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Abstract—Fingerprinting is a widely used technique in indoor
positioning, mainly due to its simplicity. Usually, this technique
is used with the deterministic k - Nearest Neighbors (k-NN)
algorithm. Utilizing a neural network model for fingerprinting
positioning purposes can greatly improve the prediction speed
compared to the k-NN approach, but requires a voluminous
training dataset to achieve comparable performance. In many
indoor positioning datasets, the number of samples is only at a
level of hundreds, which results in poor performance of the neural
network solution. In this work, we develop a novel algorithm
based on a transfer learning approach, which combines samples
from 15 different Wi-Fi RSS indoor positioning datasets, to train
a single convolutional neural network model, which learns the
common patterns in the combined data. The proposed model is
then fine-tuned to optimally fit the individual databases. We show
that the proposed solution reduces the positioning error by up
to 25% compared to the benchmark model while reducing the
number of outlier predictions.

Index Terms—artificial neural network, convolutional neural
network, deep learning, fingerprinting, indoor positioning, ma-
chine learning, transfer learning, WLAN

I. INTRODUCTION

The importance of user localization increases with each
network generation. In Fifth Generation Mobile Networks
(5G), user localization ensures wide range of services from the
network operator side, such as high-quality connection, navi-
gation capabilities and more. Localization in indoor environ-
ments is challenging, since Global Navigation Satellite System
(GNSS) signal is strongly attenuated, reflected or blocked by
buildings and therefore alternative methods of User Equipment
(UE) localization have to be implemented. Numerous different
approaches for Indoor Positioning System (IPS) were studied
in the literature over recent decades, including Received Sig-
nal Strength (RSS) fingerprinting methods, Received Signal
Strength Indicator (RSSI) Path-Loss (PL) models, Angle of
Arrival (AoA)-based approaches and more [1]–[3], utilizing
many different technologies such as IEEE 802.11 Wireless
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LAN (Wi-Fi), Bluetooth and Bluetooth Low Energy (BLE),
different Internet of Things (IoT) networks or Radio Frequency
Identification Device (RFID).

Utilizing PL models in indoor environments is often chal-
lenging, since it requires Line of Sight (LoS) component to
perform efficiently and without significant errors. The popular
option for IPS is the fingerprinting solution [4]–[7], which
requires a pre-measured database including signal strength
arrays and coordinate pairs to compare the new measurement
array with. Based on the chosen similarity algorithm, the
system is then able to approximate user position.

Traditionally, the fingerprinting approach utilizes k-Nearest
Neighbors (k-NN) algorithm [1], which calculates the dis-
tances between the obtained array and each sample in the
database. This approach performs well in most cases. How-
ever, the k-NN incorporates a crucial trade-off between the
size of the dataset and the positioning complexity, that is,
whereas the performance increases with larger datasets, the
prediction becomes more and more expensive.

Many researchers investigate the k-NN optimization possi-
bilities, and in many cases successfully. One efficient solution
is applying affinity propagation clustering algorithm, as in [8],
which utilizes two-step weighted k-NN algorithm, achieving
improved computational complexity as well as improved po-
sitioning accuracy in the considered data. Similarly, [9] pro-
poses to combine k-NN with floor-wise clustering, achieving
improved storage and prediction capabilities. A hierarchal
clustering is utilized in [10] to speed up the prediction process.
There, the authors consider only the training samples with
the same strongest Access Point (AP) as the referred test
sample. The method highly increases the prediction speed, but
weakens the positioning performance. The Adaptive k-Means
clustering method [11] focusing on dataset compression, rather
than improving prediction speed, reduces the amount of values
in the RSS feature map. Interestingly, the approach is also
able to improve positioning performance when combined with
k-NN.

