends proof in [6], and the correctness of the
algorithms in Section 3):

▶ Theorem 8. The combination of the API of Algorithm 1, the API of Algorithm 5, and the
revised versions of Algorithms 2 and 4, yields a solution to the 2-AtomicAdds problem.

As noted above, the SBDSO could be replaced by a “classical” BDSO and the use of a
set of “helper” processes. See [6, Section IV-B] for this approach.

4.3 Consensus-free Single-Writer BDLO
The BDSO can also be used to implement a Single-Writer BDLO without relying on consensus.
This is obtained with a BDSO that allows only a single writer process w to add records,
in which each record has an index determining its position in the BDLO sequence, and
that does not allow adding more than one record with the same index. Allowing only add
operations from w is trivially achieved by validating the signature when a request is received
by a server, and will not be done explicitly in our algorithms. To prove correctness we
need to show that any execution of the Single-Writer BDLO L we implement satisfies the
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Algorithm 7 Server algorithm for Eventually Consistent Single-Writer BDLO L with n ≥ 4f + 1
and writer process w. Code for Server i, and Writer w.

1: Init: Si ← ∅, T ← ∅
2: receive (get(c, p)) from process p

3: send response getResp(c, i, Si) to p

4: receive (add(c, w, r)) from process w

5: if (r.k /∈ T ) then
6: BRB-broadcast(propagate(i, add(c, w, r)))
7: T ← T ∪ {r.k}
8: wait until r ∈ Si

9: send response addResp(c, i, ack) to w

10: end receive
11: upon (BRB-deliver(propagate(j, add(c, w, r)))) do
12: if (add(c, w, r) was received from ⌊n/2⌋+ f + 1 different servers j) then
13: Si ← Si ∪ {r}

Byzantine Completeness and Byzantine Eventual Consistency properties, but redefined for
the L.append() and L.get() operations, and sequences instead of sets (see Appendix A).
Additionally, the Byzantine Strong Prefix property, as defined in [6], must also be satisfied.

▶ Definition 9 (Byzantine Strong Prefix [6]). If two correct clients of a BDLO L issue two
L.get() operations that return record sequences S and S′ respectively, then either S is a prefix
of S′ or vice-versa.

Algorithm 6 presents the API and the code executed by a client of the Single-Writer
BDLO L, while Algorithm 7 presents the code executed by the servers that implement it.
These algorithms require that the number of servers n satisfies n ≥ 4f + 1. As can be seen,
the append operation assigns an index k to every record data d appended by w, so the record
added is in fact the pair r = (k, d). Observe that Algorithms 6 and 7 are very similar to
Algorithms 1 and 2, but have a few differences. (1) In Algorithm 6, L.append(d) adds an
index k to each record and sends the append requests to a potentially much larger set of
⌊n/2⌋ + 2f + 1 servers, while L.get() filters the set to be returned so it is a sequence of
records with consecutive indices. (2) Algorithm 7 avoids appending different records with
the same index r.k by using this field for comparisons, keeping track in T of the indices that
have been BRB broadcast, and collecting at least ⌊n/2⌋ + f + 1 messages propagate(j,
add(c, w, r)) before adding r to the set. Observe that the requirement on n comes from the
fact that the append requests are sent to ⌊n/2⌋ + 2f + 1 servers, and hence, f < n/4.

▶ Theorem 10. Algorithms 6 and 7 implement an eventually consistent Single-Writer
BDLO L.

Proof. We will first show Byzantine Completeness, then Byzantine Eventual Consistency
and lastly Byzantine Strong Prefix.

Byzantine Completeness: Let us consider an L.get() operation invoked by a correct client
p. Then request get(c, p) is sent to 3f + 1 different servers so at least 2f + 1 correct ones
will eventually send back their responses; in fact correct servers simply answer back in Line 3
of Algorithm 7 with a getResp(c, i, Si) containing their local Si. Then, the condition of
the wait operation in Line 5 is eventually satisfied and the operation completes.

Let us now assume that w is correct, and consider an L.append() operation. Then, requests
add(c, w, r) will be sent (Line 12 of Algorithm 6) to ⌊n/2⌋ + 2f + 1 servers, so at least
⌊n/2⌋ + f + 1 correct ones will receive it. Since w is correct, it increments k before sending
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the add(c, w, r) messages (Line 10 of Algorithm 6), so the same index k is not used twice.
Then, every correct process that receives add(c, w, r) finds that r.k /∈ T (since T is updated
in Line 7 of Algorithm 7 only after this check). Hence, the BRB-broadcast(propagate(i,
add(c, w, r))) in Line 6 is called at least by ⌊n/2⌋ + f + 1 correct servers. For this reason,
by the Termination properties of the BRB service, the condition in Line 12 will eventually
be satisfied exactly once and record r is inserted in the local set Si (Line 13 of Algorithm 7).
So the condition in Line 8 of Algorithm 7 turns true and the response is sent back to the
correct client w. Since this holds for at least ⌊n/2⌋ + f + 1 correct servers that received the
request, and ⌊n/2⌋ + f + 1 > f + 1, the condition in Line 13 of Algorithm 6 will be satisfied
and the append operation will terminate.

