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Abstract Modeling the behavior and spread of infectious diseases on space and7

time is key in devising public policies for preventive measures. This behavior is so8

complex that there are lots of uncertainties in both the data and in the process9

itself. We argue here that these uncertainties should be taken into account in the10

modeling strategy. Machine learning methods, and neural networks, in particular,11

are useful in modeling this sort of complex problems, although they generally lack12

of probabilistic interpretations. We thus present here a neural network method13

embedded in a Bayesian framework for modeling and predicting the number of14

cases of infectious diseases in areal units. A key feature is that our combined15

model considers the impact of human movement on the spread of the infectious16

disease, as an additional random factor to the also considered spatial neighborhood17

and temporal correlation components.18

Our model is evaluated over a COVID-19 dataset for 245 health zones of19

Castilla-Leon (Spain). The results show that a Bayesian model informed by a neu-20

ral network method is generally able to predict the number of cases of COVID-1921

in both space and time, with the human mobility factor having a strong influence22

on the model.23
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1 Introduction26

Infectious diseases are the main cause of health hazards in the world and are re-27

sponsible for deaths of millions of people around the world (WHO, 2019). Various28

outbreaks of infectious diseases have occurred throughout human history, and in-29

deed there is currently a global health pandemic caused by the novel Coronavirus30

disease (COVID-19). More than 90 million people have been infected and more31

than 2 million people have lost their lives (Worldometer, 2020; Wu et al., 2020)32

as of January 2021 due to COVID-19. To contain the spread of this virus, vari-33

ous regulations such as social distancing measures, travel restrictions, and city or34

nation-wide lockdowns have been put in place by policy makers around the world.35

These regulations, although effective in containing the spread of the disease, have36

also impacted the daily lives of people, social behavior and the global supply chain37

(Jones et al., 2008). The transmission of general infectious diseases (e.g. COVID-38

19) exhibits spatio-temporal patterns and can be predicted based on ecological,39

environmental and socio-economic factors (Anno et al., 2019; Yang et al., 2020).40

Prediction of these infections is important for government and health workers to41

plan for effective mitigation by prioritizing the actions of prevention and control42

measures (Remuzzi & Remuzzi, 2020).43

Human movement typically stimulates the introduction of infectious diseases44

into a new region. There are various evidences that due to human movement,45

a region-specific disease is introduced to a new region (Stoddard et al., 2009;46

Nunes et al., 2014) and spreads locally (Stoddard et al., 2013; Gross et al., 2020).47

Indeed, a number of recent studies have incorporated human movement factors48

into the modeling strategy (M. U. G. Kraemer et al., 2019; Massaro et al., 2019;49

Mukhtar et al., 2020). For example, the increased human mobility in western Africa50

had a high impact in making the Ebola virus catastrophic (Farrar & Piot, 2014).51

Bogoch et al. (2015) studied the air transport data of flights going out of the52

Ebola virus affected countries, finding air transport also one of the reasons for the53

transmission. In the case of COVID-19, it is also seen that the measures related54

to human movements, such as travel restrictions and social distancing, have been55

effective in containing the diseases (Fang et al., 2020; M. Kraemer et al., 2020).56

It is a fact that the introduction of human mobility in epidemiological studies has57

been more accessible due to technological advancements in locational services and58

availability of movement data (Guinness, 2016; Sedlar et al., 2019). In this context,59

availability of technologies such as WiFi or cell phone tower positioning systems60

and global navigation satellite systems have made the analysis of mobility much61

easier (Gonzalez et al., 2008; Toch et al., 2019).62

The spread of infectious diseases in space and their outbreak in time consti-63

tute a complex spatio-temporal problem, which is an effect of complex dynamics64

of human behavior, environment, and their interactions. Furthermore, as reported65

in Pan et al. (2020) , during pandemics the human mobility pattern changes com-66

pared to that of other times which makes the problem more complex and difficult67

to analyze. Deep learning methods have proven to be suitable for modeling such68

complex problems (Mosavi et al., 2020). Indeed, (Ak et al., 2018; Titus Muurlink69

et al., 2018; Akhtar et al., 2019; Anno et al., 2019; Kapoor et al., 2020; Wiec-70