To overcome the aforementioned trade-off, we utilize Neural
Network (NN) models to perform positioning in the indoor
environment. Just like in k-NN, we are predicting positioning
coordinates from the measured RSS arrays, but increased
number of samples does not slowdown the prediction operation
of the NN. The computational burden of NNs depends on the



network structure, number of active weighted connections and
the activation function instead. As a drawback, NNs require
large number of samples to train optimally, which many indoor
positioning datasets do not have. To overcome this challenge,
we apply Transfer Learning (TL) idea to our solution, which
combines multiple datasets together, and thus enables more
efficient NN model training.

Utilizing transfer learning with NN models in areas such
as image recognition or natural language processing is widely
used across machine learning researchers. Finding new objects
in images can be done by fine-tuning one of many avail-
able pre-trained image recognition models, since all objects
share similar shapes. Applying pre-trained natural language
processing models, such as help bots, on a new webpage only
requires new information database, while the language (e.g.
English) remains the same. Therefore, the objective has the
same number of symbols, uses the same words as the original
model etc. However, RSS positioning data is tricky in such
regards. This is mainly because each deployment is different,
with varying number of APs in different indoor environments
including walls, doors, windows, and other blocking and
scattering objects that make the considered tasks non-trivial
and challenging.

In this work, we propose a novel algorithm and NN solution
to create an indoor positioning system for a dedicated dataset,
while combining the information from multiple available
Wi-Fi fingerprinting datasets to train a single NN model. We
utilize the idea of TL to create a pre-trained solution, which
enables better performance after being fine-tuned to fit the
single deployment. The main contributions of this paper are
as follows:

1) We discuss and present the applicability of the TL
approach for indoor positioning systems and highlight
its main opportunities and advantages over current solu-
tions.

2) We present the novel, three loop algorithm to create
and train the TL NN model on any number of indoor
positioning datasets.

3) We derive and describe in detail suitable NN models for
the proposed algorithm.

4) We evaluate the proposed model on 15 different openly
available datasets and discuss the possible drawbacks
and improvements to the proposed solution.

The rest of this work is structured as follows. Section II
presents a wide literature review on IPS utilizing Machine
Learning (ML) approaches, discusses the trade-offs between
the traditional fingerprinting solutions and NNs, and introduces
the idea of TL. Section III defines the utilized NN model and
presents the utilized datasets. Section IV describes the algo-
rithm utilized to apply TL on Wi-Fi fingerprinting datasets in
detail. Section V presents the numerical results and evaluation
of our model’s performance and Section VI concludes this
work and discusses possible improvements to the model.

II. MACHINE LEARNING FOR BOOSTING POSITIONING
PERFORMANCE

The applications using various ML methods have penetrated
almost all areas of science. Indoor positioning is no exception,
and the various classification and regression methods are
widely applied. One of the strongest arguments why ML is
an efficient tool in indoor positioning topic is the difficulty
to obtain accurate results using deterministic methods such as
PL models.

A study of various ML approaches [12] on UJI dataset [5]
finds k-NN method the most suitable for the task, followed
by Bagging and AdaBoost algorithms. The evaluation of
machine learning approaches utilized in 2015 EvAAL-ETRI
competition is presented in [13]. Numerous ML models were
tested, including Random Forest, Gradient Boosted Trees,
or k-NN. Moreover, the paper highlights the importance of
expertise and the knowledge of both ML methods, as well as
indoor positioning and signal propagation. In contrast, utilizing
Convolutional Neural Network (CNN) for indoor line-of-sight
channel classification [14] shows promising performance and
generalization capabilities. Another NN architecture using
variational autoencoder for indoor positioning [15] shows the
semi-supervised learning ability of NNs. With the limited
amount of annotated data and vast database of unlabelled
data, the proposed model is able to achieve 4.65 m root
mean squared error, outperforming k-NN, Support Vector
Regression, and k-NN with denoising autoencoder. In [16],
a novel ML method for indoor positioning GroupWi-Lo with
regularization is proposed, offering low computational cost and
comparable results to the baseline models. It is also able to
re-calibrate the dataset in case of a possible change in the AP
position in contrast to a vast majority of indoor positioning
approaches.

