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Abstract. We provide a stochastic modeling framework for the incidence of COVID-19 in
Castilla-Leon (Spain) for the period March 1, 2020 to February 12, 2021, which encompasses
four waves. Each wave is appropriately described by a generalized logistic growth curve. Ac-
cordingly, the four waves are modeled through a sum of four generalized logistic growth curves.
Pointwise values of the twenty input parameters are fitted by a least-squares optimization pro-
cedure. Taking into account the significant variability in the daily reported cases, the input
parameters and the errors are regarded as random variables on an abstract probability space.
Their probability distributions are inferred from a Bayesian bootstrap procedure. This frame-
work is shown to offer a more accurate estimation of the COVID-19 reported cases than the
deterministic formulation.

Keywords: Bayesian bootstrap, COVID-19 reported infections and waves, Deterministic and
stochastic modeling, Least-squares fitting, Multiple generalized logistic growth curves, Random
parameters and errors

1. Introduction

COVID-19 is an infectious disease caused by coronavirus SARS-CoV-2. It was detected
for the first time in Wuhan, China, in December 2019, and quickly spread around the globe
becoming an ongoing pandemic. The virus is rapidly transmitted between persons through
small droplets and aerosols. The most common symptoms of the disease are fever, dry cough
and fatigue. Data to date suggest that 80% of infections are mild or asymptomatic, 15% are
severe, and 5% are critical. Lethality strongly depends on age and comorbidities. As of July
2021, more than 190 million people have been infected and more than 4 million people have
died. To contain the spread of the virus and alleviate the pressure on the health systems,
governments put several restrictions such as city or country lockdowns, quarantines, social
distancing and hygiene measures, curfews, mandatory masks, etc. [19,44,45,47].

The use of mathematical models is an effective tool to describe and predict the evolution of
epidemics and to propose targeted measures [6, 33]. Due to the fast transmissibility of SARS-
CoV-2 and the containment measures frequently implemented by governments, the modeling of
its spread is a difficult problem. For example, as already noticed by other researchers [1,28,29],
the usual autonomous SIR (susceptible-infected-recovered) model cannot capture the quick
variations of COVID–19 reported infections.

When aggregated time-series data are present, the logistic differential equation model may be
useful to fit the measurements on COVID-19 infections [43]. The curve is characterized by an
increasing growth in the beginning period, combined with a decreasing growth at a later stage.
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Generalizations of the logistic growth curve, to allow for more general sigmoid shapes, have
been employed to model COVID-19 [3,22,31,46]. Those approaches seem to be adequate when
fitting a single wave of the COVID-19 epidemic. For multiple phases of growth, as occurs with
COVID-19 infection waves, a single S-shaped trajectory is not applicable. In this line, ideas
from [27] on the bi-logistic model have been used to fit cumulative cases of COVID-19 along two
different outbreaks or waves [9,36,49]. These types of models, usually called phenomenological
or statistical, are often useful to reproduce and forecast the course of an epidemic [7,32], when
the insight is limited, treatments and interventions are rapidly changing, data vary abruptly,
and mechanistic models (compartmental models with laws of transmission) present difficulties.

The incidence of an epidemic and its modeling have intrinsic uncertainties that are irreducible
(random uncertainty). Thus, to better mimic reality, models should incorporate stochastic
components [38]. For example, reference [22] also included stochastic effects through a Bayesian
formalization. Bayesian inference has been suggested for other models to accommodate COVID-
19 data, such as the Gompertz curve [4]. However, the use of the Bayesian bootstrap [34] to
infer input uncertainties does not seem to have been investigated so far.

In this paper, we investigate the use of four combined generalized logistic differential equa-
tions to model the four waves of the COVID-19 epidemic in Castilla-Leon (a Spanish au-
tonomous region with 2.5 million inhabitants) at once. The temporal period runs from March
1, 2020 to February 12, 2021. The calibration of model parameters is conducted by a least-
squares minimization procedure. Due to data measurement errors, some form of stochasticity
is introduced into the model. The input parameters and the errors are considered as random
variables, whose probability distributions are inferred from a Bayesian bootstrap technique.