zorek et al., 2020) have used neural networks (some with human mobility data)71
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to model the spread of infectious diseases. Neural network-based methods rely on72

a hidden stage to learn from the data and are unable to explicitly account for73

the spatial and spatio-temporal random effects. However, although these methods74

have performed well, they are unable to provide uncertainties in the predictions,75

which we believe are essential in statistical inference and probabilistic forecast-76

ing. We argue that predictions accompanied with uncertainties provide further77

confidence on the results (Beale & Lennon, 2012). To incorporate uncertainties78

in neural networks, Bayesian neural networks have been developed (Kononenko,79

1989; Dhamodharavadhani et al., 2020) and applied over various spatio-temporal80

problems (McDermott & Wikle, 2019). However, in the field of modeling and un-81

derstanding the dynamics of COVID-19, the use of neural networks in combination82

with Bayesian inference is limited. Cabras (2020) presented a method of combining83

neural networks with Bayesian inference having a focus on COVID-19 infections84

in Spain. However, mobility and its influences were not considered. As spatio-85

temporal predictions help in understanding the spread of the disease to further86

identify the regions of high risk, a large number of papers can be found in the field87

of spatio-temporal modeling of diseases. Among them, generalized linear models88

(GLM) with the addition of spatial effects of nearby places and/or temporal effects89

from past events are found to be often used and proven to be useful in prediction90

(Guo et al., 2017; Cabrera & Taylor, 2019; Giuliani et al., 2020). For example,91

Giuliani et al. (2020) have used GLM to predict COVID-19 infections in regions92

of Italy, and found the spatial interactions of nearby places to have a high influ-93

ence on modeling; this shows the importance of accounting for the spatial effects94

explicitly. In a parallel vein, Bayesian modeling methods have also been used in95

this epidemiological context (Gelman et al., 2013; Aswi et al., 2019; Song et al.,96

2019; Torres-Signes et al., 2020).97

In this context, our approach focuses on the use of deep learning methods (us-98

ing a Long Short Term Memory-LSTM) informing a Poisson regression model in99

a Bayesian framework to model and predict the spread and outbreak of COVID-19100

with uncertainties. In particular, human mobility data along with socio-demographic101

variables are incorporated in the combined model to predict the dynamics of102

COVID-19. In doing so, we highlight the importance of human mobility in mod-103

eling the dynamics of infectious diseases.104

The plan of the paper is as follows. Section 2 presents the data along with105

all covariates considered in the model to motivate the proposed statistical model.106

We also consider some spatial weights built from the movement data. Section 3107

presents the statistical model, and the results come in Section 4. The paper ends108

with some conclusions and a discussion in Section 5.109

2 Study area and data110

Daily COVID-19 infections aggregated per 2451 health zones in the community111

of Castilla-Leon (Spain) were used in this paper. The temporal range goes from112

March 1, 2020 to February 5, 2021. Castilla-Leon is the largest community in Spain113

1 Here, the health zones SORIA NORTE, SORIA SUR and SORIA RURAL are aggregated
to a single unit.
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by area located in the northwest part of Spain. This region has a population of114

around 2.5 million and is ranked third among the communities in offering social115

services to the citizens. Figure 1 shows the location map of the study area and also116

cumulative COVID-19 cases per 10000 inhabitants per health zone until February117

5, 2021. We note that COVID-19 has spread throughout the study area with118

clusters around major urban areas.119

Fig. 1: (a) Location of Spain; (b) Location of Castilla-Leon in Spain; (c) Cumu-
lative numbers of COVID-19 cases per 10000 inhabitants and health zones; (d)
Histogram of cumulative cases per health zones of Castilla-Leon

COVID-19 cases data were retrieved from the open data portal of Castilla-120

Leon 2. Similarly, the socio-demograhic datasets and the health zone boundary, in121

shapefile form, were downloaded from the open data platform of Instituto Nacional122

de Estad́ıstica 3. The human mobility data for the study area was acquired from123

Barcelona Supercomputing Center flowmap dashboard 4. A brief description and124

source of the datasets used in the current paper are reported in Table 1.125

Figure 2 shows the daily number of COVID-19 cases per 10000 inhabitants.126

The highlighted red line represents the daily mean number of cases per 10000127

inhabitants. The cases increased in March and April 2020 (defining the first wave),128

and then started to decrease until August 2020 due to the imposed lockdown129

2 https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html
3 https://www.ine.es/en/index.htm
4 https://flowmaps.life.bsc.es/flowboard/
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Table 1: Summary of data used and their sources