The utilization of CNN models gains increasing popularity
in recent years, promising improved performance. A deep
learning architecture for fingerprinting localization [17] is
able to outperform the benchmark fingerprinting methods,
while reducing the 90th percentile error as well. The pa-
per utilizes CNN architecture with two densely connected
layers before the output. Similarly, [18] proposed a CNN
architecture to perform localization directly from the channel
impulse response. The authors modified numerous popular
CNN models such as AlexNet, Google-LeNet or VGG-16 for
comparison. The results show that the model performs well in
multipath environment. Another neural network structure pro-
posed in [19] consists of autoencoder-based encoding model,
followed by convolutional architecture, and densely connected
layers at the output. The proposed model is able to predict
coordinates, floor and building number in indoor positioning
scenario. Nevertheless, the published results show only the
100% building hit-rate and 95% floor hit-rate.

TL is defined as creating high-performance learners trained
with data obtained from different domains [20] and is effi-
ciently utilized when the dedicated training data are sparse
or difficult and costly to obtain. The method is able to



transfer information from one domain (dataset) to the related
one. TL can be either direct (re-using the same model),
feature-based (exploiting the latent-space representation and
its similarity), through shared parameters, or based on the
pre-defined relationship between two entities. In the scope
of this paper, we utilize feature-based TL to find similarities
between the datasets. We utilize TL through dimensionality
reduction method (although in some datasets the latent space
representation has higher dimension than the original data) in
similar way as in [21]. There, the novel embedding method
is developed to transform the input dataset. We, on the other
hand, utilize a NN model for such purpose. TrAdaBoost, a
TL approach on indoor positioning presented in [22], was
shown to outperform multiple benchmarks. Furthermore, the
TL aspect in [22] addresses the ability of the method to adapt
to the changes in the environment. TL in indoor positioning
between multiple source domains and a single target domain
is presented in [23]. The work performs linear mapping to
match the dimensionality of the incomplete feature space to
the desired dimension and relevance. However, in this work,
we perform the TL task to find similarities between multiple
indoor positioning deployments and their radio maps, which
we later exploit to boost the performance on each dataset. A
LoS/Non-LoS classification using TL is implemented in [24],
where the authors train the classifier in known environments
and classify the channel in the unknown one. Re-training the
indoor positioning model for different antenna configurations
is performed in [25], showing that adapting the trained model
to a new scenario requires significantly less labelled data and
resources.

III. SYSTEM MODEL AND PROPOSED SOLUTION

In this section we define the main idea of this work, along
with the description of the utilized datasets. The main position-
ing prediction model for indoor RSS localization is a neural
network model trained on 15 different Wi-Fi fingerprinting
datasets, which is designed to overcome the main drawback
of the fingerprinting localization, namely the limited amount
of available training samples.

The final model architecture is depicted in Fig. 1, and
consists of two parts. First part, called encoder, is a neural
network, that pre-processes the input data to fit the subsequent
model’s input. The second part, called common model, serves
as the common pipeline transforming the encoder’s outputs
into actual positioning coordinates. Every dataset has its
own encoder, while the common model is shared among all
datasets.

In Table I, we can see an overview of utilized datasets,
including the sizes of their training and test parts and the
number of APs. These datasets were created by University of
Minho, Portugal (UMinho), Universitat Jaume I, Spain (UJI),
University of Mannheim, Germany (UMA), and Tampere
University, Finland (TAU). The datasets are further evaluated
and characterized in [4].

All datasets consist of training and test parts and each
sample consists of RSS measurement array (feature array)
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Fig. 1: Simplified architecture of the proposed full model,
which consists of two NN structures. Encoder model serves as
the feature extractor and is separately trained for each dataset.
Common model is shared among all datasets and predicts
three-dimensional coordinates from the encoded data.