The plan of the paper is the following. Section 2 provides the methodology, including a brief
description of the data, and the deterministic and stochastic approaches. Section 3 presents
the results (numerical calculations, fittings and plots). A discussion comes in Section 4. The
paper ends with some final conclusions in Section 5.

2. Methods

2.1. Data. We have data on the number of new daily COVID-19 reported infections in the
Spanish autonomous region of Castilla-Leon. This region is the largest community in Spain by
area, it is located in the northwest of Spain, and it has a population of around 2.5 million. The
data correspond to the temporal period of almost one year, from March 1, 2020 to February 12,
2021, which encompasses four waves of the epidemic. The cases have been retrieved from the
open data portal of Castilla-Leon 1. This dataset only captures a small fraction of the true bur-
den, due to asymptomatic cases, lack of resources and omission of suspected but not confirmed
cases. In this paper, we treat Castilla-Leon as a whole where people interact homogeneously.

In Figure 1, the number of daily new reported infections, for 349 consecutive days, is de-
picted in the left panel, while the accumulated number of daily reported infections is shown
in the right panel. We note that there are four clear waves of the epidemic. The first wave
corresponds to the first entrance of the virus in Spain, which ended up in summer 2020 due
to the severe lockdown imposed by authorities. The second wave started after summer 2020
due to relaxation of measures and overlapped with a larger third wave along autumn. Fi-
nally, the fourth wave began after the end-of-year vacations and ended in February 2021 due to
some restrictions and the vaccination program. A significant variability in the daily data, with
abruptly increasing and decreasing magnitudes, is observed between nearby days, highlighting
some sort of uncertainty entailing some stochastic nature in the data. This may be due to

1https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html

https://datosabiertos.jcyl.es/web/es/datos-abiertos-castilla-leon.html
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highly variable factors, such as the quantity of tests available and performed, symptomatology,
etc. The implementations and computations are performed with Mathematica R©, version 12.0,
and are included as supplementary material, where the data are available (variable vtotal).
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Figure 1. Left panel: number of new daily reported infections. Right panel:
accumulated daily number of reported infections.

2.2. Multiple generalized logistic growth curves. In this subsection, the reported infec-
tions of the COVID-19 disease presented in Figure 1 are modeled. Each wave of the epidemic
– the accumulated version from the right panel of Figure 1 – is described by means of a gener-
alized logistic growth curve. The four waves are then modeled by juxtaposing four generalized
logistic growth curves. The input parameters of the complete model are calibrated by certain
optimization procedures. This framework provides a smooth curve that fits the data from both
panels of Figure 1. Note that in this subsection, stochastic effects are not taken into account
yet.

2.2.1. A generalized logistic differential equation. The Malthusian model, proposed by T.R.
Malthus in 1798 in an essay [24], describes an exponential growth in a population through the
ordinary differential equation

y′(t) = ay(t),

where a is a positive parameter defined as the intrinsic growth rate. Given an initial condition
y(t0) = y0, the solution of the above equation is given by

y(t) = y0e
a(t−t0).

A modern formulation of the Malthusian growth model can be read at any introductory text [30].
In the field of population ecology, it is considered as the first law of population dynamics [41].

In order to capture the decrease in the growth rate with time, P.F. Verhulst proposed in
1838 [18,42] the logistic model, given by

y′(t) = ay(t)

(
1− y(t)

K

)
,

where K > 0 is the carrying capacity (the limit of y(t) as t tends to infinity). This is a Bernoulli-
type ordinary differential equation. Given an initial condition y(t0) = y0, the solution is known
in closed form

y(t) =
K

1 +
(
−1 + K

y0

)
e−a(t−t0)

.
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This function was employed to forecast an Ebola epidemic [8]. The saturation effect implic-
itly captures public health interventions, without complex mechanistic assumptions about the
transmission process.