Data Data Sources Description of data
COVID-19 Open data portal of

Castilla-Leon Daily infected cases at health zone level
Mobility data Barcelona Supercomputing

Center Daily human mobility matrices
at municipality level

Socio-demographic Open data portal of
Castilla-Leon Individual health zone total

population, unemployment level
and number of urban offices

Geometry Open data portal of
Castilla-Leon Boundary shapefiles of

245 health zones

measures. However, due to a certain relaxation towards the summer period, the130

cases started to increase late August to end up with a second wave in October and131

November 2020. A third wave of infection is noted in January and February 2021,132

and started to decrease again due to some partial restrictions and the onset of133

the vaccination program. Similarly, weekly trends in the number of cases is visible134

with a drop of cases on weekends, due to the reduced number of tests done over135

the weekends.136

Fig. 2: Temporal trend of COVID-19 cases in the study area. The red line repre-
sents the daily mean number of cases per 10000 inhabitants.

The mobility data acquired from the data portal of Barcelona Supercomputing137

Center was prepared by the Ministry of Transport, Mobility, and Urban Agenda.138

The data was preprocessed to guarantee anonymized records from mobile phones.139
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These recorded events contain both active events also known as Call Detail Records140

(CDR) and passive events with a periodic update of device position, change of141

coverage area, etc. The location information is at the level of the coverage area of142

each antenna, which is merged to create origin-destination matrices at municipal-143

ity, districts and provinces level. Along with these records from the cell phones,144

landuse data, population data, transport network data such as train lines, and145

location of airports have been used to create the merged matrices (Ministry of146

Transport & Agenda, 2020). The available daily mobility data was at the munici-147

pality level; those municipalities with population less than 1000 were combined to148

form aggregated zones. As all other available data were at the health zones level,149

these aggregations were converted to the health zone level by applying spatial150

overlay functions and dividing the movement data in proportion to the area. The151

socio-demographic covariates considered in this paper were the following: total152

population per health zone, number of people demanding for employment, num-153

ber of unemployed people, number of commercial units, office units, and industrial154

units in the urban areas of each health zone (see a description in Table 2). Addi-155

tionally, we also considered some built-in variables (see Table 3). In particular, we156

computed the average number of cases and average number of deaths in the direct157

neighborhood. The cumulative cases of COVID-19 for the last 14 days were also158

computed to consider the aggregated impact for a short time frame.159

Table 2: Summary of socio-demographic variables

Variable Name Description

total pop total population of the health zone
demanding total employment Number of people demanding for

employment
registered unemployed total Number of people registered as unemployed
number of urban commercial units Number of commercial offices

in the urban areas
number of urban industrial units Number of industrial units in the urban areas
number of urban office units Number of offices units in the urban areas

Table 3: Summary of built-in variables

Variable Name Description

Day of the week Computed from the date
Cumulative cases Cumulative number of cases for last 14 days
Average number of cases in
neighboring health zones Average of number of cases in health zones that share

a common border
Average number of deaths in
neighboring health zones Average number of deaths in health zones that share

a common border

Last, but not least, we introduce new spatial weights based on the movement160

data that represent the associated movement-based risk. These weights are com-161
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puted per health zone and day. We add a temporal lag to handle past-term move-162

ment data and the daily data are weighted depending on the temporal distance.163

These spatial weights take into account the mobility from all other regions j164

into region i, and the weights are interpreted as the chance of a moving person to165

import the infection of the disease into region i from all the other regions. This166

spatial weight for a region i and day t, Wi,t, can be computed as167

Wi,t =

n
∑

j=1

[

t−∆t
∑

t′=t−1

mji,t′ ∗ w
′

t′

]