TABLE I: Utilized Datasets

Dataset Training Test APs Created by ReferenceSamples Samples

DSI 1 1369 348 157 UMinho [26]
DSI 2 576 348 157 UMinho [26]
LIB 1 576 3120 174 UJI [6]
LIB 2 576 3120 197 UJI [6]
MAN 1 14 300 460 28 UMA [27], [7]
MAN 2 1300 460 28 UMA [27], [7]
TUT 1 1476 490 309 TAU [28], [29]
TUT 2 584 176 354 TAU [28], [29]
TUT 3 697 3951 992 TAU [30]
TUT 4 3951 697 992 TAU [30]
TUT 5 446 982 489 TAU [31]
TUT 6 3116 7269 652 TAU [32]
TUT 7 2787 6504 801 TAU [32]
UJI 1 19 861 1111 520 UJI [5]
UJI 2 20 972 5179 520 UJI [5]

and the corresponding coordinates (labels). Each dataset was
pre-processed in the following way before utilizing it. The
equivalent of unmeasured values in RSS arrays from both
training and test parts was set as the minimum value in both
RSS arrays (of the considered dataset) minus 1. Then, the
non-measured value was added to all samples, resulting in
all values being equal or larger than 0. Each dataset’s labels
were also pre-processed, so that their coordinates are centered
around 0 by subtracting mean across all samples in each
dimension. Furthermore, the training part of the dataset was
divided into the training data and validation data, with the
fixed validation set size of 10%.



Algorithm 1: Loop 1 Algorithm

1 load Loop 1 Parameters;
2 create common model;
3 for repetition = 0 : REPETITIONS do
4 if repetition == REPETITIONS − 1 then
5 EPOCHS ← 2 ∗ EPOCHS; common

model.trainable ← False;
6 end
7 for index, name in enumerate(datasets) do
8 X , Y , X test, Y test ←

get dataset(name);
9 X train, Y train, X val, Y val ←

train test split(X,Y );
10 create encoder model;
11 create full model;
12 train full model;
13 if repetition == REPETITIONS − 1 then
14 predict X train, X test;
15 save encoder model predictions;
16 save encoder model;
17 end
18 end
19 end
20 common model.trainable ← True;
21 save full model, common model;

IV. TRANSFER LEARNING IN THREE LOOPS

The core idea of this work is to implement a pre-trained
deep learning system, which can later be quickly and easily
fine-tuned to perform RSS localization on arbitrary data.
In order to deploy the model, we developed a three-loop
approach. The individual loops achieve the following goals:

• Loop 1: Prepare the coarsely trained NN model and
training data from all available datasets to enable efficient
training.

• Loop 2: Train the Common Model (CM) on all available
data to create a pre-trained regressor for positioning
purposes.

• Loop 3: Fine-tune the Encoder Model (EM) as well as
the CM on each dataset’s data separately to ensure the
optimal performance.

A. Loop 1: Pre-training

The proposed pre-training sequence is initiated by creating
a single, untrained CM with a pre-defined, fixed number of
inputs (equal to HIDDEN DIM parameter) and three outputs
representing three positioning coordinates. The remaining con-
tent of the first loop is repeated multiple times, defined by the
parameter REPETITIONS. The inner loop is dedicated to go
through all available datasets one by one. It loads the chosen
dataset’s training and test parts and performs pre-processing,
as described in Section III. The new (untrained) EM is then
created with input size equal to number of APs, and output
size equal to HIDDEN DIM parameter. The current EM and

Algorithm 2: Loop 2 Algorithm

1 load Loop 2 Parameters;
2 load common model;
3 for index, name in enumerate(datasets) do
4 Y ← get dataset(name);
5 X ← encoder model predictions(name);
6 concatenate X , Y ;
7 end
8 X train, Y train, X val, Y val ←

train test split(X,Y );
9 for index, lr in enumerate(LRs) do

10 train common model;
11 end
12 save common model

CM are then joined together to form a single pipeline model
called Full Model (FM), which is trained for a pre-defined
number of epochs. EM is re-initiated every loop, so that in later
repetitions the CM defines the EM’s behaviour, rather than
vice-versa. Therefore, the whole process is repeated several
times for each dataset, creating a coarsely trained CM in the
process.