To allow for more flexible S-shaped curves to model growth phenomena over time, the fol-
lowing modification of the logistic differential equation has been suggested in the literature

y′(t) = ay(t)

(
1−

(
y(t)

K

)b)
. (2.1)

Originally, (2.1) was used for the analysis of tumor growth [5, 26, 35, 39], though applications
in epidemiology are also found. Examples of diseases include SARS [14, 16], dengue fever [17],
influenza H1N1 [15], Zika [7], Ebola [32], and COVID-19 [3, 22, 31, 46]. Here b > 0 is a power
that controls the asymmetry of the curve and how fast the limiting number K is approached. It
endows the model with higher flexibility. When b = 1, the classical logistic differential equation
is obtained, and when b tends to 0, the Gompertz equation is recovered. This generalization
belongs to the class of Bernoulli differential equations too. If y(t0) = y0 is the initial condition,
the solution takes the form

y(t) =
K[

1 +

(
−1 +

(
K
y0

)b)
e−ab(t−t0)

] 1
b

. (2.2)

This is called a generalized logistic growth curve (or sometimes Richards’ curve). It may be
appropriate to model the aggregated cases of a single wave of the COVID-19 epidemic. For
new cases (not accumulated), consecutive differences y(t)− y(t− 1) are considered.

2.2.2. Combination of growth curves. For multiple phases of growth, a single sigmoid curve is
not appropriate to describe such data. Thus, we propose a combination of generalized logistic
growth curves of the form (2.2). This is an extension of the work initiated by P.S. Meyer for
the bi-logistic model [27], with subsequent applications in sociology [13], agriculture [37] or
epidemiology [9, 20,36,49], for instance.

Mathematically, a combination of generalized logistic growth curves takes the following form

y(t) =
∑
i

Ki[
1 +

(
−1 +

(
Ki

y0,i

)bi)
e−aibi(t−t0,i)

] 1
bi

. (2.3)

This sum of trajectories, supplied with four terms i = 1, 2, 3, 4, allows modeling the accumulated
cases of the four concatenated COVID-19 waves. In practice, one should try fitting several
concatenated models and compare their goodness-of-fit. In our case, we tried three terms, but
the fit was not good. For new cases (not accumulated), consecutive differences y(t)− y(t− 1)
are considered. It is important to note that the four generalized logistic growth curves are not
independent (the four waves are not treated independently). Finally, notice that t0,i captures
the beginning of the i-th wave. Each Ki measures the highest infection level of the i-th wave.

2.2.3. A deterministic fit. Let dl be the number of new reported cases at time l ∈ {1, . . . , 349}.
Let Il be the number of accumulated reported cases at time l ∈ {1, . . . , 349}, scaled by the total
population in Castilla-Leon (N0 = 2.408×106 inhabitants). The following simple relations hold

dl = (Il − Il−1)×N0,
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Il ×N0 =
l∑

j=1

dj.

A combination of generalized logistic growth curves as in (2.3) is used to model {Il}349l=1. The
parameters of (2.3) are estimated at once by a deterministic least-squares procedure [40],

min
parameters

349∑
l=1

(Il − y(l))2 . (2.4)

In most of the cases, the model curve will not go through all the data, so this minimum value
will not be zero. The minimum gives a measure of how good the fit is.

2.3. Parametric randomization of the model. We now proceed with modeling the daily
random variability of the data through a probabilistic setting. Following a Bayesian formalism,
the parameters and the errors will be regarded as random variables on an abstract probabilistic
space. Their probability distributions will be then inferred by means of Bayesian bootstrapping.
In this context, the output of the model is a stochastic process, which will render a stochastic
fit of the data, rather than an averaged estimation.

2.3.1. Randomization. Part of the variability of the data is not captured by the determinis-
tic model. We assume the errors are random variables naturally defined in a probabilistic
framework. We also consider the lack of knowledge on the input parameters, which prescribe
the constitutive laws of the system, represented within a probabilistic framework [38, chap-
ter 1], [21, chapter 1]. Thus, we consider in this new setup the parameters and the errors of
the model as random variables.