∗

Ij,t

Pj
(1)168

where n is total number of regions, mji,t is the mobility from all regions j to i on169

day t, Ij,t is the number of infected cases at region j at time t, Pj is the total170

population of the region j and w′

t is the weight given to the mobility data on day171

t.172

A time lag ∆t is added to the computation of the spatial weights as the spread173

of a disease on the region is dependent on the mobility and infections on past days174

in all other regions of the study area. We used a 7-day lag as infection is assumed175

to act a week before first symptoms. We assigned the following weights: given t,176

we give t − 1 and t − 2 only a weight of 5%, this weight increases up to 10% for177

t− 3 and t− 4, then goes up to 20% for t− 5 and t− 6, and finally the weight is178

30% for t− 7.179

Figure 3 shows the temporal series of the spatial weights for 4 selected health180

zones along with the daily number of COVID-19 cases for the study period. It181

is evident that increasing weights correspond to increased COVID-19 cases. Simi-182

larly, Figure 4 shows the flowmap of the median mobility for the week 2021-01-30183

till 2021-02-05, prepared with the flowmapblue R package 5, and the spatial dis-184

tribution of the spatial weights for the same period.185

Summarizing, our model is feeded by COVID-19 covariates, socio-demographic186

covariates and human movement-related covariates. COVID-19 covariates include187

cumulative cases, average number of cases in neighboring health zones, deaths188

and average number of deaths in neighboring health zones, and spatial weights189

computed from the daily mobility matrices and infection. A temporal covariate,190

day of the week, was computed as a factor from the date.191

5 https://github.com/FlowmapBlue/flowmapblue.R
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Fig. 3: Spatial weights and COVID-19 cases for the selected health zones

Fig. 4: For the last week of study period 2021-01-30 till 2021-02-05: (a) Flowmap
of the study area with the median mobility; (b) Spatial distribution of median
values of spatial weights

3 A Bayesian LSTM method192

We use here the term Bayesian LSTM method, to indicate that we use a statisti-193

cal model within a Bayesian framework informed by the output of a Long Short194

Term Memory (LSTM) neural network method. We aim to model the number of195

infections on an areal unit, in our case health zones, based on spatial covariates,196

temporal trends, and mobility matrices. Thus our combined model considers tem-197

poral and spatial dependence structures, and provides predictions in space and198

time of the number of infections.199

Figure 5 shows a graphical overview of the proposed model which contains200

two major components: (a) a deep learning method (LSTM), and (b) a Bayesian201

spatial Poisson regression model. The input to the LSTM method are the temporal202
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series of the cases of infections. The LSTM method learns from these temporal203

series and predicts the number of cases in the future. Predictions from the LSTM204

method are embedded into the Poisson regression as an expected value. The spatial205

correlation structure is modeled using a stochastic partial differential equation206

(SPDE) method through the INLA approach.207

Fig. 5: Graphical overview of the Bayesian LSTM method

3.1 LSTM method208

Artificial neural networks are a class of machine learning methods inspired by209

the functioning of human brain and work on the principle of parallel processing.210

They consist of layers of interconnected processors known as neurons, which have a211

vector of weights associated with them. Artificial neural networks models consist212

of input data also known as input layer, layers of interconnected neurons also213

known as hidden states, and the output layer which is the output of the model.214

Fitting an artificial neural network involves estimating the optimal value of these215

weights which are able to accurately reproduce and mimic some training data. The216

optimization of these weights is done through the gradient descent method, and217

the weights assigned to each layer are adjusted proportionally to the derivatives218

(Bengio et al., 1994).219

Among many types of artificial neural networks, recurrent neural networks are220

arguably the most useful ones for sequential data (as time series) as they have a221

stack of non-linear units that can learn even long-term dependencies of time series222
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data (Bengio et al., 1994). In recurrent neural networks, the configuration of hidden223

states acts as the network memory and the hidden layer state at a time is dependent224

on its previous state which enables to learn from past data, thus handling long-225

term dependencies (Mikolov et al., 2014). This makes recurrent neural network226

an excellent choice for learning and predicting time-dependent data. However,227

despite having these advantages, as the recurrent neural networks perform the228

gradient descent method with each timestamp of the data, they are likely to fall229

into the gradient vanishing problem. Due to this problem, as the recurrent neural230

network loops through the networks recurrent connections, the effect of a given231

input on hidden layers, and consequently on the output, either decays or explodes232

exponentially (Hochreiter, 1991). One alternative approach to tackle this problem233

comes from using a LSTM method (Hochreiter & Schmidhuber, 1997), that solves234

the gradient vanishing problem by introducing LSTM memory cells instead of the235