The last repetition’s purpose is different from the previous
ones. Whereas the preceding repetitions served to pre-train the
CM, the last one trains only the EM in order to generate the
encoded dataset, which is used in Loop 2. At the beginning
of the last repetition, the CM’s trainable weights (parameters)
are frozen, and therefore the CM will not be modified any
more. For each dataset, the new EM is created and trained
like before, but the number of epochs is doubled. The goal of
this repetition is to force the EM to be able to fit the CM’s
input as well as possible. After the last loop is finished, every
EM created and trained in the last repetition is saved, along
with the encoded training and test data. Now for each dataset,
the training and test labels (RSS data) were transformed to
a common representation with the same number of features
(specified by parameter HIDDEN DIM). For each dataset, the
test coordinate predictions using the final FM are generated for
the evaluation. Finally, the CM’s weights are set to trainable
again, and the final CM model is saved to be used in second
loop. Algorithm 1 shows the simplified pseudo-code used in
the first part of the training process.

B. Loop 2: Common Model Training

In the second loop, all previously created encoded datasets
are merged into a single dataset. It is now possible since all
input data (encoded RSS measurement arrays) have the same
dimension equal to HIDDEN DIM. As the next step, a part of
the training dataset is separated for model validation purposes.
The dimensions of the combined dataset are shown in Table II.

The second loop trains only the CM. Learning Rate (LR)
is gradually decreasing during training, changing every pre-
defined number of epochs to ensure finer training steps. At
the end of the second loop, the CM is evaluated and saved.



TABLE II: Combined dataset parameters

Dataset part Samples Dimension

X train 65 328 128
X val 7259 128
X test 34 215 128
Y train 65 328 3
Y val 7259 3
Y test 34 215 3

In the current state, the CM represents the universally
trained NN model for RSS positioning prediction, and should
perform efficiently on any positioning data after creating the
dedicated encoder model and fine-tuning the merged model.
The pseudo-code for Loop 2 is presented in Algorithm 2

C. Loop 3: Fine-Tuning

After creating a model that learned the common patterns
contained in all mentioned datasets, we can now apply it on
the specific, small dataset. In the third loop, the actual TL is
performed on each individual dataset separately.

As in previous loops, the algorithm actually repeats itself in
several loops (for each dataset). First, the individual dataset is
loaded and pre-processed, as in Loop 1. The dataset-specific
EM from Loop 1 is loaded, as well as the trained CM from
Loop 2. Both models are then merged into FM with input
shape equal to the number of APs in the considered dataset
and three outputs (x, y, and z coordinates).

In case the dataset does not have the corresponding EM, it
can be created in the first iteration of the loop. In such case,
the CM’s weights should be frozen, and only the new EM
model will be trained to match its output of the CM’s input.
For the next iteration, CM’s trainable weights are unfrozen to
enable full training.

The main loop changes the LR of the FM in each iteration
for finer training steps the later the iteration, while performing
FM training for pre-defined number of epochs.

After final training, each dataset’s corresponding model and
predictions are saved for later evaluation. The pseudo-code for
Loop 3 is depicted in Algorithm 3

D. NN Model Parameters and Training Characteristics

In this section we present each model’s architecture and
other parameters, which we used during model training. We
note, that the final parameter settings were obtained experi-
mentally.

EM is a densely connected NN model with a single func-
tional layer. It is identical for all datasets, apart from the
number of model inputs, which depends on each dataset’s
APs. EM is trained with Adam optimizer. The chosen loss
function is mean absolute error, since it processes RSS values
and transforms them. The model is depicted in Fig. 2 and its
layers’ parameters are summarized in Table III.