The field of uncertainty quantification studies the impact of random uncertainties on mod-
els [38]. This quantification is necessary to evaluate the discrepancies between the model
predictions and the current system behavior. Inverse uncertainty quantification deals with in-
ference of the probability distributions of the parameters from the data. These probability
distributions are not, in general, independent. Forward uncertainty quantification extracts the
main statistical content of the model output, once the probability distributions of the parame-
ters are fixed [21,48]. The various stages of the probabilistic modeling process are schematically
illustrated in Figure 2. Inverse uncertainty quantification is not an easy task. Here we rely on
the Bayesian bootstrap technique. Forward uncertainty quantification will be conducted via
Monte Carlo simulation.

2.3.2. Bayesian bootstrap. Given a mathematical model, the model error coming from a deter-
ministic least-squares optimization technique may be regarded as a random variable X. The
error varies with time, and thus the errors at different instants of time may be seen as copies of
X. In this context, the errors of the model are identically distributed and independent random
variables X1, . . . , Xm, where m is the length of the data. Actually, these random variables are
unknown; only different realizations x1, . . . , xm are available from the data and the determin-
istic fit. The bootstrap methodology assumes that the observed residuals x1, . . . , xm are all
possible distinct values of X, based on the principle that all observed variables are discrete.

The Bayesian bootstrap, developed by D.B. Rubin [34], infers the distribution of X by
resampling x1, . . . , xm with Dirichlet weights of coefficients 1, . . . , 1. This procedure corresponds
to the following hierarchical Bayesian statistical model

(X1, . . . , Xm)|(p1, . . . , pm) ∼ ⊗
m times

Cat(m, (p1, . . . , pm)),
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Figure 2. Schematic illustration of the various stages of the probabilistic mod-
eling process.

with

(p1, . . . , pm) ∼ Dir(m, (0, . . . , 0)).

Bayes’ theorem yields the posterior distribution

(p1, . . . , pm)|(x1, . . . , xm) ∼ Dir(m, (1, . . . , 1)),

because, for p1 + . . .+ pm = 1,

π(p1, . . . , pm|x1, . . . , xm) ∝ π(x1, . . . , xm|p1, . . . , pm)× π(p1, . . . , pm)

∝
m∏
k=1

pk ×
m∏
k=1

p−1k = 1 ∼ Dir(m, (1, . . . , 1)).

That is, the posterior proportions are uniformly distributed on the simplex. Here Cat is the
Categorical distribution on {x1, . . . , xm} and Dir stands for the Dirichlet distribution, which is
a conjugate prior. Parameters (0, . . . , 0) and (1, . . . , 1) come from the frequencies in x1, . . . , xm
before and after observing them, respectively. Note that Dir(m, (0, . . . , 0)) is an improper prior.

The Dir(m, (1, . . . , 1)) distribution can be sampled as follows. From independent realizations
u1, . . . , um−1 ∼ Unif(0, 1), assume that these values are ordered as u1 ≤ . . . ≤ um−1. Set
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u0 = 0 and um = 1. Define gk = uk − uk−1, k = 1, . . . ,m. Then g1, . . . , gm are m independent
realizations of Dir(m, (1, . . . , 1)).

For each resampling of (x1, . . . , xm) with Dirichlet weights of coefficients (1, . . . , 1), the input
parameters of the model are determined by a least-squares fitting. Formally, it is assumed that

parameters = Λ(X1, . . . , Xm) almost surely, Λ = least-squares fitting operator.

This gives rise to samples of the input parameters, so their (posterior) probability distributions
may be inferred as

parameters|(x1, . . . , xm) ∝
parameters|(X1, . . . , Xm)× (X1, . . . , Xm)|(p1, . . . , pm)× (p1, . . . , pm)|(x1, . . . , xm).

This allows solving the problem of inverse uncertainty quantification.