hidden units. These LSTM cells consist of input, output and forget gates; the236

input and output gates are used for the control of the flow of memory cell input237

and output into the rest of the model, whereas the forget gates are responsible for238

learning the weights that control the rate at which the value stored in the memory239

cell decays. With the addition of these gates, the LSTM is able to bypass the240

vanishing gradient problem while also learning from the long term dependencies241

in the data (Salehinejad et al., 2018).242

In our case, the LSTM method accounts for the temporal trend of the COVID-243

19 spread, learning from the temporal trend of the infected cases on individ-244

ual health zones separately, rather than considering the spatial cross-correlation245

amongst the regions. Since the LSTM methods are mostly applicable for temporal246

series data, it can be assumed that the LSTM method learns more from the tem-247

poral trend in the infection on individual health zones separately than from the248

spatial relationship between the health zones, which will be further accounted for249

in the Bayesian regression model.250

3.1.1 Architecture251

We used a four layered LSTM, for which the first layer is the input layer given252

by the daily time series of COVID-19. In order to create a supervised learning253

problem, the temporal series of infected cases were converted to an input-output254

pair which is performed by shifting the data (Brownlee, 2017). Thus, for every255

time step t of the time series, one day ahead shifting is done in the data to create256

a shifted prediction at t + 1. The second layer of the model consists of the 128257

LSTM memory cells; similarly, the third and fourth layers consist of 64 and 32258

memory cells, respectively. This number of memory cells in each layer comes from259

experimentation and also motivated by previous works (Shahid et al., 2020). With260

this configuration, the model has 131489 parameters consisting of three stacked261

LSTM layers which are recurrently used for the time period T (equal to the total262

number of days under study). Finally, a dense layer connects all the recurrent layers263

and connects them to the output layer. The dense layer has the linear activation264

function. The architecture of the LSTM method is shown in Figure 6. Additional265

parameters and hyper-parameters that define the LSTM method are shown in266

more detail in Appendix B (Table 6).267
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Fig. 6: Architecture of the LSTM method

3.2 Spatio-temporal Poisson regression and Bayesian inference268

To deal with uncertainty, we consider in a second stage a spatio-temporal stochastic269

model for the counts of COVID-19 infected cases, which is informed by the output270

of LSTM run at a first stage.271

Let Yit and Eit be the number of observed and expected cases in the i-th area
(health zone) and the t-th period (day), t = 1, . . . , T . We assume that conditional
on the relative risk, ρit, the number of observed cases follows a Poisson distribution

Yit|ρit ∼ Po(λit = Eitρit)

where, the log-risk is modeled as272

log(ρit) = β0 + ZT
itβit + S(xi) (2)273

with S(.) a spatially structured random effect, and the Zit stand for the covariates274

(as mentioned in Section 2). We assigned a vague prior to the vector of coefficients275

β = (β0, . . . , βp) which is a zero mean Gaussian distribution with precision 0.001.276

Finally, all parameters associated to log-precisions are assigned inverse Gamma277

distributions with parameters equal to 1 and 0.00005.278

To compute the joint posterior distribution of model parameters, Bayesian in-279

ference has traditionally relied upon Markov Chain Monte Carlo (MCMC) (Gilks,280

1996; Brooks, 2011). This distribution is often in a high dimensional space and thus281

it is computationally very expensive. As an alternative computationally faster so-282

lution, Rue et al. (2009) developed a new approximation to the posterior marginal283

distributions of model parameters based on a Laplace approximation, and named284

it as integrated nested Laplace approximation (INLA). INLA focuses on mod-285

els that can be expressed as latent Gaussian Markov random fields (GMRF). In286



12 Poshan Niraula et al.

particular, we use a stochastic partial differential equation (SPDE) method, as287

introduced by (Lindgren et al., 2011). SPDE consists in representing a continuous288

spatial process like a Gaussian field (GF) using a discretely indexed spatial ran-289

dom process such as a Gaussian Markov random field (GMRF). In particular, the290

spatial random process S(.) follows a zero-mean Gaussian process with Matérn291

covariance function represented as292

Cov(S(xi), S(xj)) =
σ2

2ν−1Γ (ν)
(κ||xi − xj ||)νKν(κ||xi − xj ||) (3)293

where Kν(.) is the modified Bessel function of second order, and ν > 0 and
κ > 0 are the smoothness and scaling parameters, respectively. INLA approach
constructs a Matérn SPDE model, with spatial range r and standard deviation
parameter σ. The model parameterization is expressed as