CM is modelled as a fully CNN with three separated dense
neurons as the output layer. The output neurons were separated
to increase the flexibility of the final model (adding or re-
moving additional outputs). The model depth, along with each

Algorithm 3: Loop 3 Algorithm

1 load Loop 3 Parameters;
2 for index, name in enumerate(datasets) do
3 X , Y , X test, Y test ← get dataset(name);
4 X train, Y train, X val, Y val ←

train test split(X,Y );
5 load encoder model;
6 load common model;
7 create full model;
8 for ind, lr in enumerate(LRs) do
9 set learning rate ← lr;

10 train full model;
11 end
12 predict X train, X test;
13 save full model predictions;
14 save full model;
15 end

ReLu

ReLu

ReLu

Input Encoded
Input

Fig. 2: Encoder Model, consisting of a single densely con-
nected layer with HIDDEN DIM neurons. Each dataset has
its own EM. It takes RSS arrays as inputs, and returns their
encoded representation of HIDDEN DIM size.

layer’s parameters were derived experimentally by parameter
sweeping. The model is depicted in Fig. 3 and its layers’
parameters are summarized in Table IV. The details about the
functionality of convolutional layers and the definition of each
parameter can be found in [33].

We desire to present and describe the parameters selected
for each training loop in detail to enable reconstruction of the
results. The parameters selected for training all three loops are
shown in Table V. We denote, that the parameters depicted in
the table directly affect the architecture of the created NNs
(e.g., HIDDEN DIM, CONV KERNEL etc.). Each loop’s
parameters are loaded at the beginning of the corresponding
algorithm (see Algorithms 1, 2 and 3), e.g. EPOCHS parameter
defines the number of epochs in train operation in each loop.



TABLE III: EM parameters

Layer Output Shape Activation

Input input size∗ -
Dense 128 ReLU
∗Varies per dataset (equals to AP count of each dataset)

XReLu

Z

Y

Fig. 3: Common Model, consisting of convolutional layers
and three densely connected neurons as the output. The
common model is shared among all datasets. The figure also
demonstrates the functionality of the convolutional layer and
its kernel.

V. MODEL EVALUATION AND NUMERICAL RESULTS

The majority of this work was realized in Python 3.8.8 pro-
gramming environment, including data pre-processing, model
training, evaluation and prediction. We utilized the following
libraries: TensorFlow, SciPy, NumPy, Matplotlib and scikit-
learn. The plotting of the results and final evaluation were
realized in MATLAB R2020b.

In this section we present the proposed model’s performance
on all available datasets. We show the results on both training
(which consists of samples used for training and validation)
and test data (which were excluded from the training process
in all three stages). As the benchmark model, we consider
a k-NN algorithm with k = 1 and cityblock (Manhattan)
distance metric. The second model we include in the results
is fully trained Transfer Learning Convolutional Neural Net-
work (TLCNN) over all three training loops according to the
parameters specified in Section IV. The third model included
in the comparison, referred to as CNN, has the architecture
identical to TLCNN model but was trained only using the
third loop with randomly initiated weights. Therefore, it is
trained exclusively on single dataset’s training data without
considering the TL aspect.

We evaluate the performance based on the Euclidean dis-
tance between the reference coordinates and the prediction
at each sample. The overall performance on each dataset is
presented in Table VI, including the positioning error of the
training and testing datasets for TLCNN and CNN models. We
additionally include the normalized positioning error (Norm)
on the testing dataset related to the k-NN benchmark. The nor-
malized positioning error, Norm in the table, was obtained by

TABLE IV: CM parameters

Layer Output Shape Activation Kernel size Filters

Input 128 - - -
Conv1D [128, 128] ReLU 15 128
Conv1D [128, 128] ReLU 15 128
Conv1D [128, 128] ReLU 15 128
Conv1D [128, 128] ReLU 15 128
Conv1D [128, 128] ReLU 15 128
Dense∗ 1 Linear - -
Dense∗ 1 Linear - -
Dense∗ 1 Linear - -
Output 3 - - -
∗ Connected in parallel