2.3.3. Monte Carlo simulation. Monte Carlo simulation is a popular method for forward un-
certainty quantification. It is simple to implement and robust. It uses a collection {γ1, . . . , γM}
of independent random realizations of the model response, usually obtained from determinis-
tic numerical techniques. The statistics of the model response are derived from the statistics
of that sample. For example, the mean of a function h of the model output is estimated by
1
M

∑M
k=1 h(γk), by the law of large numbers. Monte Carlo simulation essentially amounts to con-

ducting M deterministic resolutions, where M is generally large. The robustness of the method
is due to its independence of the random dimensionality, the variable t, or regularity issues.
Thus, in contrast to spectral methods, its use is advantageous when there is a large number
of input random parameters or the variable t may be large. Further, if the inverse parameter
estimation method generates realizations of the parameters (such as Bayesian methods), then
Monte Carlo simulation seems the logic option for forward uncertainty quantification. The
convergence of the Monte Carlo estimate behaves as M−1/2 due to the central limit theorem.
It is assessed based on the estimated statistics. The reader is referred to [21,38,48] for similar
discussions on Monte Carlo sampling.

2.3.4. A stochastic fit. The aim here is to randomize the deterministic model. The input pa-
rameters and the model errors are assumed to be random variables. Note that to apply the
Bayesian bootstrap methodology, one needs errors that are identically distributed and inde-
pendent. However, the fit for the accumulated infections does not yield independent residuals.
Indeed, two consecutive residuals are correlated, because of the increasing character of the
curve. Also, in addition, the fit for the daily new infections does not yield identically dis-
tributed errors. Certainly, a resampling of residuals may give rise to negative data points,
which does not make sense. To fix these issues and achieve, as far as possible, an independent
and identically distributed sample, the (natural) logarithms of the daily new infections will be
considered. While the parameters of model (2.3) for cumulative infections are calibrated by
least-squares fitting, the resampling is performed for the residuals obtained for the logarithms
of the daily new infections. For each resampling of these residuals, we come back to cumulative
infections and refit model (2.3). In this way, realizations of the model parameters are obtained
for each refit.

The following steps summarize the procedure for estimating the probability distributions of
the parameters:

Step 1: Determine the residuals for the logarithms of the daily new infections: xl = log(dl)−
log((y(l) − y(l − 1)) × N0). The parameters of y were previously determined by the
deterministic least-squares fitting (2.4).

Step 2: Start a FOR loop to generate M bootstrap samples.
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Step 3: Resample the residuals with Dirichlet weights of coefficients (1, . . . , 1). Keep the
resampling as a vector x∗iteration with components x∗iteration(l).

Step 4: Define zl = log(dl) + x∗iteration(l). These are the new generated data for the logarithms
of the daily new infections.

Step 5: Let Ĩl = (
∑l

j=1 ezj)/N0. These are the new generated data for the accumulated infec-
tions.

Step 6: Fit the deterministic model (2.3) to Ĩl by least-squares fitting. Keep the parameters
as a vector λ∗iteration.

Step 7: End the FOR loop.
Output: An ensemble of realizations (x∗1, . . . , x

∗
M) for the residuals (errors) of the logarithms

of the daily new infections. An ensemble of realizations (λ∗1, . . . , λ
∗
M) for the input

parameters.

Once (x∗1, . . . , x
∗
M) and (λ∗1, . . . , λ

∗
M) are available, the following steps outline the procedure

to calculate the realizations of the model output:

Step 1: Start a FOR loop over k = 1, . . . ,M .
Step 2: With parameters λ∗k, evaluate αk(l) = log((y(l)− y(l − 1))×N0). This gives a vector

αk, a discrete sample path of the model for the logarithms of the daily new infections.
Step 3: Incorporate the error: βk = αk + x∗k. This is a a discrete sample path of the model for

the logarithms of the daily new infections, taking into account the random errors.
Step 4: Let γk(l) = (

∑l
j=1 eβk(j))/N0. Here γk is a discrete sample path for the accumulated

infections.
Step 5: End the FOR loop.
Output: The M discrete sample paths (γ1, . . . , γM) of the model output for the accumulated

infections. From them, statistics such as the mean, the variance, quantiles, etc. may be
determined by means of Monte Carlo simulation.