(κ2 −∆)(α/2)(τS(x)) = W (x)

where κ =
√

8ν/r is the scale parameter, ∆ =
∑d

i=1
∂2

∂x2

i

is the Laplacian operator,294

α = (ν + d/2) is the smoothness parameter, τ is inversely proportional to σ and295

W (x) is a spatial white noise (Blangiardo & Cameletti, 2015). Note that we have296

d = 2 for a two-dimensional process, and we fix ν = 1, so that α = 2 in our case.297

Fig. 7: SPDE triangulation for the study area of Castilla-Leon

We use the centroids of each health zone as the target locations over which298

we build the mesh. The mesh is formed by smaller triangles within the region of299

interest, and by larger ones outside the region. The constrained refined Delaunay300

triangulation is illustrated in Figure 7. The blue line highlights the outline bound-301

ary of the study area, with the red dots indicating the centroids of the individual302

health zones. Note that some few regions show sort of clusters due to the close303

proximity of health zones. We generate the projection matrix to project the spa-304

tially continuous Gaussian random field from the observations to the mesh nodes.305
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Centroids of individual health zones and the triangulations in the mesh are used306

to generate the projection matrix. We fixed r = 0.1 and σ2 = 1. Parameters τ307

and κ are renamed as θ1 = log(τ) and θ2 = log(κ), and we assign them zero mean308

vague Gaussian independent priors with precisions equal to 0.1.309

4 Results310

We fitted our Bayesian neural network approach (named as LSTM-INLA through-311

out this section) and compared it with two other baseline models, one which is312

only using a LSTM method (named as LSTM) and the other one that only fits a313

spatial Poisson regression with INLA and no LSTM (named as INLA). We fitted314

the models for all the temporal range except for the last week, and used these last315

7 days for prediction. The models were evaluated using the averaged Root Mean316

Squared Error (RMSE) from all health zones. Additionally, we also considered317

the Bayesian metrics Watanabe Akaike information criterion (WAIC) (Watanabe,318

2010), deviance information criterion (DIC) (Spiegelhalter et al., 2002) and con-319

ditional predictive ordinate (CPO) (Pettit, 1990).320

Table 4 shows the corresponding metrics, with RMSE evaluated over the train-321

ing period (RMSE Training) and over only the prediction period (from 2021-01-30322

to 2021-02-05, RMSE Prediction).323

Table 4: Metrics for model evaluations

Model RMSE Training RMSE Prediction DIC WAIC CPO
INLA 5.33 14.24 373184.93 375164.6 -2.29
LSTM 4.44 6.07 - - -
LSTM-INLA 4.14 5.51 354601.13 355510.1 -2.17
*The best model is marked in italics.

The RMSE for the LSTM-INLA model is lower than the INLA and LSTM324

methods for both the training and prediction periods. We note that although the325

RMSE for the training set is quite as good as for the other two methods, the326

RMSE for the prediction set for INLA and LSTM is far larger. This suggests that327

inclusion of LSTM as an expected value for the spatial Poisson regression plays an328

important role. Similarly, the comparison of INLA and LSTM-INLA models with329

DIC, WAIC and CPO metrics, shows that the LSTM-INLA combination provides330

the best fit. Table 5 shows the correlation between the observed values and the331

predicted ones for the prediction period (recall this is the last week of the overall332

temporal range). The correlation is largest when using the combined LSTM-INLA333

model (0.80) reinforcing the goodness-of-fit of our proposal.334

Figure 8 depicts the observed cumulative cases of COVID-19 at three selected335

weeks within the overall temporal range and chosen at different phases of the336

pandemic. We also show the corresponding predictions from the LSTM method and337

the combined LSTM-INLA model. In particular, first row of Figure 8 represents338

the cumulative number of cases on the initial week of COVID-19 spread in Spain,339
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Table 5: Correlation between observed and predicted cases (2021-01-30 to 2021-
02-05)