TABLE V: Loop Parameters

Parameter Value

Loop 1

REPETITIONS 4
EPOCHS 20∗

HIDDEN DIM 128
CONV LAYERS 5
CONV FILTERS 128
CONV KERNEL 15

Loop 2
REPETITIONS 4

EPOCHS 50
LEARNING RATES (LR) [0.005, 0.001, 0.0005, 0.0001]

Loop 3 REPETITIONS 4
EPOCHS 50

LEARNING RATES (LR) [0.005, 0.001, 0.0005, 0.0001]
∗ 40 for the last repetition

calculating the ratio between the given model’s performance
and the baseline’s, therefore Norm smaller than 1 signals the
improvement in the positioning performance. The normalized
error has been included to see the relative improvement of
the proposed TLCNN on each dataset, as the meaning of the
absolute increase/decrease of performance will depend on the
dataset. E.g., an improvement of 1 meter in TUT 6 means
a strong reduction in the error, whereas in dataset TUT 2 is
not that relevant. With the normalized error, we can see the
improvements on each dataset with a better perspective.

The results show, that the proposed TLCNN algorithm
outperforms the benchmark method on the majority of the
datasets. The ability of the model to adapt to the new data
is represented by the performance on training dataset, which
are the data used for training and validation. In certain cases,
the model is able to adapt almost perfectly, while in other
cases (see e.g. UJI 2 or TUT 5) the model was unable to fit
all data accordingly. Also, very small training error and much
higher test error signal that either the model strongly overfits
the data, or that there is a significant difference between the
test and training dataset distributions. The best improvement
in performance is achieved on dataset MAN 2, where the
proposed solution improves the positioning accuracy by more
than 25%. MAN 1, TUT 1 and TUT 2 datasets’ results are
similarly improved. On the other hand, the positioning error
on UJI 2 is more than three times larger than that of the
benchmark model. We further investigate the far-from-optimal
behavior of the model later in the text.



TABLE VI: Performance Evaluation on all Datasets

Dataset
k-NN TLCNN CNN

Test Train Test Norm Train Test Norm
[m] [m] [m] [−] [m] [m] [−]

DSI 1 4.945 0.129 3.959 0.801 0.197 9.169 1.854
DSI 2 4.945 0.668 4.349 0.880 1.122 12.655 2.559
LIB 1 3.021 0.233 2.778 0.919 0.263 3.600 1.191
LIB 2 4.185 0.368 3.716 0.888 0.323 6.517 1.557
MAN 1 2.815 1.208 2.176 0.773 0.934 2.332 0.828
MAN 2 2.467 0.233 1.828 0.741 0.228 2.532 1.026
TUT 1 9.59 1.499 7.086 0.739 2.276 8.530 0.889
TUT 2 14.37 3.469 11.239 0.782 4.848 21.607 1.504
TUT 3 9.588 1.966 8.684 0.906 4.976 11.510 1.200
TUT 4 6.362 2.320 5.880 0.924 1.672 7.052 1.108
TUT 5 6.924 12.923 13.788 1.991 13.128 15.448 2.231
TUT 6 1.942 0.945 2.958 1.523 1.148 3.327 1.713
TUT 7 2.692 1.486 3.064 1.128 2.034 3.866 1.436
UJI 1 10.808 4.384 10.027 0.928 4.603 11.09 1.026
UJI 2 8.047 29.282 29.352 3.648 29.105 30.857 3.835

The table also shows, that the TLCNN model outperforms
the CNN model in all cases (although in some by a small
margin). The difference in performance proves the usefulness
of the TL approach in indoor positioning. Interestingly, the
test dataset behavior differs between the two models in both
directions. TLCNN has significantly lower training error on
dataset TUT 3, while CNN model performs better on TUT 4
(while its performance on test dataset is still slightly worse).