3. Results

3.1. Deterministic fit. We have used the built-in function FindFit in Mathematica R© to ob-
tain the optimal parameters in (2.4), which are (up to four significant digits) as follows:

y0,1 = 2.9× 10−6, b1 = 0.1675, a1 = 0.7396, K1 = 0.01982, t0,1 = 0,

y0,2 = 0.008758, b2 = 0.8369, a2 = 0.1142, K2 = 0.008834, t0,2 = 113.7,

y0,3 = 0.01955, b3 = 4.595, a3 = 0.02152, K3 = 0.05543, t0,3 = 212.1,

y0,4 = 0.001298, b4 = 0.8733, a4 = 0.1505, K4 = 0.03213, t0,4 = 303.6.

The fitted model is depicted in Figure 3. In the left panel, the aggregated reported infections
in percentages, y(l) × 100, are shown, while the right panel shows the estimated new daily
infections, (y(l)− y(l− 1))×N0. The combination of generalized logistic growth curves allows
for a good fit of the COVID-19 incidence, at least from an averaged (smoothed) point of view. In
the following subsection, stochasticity will be taken into account to deal with the daily random
variability of the measurements. In Figure 4, the predictability of the model is quantified. We
use two train sets, up to t = 200 and up to t = 300, and predict the epidemic size a few days
later. The forecast is reasonably good for two weeks. It seems to be better at t = 200 than
at t = 300, possibly due to the fact that t = 200 corresponds to the peak of the second wave,
while t = 300 corresponds to the very early growth phase of the fourth wave. Predictions seem
to be better when a larger dataset of the wave is available.
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Figure 3. Left panel: deterministic fit for the daily accumulated reported in-
fections in percentages. Right panel: deterministic fit for the new daily reported
infections.
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Figure 4. Left panel: deterministic prediction for the daily accumulated re-
ported infections in percentages. Right panel: deterministic prediction for the
new daily reported infections. The vertical dashed line indicates the end of the
calibration period.

3.2. Stochastic fit. Table 1 reports the estimated marginal posterior statistics (mean, median,
standard deviation, and quantiles 0.025 and 0.975) of the corresponding parameters. Figure 5
plots histograms for some marginal posterior distributions. Realizations (λ∗1, . . . , λ

∗
M) are em-

ployed, for M = 1000 bootstrap samples (larger bootstrap samples do not render significant
differences at the scale of the figures). In Figure 6, the fit of the randomized model is shown,
both for the accumulated reported infections (left panel) and the new reported infections per
day (right panel). We draw mean values and regions of probability 0.95 for (γ1, . . . , γM). Op-
tical inspection shows that the estimated mean values for the model response are very similar
to the deterministic fit from Figure 3. Thus, the deterministic fit is extended by incorporating
probabilistic features. In the stochastic approach, the probability regions must contain the
variability of the data, but in a correct way, in the sense that the realizations generated should
resemble the pattern of the data. A stochastic method whose probability regions are unnec-
essarily wide is not good, despite containing all recorded measurements. To better appreciate
the similarity between the real data and the stochastic model, compared to the deterministic
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counterpart, some realizations (γ1, γ2 and γ3) are plotted in Figure 7. In Figure 8, the pre-
dictability of the model is illustrated. We use two sets of incidence data, up to t = 200 and up
to t = 300 as in the deterministic subsection.