Byzantine Eventual Consistency: In order to demonstrate Byzantine Eventual Consistency
we need to demonstrate Properties (a) and (b) of Definition 2 with respect to histories HL
that contain only events of get operations by correct clients and append operations of records
that are returned in those get operations. Note that L.append(ρ) and L.get() are considered
in place of GS.add(r) and GS.get().

Property (a): Let L.get be a complete operation in HL. Let S be the set from where the
sequence returned by L.get is extracted. Then, from Line 7 of Algorithm 6, ∀r ∈ S the
client verified that r belongs to f + 1 different sets Si (Line 6 of Algorithm 6) returned
in a getResp(c, i, Si) by different servers. This means that at least a correct server
has r ∈ Si. A server only adds data to its local set Si if that data was BRB-delivered in
propagate(-, add(-, -, r)) messages from ⌊n/2⌋ + f + 1 different servers. Thanks to
the Validity property of the BRB service, this means that at least ⌊n/2⌋ + f + 1 servers
called BRB-broadcast with that message. Again, at least ⌊n/2⌋ + 1 of them are correct,
and they called BRB-broadcast because they received add(c, p, r) from client w. So,
∀r = (k, ρ) ∈ S, an L.append(ρ) invocation precedes the L.get response.
Property (b): This is equivalent to say that ∀ρ such that L.append(ρ) ∈ HL, eventually
there exist a time t such that ρ will be included in all the sequences returned by complete
L.get ∈ HL invoked after t.
Assume w is Byzantine and consider an operation L.append(ρ) ∈ HL. Then, some L.get()
operation by a correct client returned a sequence with r = (k, ρ), which means that it
received at least f + 1 messages getResp(c, i, Si) in which r ∈ Si. This means that at
least one correct server i had r ∈ Si. Then, server i BRB-delivered at least ⌊n/2⌋ + f + 1
propagate(-, add(-, -, r)) messages, and by the Termination properties of the BRB
service all correct servers j will do as well, and will include r in their local sets Sj . Then,
any other get operation will always have f + 1 responses including r from correct servers.
Assume now that w is correct. Then, it sends requests add(c, w, r) with r = (k, ρ) to
at least ⌊n/2⌋ + 2f + 1 servers, so that at least ⌊n/2⌋ + f + 1 correct ones will process
it calling BRB-broadcast in Line 6 of Algorithm 7. From the Termination properties
of the BRB service, ⌊n/2⌋ + f + 1 propagate(-, add(-, -, r)) messages coming from
different servers will be eventually BRB-delivered to all correct servers. Then, all correct
servers will eventually add r to their local Si because of the fulfilment of ⌊n/2⌋ + f + 1
requirement in Line 12 of Algorithm 7. L.get(), on its side, returns r if it was seen at least
in f + 1 out of 2f + 1 different responses. Since at most f can have Byzantine behaviour
and eventually all server will include r in their local Si, there will exist a moment in
which L.get() will always have f + 1 responses including r from correct servers.
We have shown that, independently of whether w is correct, if ρ is returned in some get
operation of a correct client, eventually a record r = (k, ρ) will be in all the sets Sj of
all correct servers j. Then, there exist a moment in which r is definitely always part of
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temporary set A in Line 6 of Algorithm 6 in all get operations. Now, in order to ensure
that r is part of S, and the sequence returned, we need to demonstrate that Line 7 of
client Algorithm 6 does not filter it, eventually. We proceed by induction. If r.k = 1 then
record r is included in S. If r.k > 1, assume the claim true for record r′ = (k − 1, ρ′).
I.e., there is a time t′ after which r′ is always in A. Then, there is a time t ≥ t′ in which
both r and r′ are always in A. After t record r will always be included in S and returned
by all get operations.

Byzantine Strong Prefix: Let S = (r0, ..., ra) and S′ = (r′
0, ..., r′

b) the two sets from which
the sequences returned by the two L.get() operations are extracted in Line 8. Just as a
convenience in notation, we will refer r = (k, ρ) as rk = ρ. Line 7 of the client Algorithm 6
ensures that records in S and S′ can be ordered and that there are not missing element in
the sequence. If S and/or S′ are empty then one is trivially prefix of the other. So let’s
assume they both have at least one element and, without loss of generality, that a ≤ b.
Also, let us assume by way a contradiction that the sequence extracted from S is not a
prefix of the sequence from S′. This is equivalent to state that ∃i ≤ a : ri ̸= r′

i. From
Line 6 of Algorithm 6 we know that rj and r′

j with 1 ≤ j ≤ a were returned at least by one
correct server in their respective get operations. So, assuming that such an index i exists
means that at least two correct servers executed Line 13 of Algorithm 7 for the two records,
respectively. This implies that, for both, the condition of Line 12 was true because they
received messages propagate(−, add(c,p,ri)) from a set C of at least ⌊n/2⌋ + f + 1 servers,
and messages propagate(−, add(c,p,r′