For many datasets, the results of the TLCNN model are
comparable with the performance of the k-NN with the best
possible coefficients published in [4] (we achieved better per-
formance on MAN 2 dataset), without the drawback of lengthy
prediction. To elaborate, NN prediction takes several seconds
at most, depending on the dataset, while the k-NN prediction
in [4] varies between 7 s for dataset TUT 2 and 8686 s for
dataset UJI 2 (without additional clustering that can improve
the time, but in most cases degrades the positioning accuracy).
The aforementioned paper offers the best positioning results
achieved so far in the literature on the given datasets.

To further analyze the results, we evaluate the test set error
distribution of the considered models. The k-NN and TLCNN
model’s positioning error distributions are shown in Fig. 4,
visualizing the Empirical Cumulative Distribution Function
(ECDF) on four chosen datasets. We show the error distri-
bution of three well-performing datasets (DSI 1, LIB 1 and
MAN 1), and one underperforming dataset (TUT6) to com-
pare the error distributions’ parameters. The error functions
show, that the NN model not only achieves better positioning
results (apart from TUT 6 dataset), but most importantly the
distributions’ tails are much smaller, signalling smaller number
of outlier classifications. As the result, the TLCNN model’s
error has lower upper bound than the k-NN solution.

Further, we investigate the model’s inability to properly fit
the UJI 2 dataset. To increase the TLCNN model’s flexibility,
we first strongly increased its dimensions and repeated the full
training process to see, whether the issue lies in small model
dimensions. The HIDDEN DIM was set to 256, number of
convolutional filters was increased to 256 and number of
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Fig. 4: Comparison of error distributions in different datasets

convolutional layers was doubled to 10. The results were
comparable to the previously obtained ones on all datasets,
including UJI 2. We also studied the UJI 2 dataset itself and
found out, that despite it having more than 20000 training
samples, it covers only 1996 coordinates, meaning that each
training coordinate (label) has more than 10 different training
RSS arrays (feature arrays) on average. Therefore, we pro-
cessed the dataset so that all training RSS arrays from the same
coordinate were averaged, resulting in reduced UJI 2 (UJI 2a)
dataset with 1996 training samples. After training the TLCNN
using UJI 2a instead of UJI 2 and evaluating, the performance
on the test dataset decreased further. As the result, we show
that reducing the size of the dataset by averaging samples with
high uncertainty and variance does not have a positive impact
on NN training. Although the results indicate that the proposed
TLCNN approach is able to perform better than the k-NN with
majority of the datasets, the UJI 2 dataset shows that there is
still room for further development with the proposed transfer
learning concept.

VI. CONCLUSION AND DISCUSSION

We present a novel algorithm that enables applying TL idea
for boosting indoor positioning performance across multiple
datasets. The results of this work show the improved per-
formance compared to the benchmark k-NN method on the
majority of the 15 considered datasets, without the drawback
of the time-consuming model prediction. We are able to reduce
the positioning error by more than 25% in several cases.
Furthermore, we propose a novel approach to create a TL
process when utilizing multiple indoor positioning datasets at
once. The proposed algorithm described in Section III consists
of three loops, where the first loop creates the pre-trained
models and encodes the data, the second loop performs the
TL model training, and the last loop fine-tunes the final model
for each individual deployment.



Although the proposed TLCNN model achieves lower po-
sitioning errors compared to the baseline k-NN solution on
majority of the datasets, its performance with certain datasets
could be improved. In our future work, we will focus on
targeting such cases, as well as on further improving the
overall performance. One of the possible approaches is to
implement a decoder model into the solution, which similarly
to the encoder model is separately trained for each of the
datasets. Nevertheless, the promising results shown in this
paper encourage a further investigation on the suitability
and opportunities of TL and CNNs in the scope of indoor
positioning.
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