Model Correlation
INLA 0.77
LSTM 0.75

LSTM-INLA 0.80

2020-03-22 to 2020-03-28, second row is for the week 2020-10-18 to 2020-10-24, and340

third row stands for the 7-days prediction ahead period, from 2021-01-30 to 2021-341

02-05. A map depicting the prediction from the LSTM-INLA model and observed342

cases for the final week of the study period is published in an R-Shiny app, which343

can be accessed through the link6. A sample view of the shiny app is presented in344

Figure 13 in Appendix A.345

Fig. 8: Spatial distribution of the observed cases (left column) of COVID-19 for
three selected weeks. Prediction from the LSTM method (central column) and
from LSTM-INLA model (right column)

To visualize the temporal trends, Figure 9 shows the observed cases together346

with the predicted ones for four selected health zones (Avila Estacion, Las Huel-347

gas, Casa del Barco and Ponferrada-II). In particular, we note that we can draw,348

together with the predictions under LSTM-INLA, the corresponding 95% credible349

6 https://poshan-niraula.shinyapps.io/CYLCovidPrediction/
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interval, providing a measure of the uncertainty associated to the prediction, thing350

that we can not obtain under LSTM alone. Comparing the prediction from the351

LSTM method (green lines), the LSTM-INLA prediction with 95% credible inter-352

val (blue lines) with the observed cases (red lines), we note the better prediction353

results when using LSTM-INLA. Figure 14 in Appendix D shows the correspond-354

ing residual plots. They suggest the better behavior of the LSTM-INLA model as355

they are lower in magnitude and symmetrically distributed around the zero line.356

This is also true to the prediction ahead case.357

Fig. 9: Temporal trend plots of the observed and predicted cases with LSTM and
LSTM-INLA models for four selected health zones. The grey band stands for the
95% credible interval under the LSTM-INLA model

Having in mind the model described in equation 2, we now put in place some358

information related to the posterior distribution of fixed and random effects. In359

particular, Figure 10 depicts the marginal posterior mean and 95% credible inter-360

vals of spatial random effect S(.). ID in the X-axis of Figure 10 represents 799361

triangulation nodes of the SPDE mesh used in the model. A stronger and signi-362

ficative spatial effect is observed basically on the nodes of smaller triangles within363

the region of interest (as shown in Figure 7). The nodes outside the region show364

no spatial effect.365

Additionally, Figure 11 and Table 7 in Appendix C depict the marginal pos-366

terior distributions of all fixed effects including the intercept (β0) and the other367

covariates. We note that four covariates, namely number of people demanding for368

employment, number of commercial offices, number of industrial units and num-369

ber of office units in the urban areas, have no influence in our model. The positive370
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Fig. 10: Marginal posterior mean of the spatial random effect S(·)

mean values for covariates such as average cases in neighbouring health zones,371

cumulative cases, or deaths indicate positive influence in the model. The covariate372

associated to daily movement (spatial weight) has the highest positive mean value373

which indicates strong positive influence of human mobility on the model.374

Fig. 11: Marginal posterior distributions of covariate coefficients
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Finally, Figure 12 shows the marginal posterior Gaussian distributions of the375

two hyperparameters for the spatial random field θ1, θ2. Mean and variance for376

the two hyperparameters are θ1 = (−3.10, 0.142), and θ2 = (3.35, 0.099).377

Fig. 12: Hyperparameters θ1 and θ2 for the spatial random field S(·)

5 Conclusions and discussion378

For modeling the spread and outbreak of infectious diseases, a model comprising379

the combination of neural network and Bayesian inference for a spatio-temporal380

Poisson regression has been proposed. This model is able to provide good pre-381

dictions of further cases of COVID-19 while handling uncertainties. In particular,382

our model has two components, a LSTM neural network, which learns from the383

temporal patterns, and a spatial Poisson regression with expected values the pre-384

dictions coming from the LSTM. The spatio-temporal Poisson regression considers385

various spatial and temporal covariates. It is noteworthy that we consider daily386

matrices of population movement that are transformed into spatial weights and387

act as additional covariates in the model.388

The proposed model was evaluated with COVID-19 daily infected cases in389

Castilla-Leon (Spain), consisting of 245 health zones, and within a temporal range390