i)) from a set C ′ of at least ⌊n/2⌋ + f + 1 servers.
Note that each C and C ′ contains at least ⌊n/2⌋ + 1 correct servers. It is obvious that
broadcasters of these propagate messages must intersect in at least one correct server j.
So, from the Validity property of the BRB service, at least correct server j called both BRB-
broadcast(propagate(j, add(c,p,ri))) and BRB-broadcast(propagate(j, add(c,p,r′

i))).
Line 5 of Algorithm 7 filters the received add(c,p,r) request, so only if r.k /∈ T they are
propagated via the BRB-broadcast. If so, Line 7 of Algorithm 7 adds r.k to T right after the
BRB-broadcast. Assume, w.l.o.g., that j received add(c,p,ri) before receiving add(c,p,r′

i).
As soon as j BRB-broadcast propagate(i, add(c,p,ri))), it added ri.k to T . Then, when it
received add(c,p,r′

i) it found that r′
i.k ∈ T , and BRB-broadcast(propagate(i, add(c,p,r′

i)))
was not executed. But this contradicts our assumption that ∃i ≤ a : ri ̸= r′

i. Hence, the
sequence extracted from S must be a prefix of the sequence from S′. ◀

5 Conclusions and Future Work

In this paper we formally define the notion of a Byzantine-tolerant Distributed G-Set Object
(BDSO) and provide client and server algorithms to implement a consensus-free eventually
consistent BDSO. Then we proceed with some use cases for BDSO. Building on the work
in [6] and using BDSOs we provide a consensus-free solution to the Atomic Appends problem.
Similarly, we provide a consensus-free solution to the Atomic Adds problem, the analogous
problem that uses sets instead of ledgers. Finally, we show how a few modifications to the
client and server algorithms of BDSO, enable to realise an eventual consistent Single-Writer
Byzantine Distributed Ledger without solving consensus among servers but still guaranteeing
the Byzantine Strong Prefix property. Single-Writer consensus-free BDLO can be suitable for
many use cases, like implementing a cryptocurrency or a punch in/out system for employees
of a company. These are scenarios where realising transactional systems in a Byzantine
failure model through consensus may not provide reasonable performance, since the need of
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updating the system global status prevents sustaining a high throughput of operations. Our
future plans include implementing and experimentally evaluating the algorithms proposed in
this work, as well as specifying a cryptocurrency based on single-writer BDLOs.
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A DLO Definitions

For the reader’s convenience, we provide the basic definitions regarding Distributed Ledger
Objects [10].

A ledger L is a concurrent object that stores a totally ordered sequence L.S of records and
supports two operations (available to any process p): (i) L.getp(), and (ii) L.appendp(r). The
sequential specification of a ledger L is as follows:

▶ Definition 11. The sequential specification of a ledger L over the sequential history HL is
defined as follows. The value of the sequence L.S of the ledger is initially the empty sequence.
If at the invocation event of an operation π in HL the value of the sequence in ledger L is
L.S = V , then:
1. if π is an L.getp() operation, then the response event of π returns V , and
2. if π is an L.appendp(r) operation, then at the response event of π, the value of the

sequence in ledger L is L.S = V ∥r (where ∥ is the concatenation operator).
A Distributed Ledger Object, DLO for short, is a concurrent ledger object that is
implemented in a distributed manner. In particular, the ledger object is implemented by
servers, and clients invoke the get() and append() operations.

▶ Definition 12. A DLO L is eventually consistent if, given any history HL,
(a) Let S be the sequence of records returned by any complete operation π = get() ∈ HL and

ρi the generic record that belongs to S. For each ρi ∈ S then HL contains append(ρj)
for j = 1...i whose invocation events appear before the response event of π in HL, and

(b) for every complete operation L.append(ρ) ∈ HL, there exists a history H ′
L that extends

HL such that, for every history H ′′
L that extends H ′

L, every complete operation L.get()
in H ′′

L \ H ′
L returns a sequence that contains ρ.

Observe that the above definition is equivalent to the one given in [10, Definition 4].

A DLO is an eventually consistent Byzantine-tolerant DLO (BDLO), if it satisfies the
next three properties:

Byzantine Completeness (BC): All the get() and append() operations invoked by correct
clients eventually complete.
Byzantine Strong Prefix (BSP): If two correct clients issue two get() operations that
return record sequences S and S′ respectively, then either S is a prefix of S′ or vice-versa.
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Byzantine Eventual Consistency (BEC): This is the property of Definition 12 with respect
to the get() operations invoked by correct clients and the append(r) operations that
append the records r returned in those get() operations.

B Acronyms table

Table 1 Meaning of acronyms.

DLT Distributed Ledger Technologies
DLO Distributed Ledger Object

SDLO Smart Distributed Ledger Object
BDLO Byzantine-tolerant Distributed Ledger Object

SBDLO Smart Byzantine Distributed Ledger Object
G-Set Grow-only Set
DSO Distributed Grow-only Set Object

BDSO Byzantine-tolerant Distributed Grow-only Set Object
BRB Byzantine Reliable Broadcast
BToB Byzantine Total-order Broadcast Service

CRDTs Conflict-Free Replicated Data Type
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