running from March 1, 2020 to February 5, 2021. The combined model was able391

to predict the number of daily infections in each health zone, outperforming two392

other cases, one with only a neural network method and the other with only a393

spatio-temporal Poisson regression. A key and novel aspect is the introduction394

as a spatial weight of the population movement, being highly influential in the395

overall fit. However, we note that sudden increasing peaks or abrupt decreasing396

magnitudes can not be finely fitted by our model. We believe this is due to typos,397

errors or under-reporting actions, and they clearly mean a challenge for modeling398

purposes of this sort of data.399
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Clearly, the accuracy of prediction may be improved by the addition of other400

variables relevant to the disease of study which may include the weather conditions401

and preventive measures. The phenomenon of infectious disease spread has a lot402

of complexities and is dependent on numerous factors. These factors include the403

organism causing the disease, the mode of transmission, human behaviors, envi-404

ronmental conditions, and most importantly, some potential preventive measures405

applied. All of these factors are not quantifiable but a maximum number of these406

factors are to be considered while modeling the diseases. In this study, one of407

the most relevant considered factors is human mobility. Some socio-demographic408

variables were considered but we believe more variables associated with the socio-409

demography and climatic conditions can be introduced. Similarly, the variables410

related to human behavior and preventive measures such as social distancing and411

personal hygiene should be incorporated in future works.412

The focus of this work is on the combination of neural networks and Poisson413

regression within a Bayesian framework. The predictions from neural networks414

were used as expected values for the Poisson regression which can be improved415

by transferring the predictions to a prior distribution and use them as prior in-416

formation in the Bayesian inference. Here we followed a two-stage procedure, but417

ideally it would be better a joint solution such as spatio-temporal recurrent neural418

networks able to predict results with uncertainties. Finally, the proposed method419

is applied only in one scenario of COVID-19 infection for a short period. Thus,420

data with a longer period and different spatial scales should be used to test the421

versatility of the model.422

The model is believed to be useful for the governments in monitoring any423

infectious diseases. The results from the model can be used in formulating health-424

related policies such as the application of preventive measures or vaccination.425

The contribution of this work is that it is able to take advantage of the neural426

network methods in learning complex dependencies from the data, as well as from a427

Bayesian paradigm to associate the uncertainties in the predictions. In conclusion,428

this work is able to present a model that can provide accurate predictions of429

infectious diseases and help in a way to mitigate the impacts.430
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Appendices626

A Shiny App627

Fig. 13: View of R-Shiny App visualizing observed and predicted COVID-19 cases.
See: https://poshan-niraula.shinyapps.io/CYLCovidPrediction/

B LSTM method Parameters628

Table 6: Summary of parameters and hyperparameters in the LSTM model

Parameter Value

Number of LSTM layers 3
Hidden Units in LSTM layers Layer 1: 128

Layer 2: 64
Layer 3: 32

Number of dense layers 1
Activation function of dense layer Linear
Number of epochs 100
Loss Function Mean Squared error
Optimizer ADAM

Learning Rate: 0.001
β1: 0.9
β2: 0.999

Batch Size 10
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C Marginal posterior distributions of covariate coefficients629

Table 7: Marginal posterior mean and credible interval of fixed effects

Covariate Mean Credible interval

Monday -0.182 -0.193, -0.172
Tuesday -0.207 -0.218, -0.197
Wednesday -0.187 -0.198, -0.177
Thursday -0.658 -0.672, -0.644
Friday -0.326 -0.340, -0.312
Saturday -0.206 -0.212, -0.192
Sunday -0.321 -0.336, -0.310
Average cases in neighboring health zones 0.031 0.030, 0.032
Cumulative cases 0.025 0.019, 0.031
Deaths 0.019 0.013, 0.025
Average deaths in neighboring health zones -0.034 -0.043, -0.025
Daily normal weight (spatial weight) 0.041 0.040, 0.042
Number of people demanding employment -0.001 -0.001, 0.000
Total registered unemployment 0.001 0.000, 0.002
Number of urban commercial units 0.000 0.000, 0.000
Number of urban industrial units 0.000 0.000, 0.000
Number of urban office units 0.002 -0.001, 0.004
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D Residual plots of fitted models and their predictions630

Fig. 14: Residual plot of the fitted models (left) and predictions (right)