mean median standard deviation quantile 0.025 quantile 0.975
b1 0.350 0.283 0.224 0.103 0.892
a1 0.580 0.513 0.191 0.361 0.962
K1 0.018 0.018 0.004 0.010 0.024
y0,2 0.011 0.010 0.003 0.005 0.018
b2 0.564 0.674 0.316 0.074 0.930
a2 0.248 0.137 0.203 0.104 0.769
K2 0.011 0.010 0.005 0.006 0.019
t0,2 115.1 114.8 2.839 111.7 118.4
y0,3 0.019 0.019 0.002 0.016 0.021
b3 4.183 4.490 0.857 2.146 4.985
a3 0.025 0.022 0.043 0.020 0.027
K3 0.055 0.055 0.004 0.049 0.060
t0,3 212.6 212.4 1.412 211.5 213.7
y0,4 0.001 0.001 0.0003 0.0004 0.002
b4 0.712 0.814 0.269 0.131 0.984
a4 0.220 0.168 0.138 0.122 0.690
K4 0.032 0.032 0.003 0.026 0.037
t0,4 304.4 304.2 1.138 302.5 306.8

Table 1. Estimated marginal posterior statistics (mean, median, standard de-
viation, and quantiles 0.025 and 0.975) of the input random parameters.
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Figure 5. Histograms for some marginal posterior distributions.



11

reported

estimated

0.95 region

50 100 150 200 250 300 350
day

2

4

6

8

10

12

% accumulated

infections
reported

estimated

0.95 region

50 100 150 200 250 300 350
day

1000

2000

3000

4000

5000

new

infections

Figure 6. Left panel: stochastic fit for the accumulated daily reported infections
in percentages. Right panel: stochastic fit for the new daily reported infections.
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Figure 7. Left panel: some realizations of the stochastic model for the accumu-
lated daily reported infections in percentages. Right panel: some realizations of
the stochastic model for the new daily reported infections.
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Figure 8. Left panel: stochastic prediction for the daily accumulated reported
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reported infections. The vertical dashed line indicates the end of the calibration
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12

4. Discussion

The COVID-19 spread in Castilla-Leon is modeled along the four waves in a single equation,
both from the deterministic and the stochastic points of view. Generalized logistic differential
equations are concatenated four times to deal with the four waves at once. This procedure ex-
tends the use of the generalized logistic differential equation to more than one wave, compared
to [3, 22, 31, 46], and to more than two waves, compared to [9, 36, 49] from the work [27] on
the bi-logistic model. The deterministic model gives a good fit for COVID-19 reported cases,
especially for accumulated cases. Daily new reported infections present significant variability,
perhaps due to highly variable factors, such as amount of tests available and performed, symp-
tomatology, etc. Thus, stochasticity is incorporated, to extend the deterministic model and to
obtain realizations that resemble the irregular dynamics of the reported new cases closer [38].
The Bayesian bootstrap [34], together with a trick to deal with residuals, is employed to set
probability distributions for the input parameters and the errors. The potential of the Bayesian
bootstrap for mathematical models with uncertainties does not seem to have been investigated.
Our approach resembles the previous use of the frequentist bootstrap [12] for mathematical
models with deterministic parameters and random errors [10]. Apart from fitting the available
data, predictions have been performed by using two train sets, for a quite large forecast period
of 15 days. Phenomenological models like the one proposed in this paper may be useful to
generate reasonable forecasts in near time of the incidence of starting and advanced epidemic
outbreaks, without entering in accounting for possible underlying mechanisms of the studied
phenomenon (such as temporal or spatial dependencies), which would clearly be the base for
further analysis. This idea was also discussed in [7, 32] for a single generalized logistic model.

We justify the use of the Bayesian bootstrap by commenting the unfeasibility of other tech-
niques:

• Maximum entropy principle. This principle has been used in the literature to infer
consistent probability distributions for input parameters [11]. The probability density
function of the parameter is taken by maximizing the Shannon entropy functional, often
restricted to a certain support, to a mean value equal to the deterministic estimate, and
rarely to a variance if available. In the case studied in the present paper, reliable
supports of the parameters are unknown a priori.
• General Bayesian model. Not restricted to the Bayesian bootstrap, Markov Chain Monte

Carlo algorithms may solve the problem for any set of prior distributions [23,38]. How-
ever, the large amount of input random parameters in our case study prevented us from
using this option.
• Itô-type stochastic differential equations. One could naturally ask about the incorpora-

tion of a white noise (formal derivative of Brownian motion) into the generalized logistic
differential equation (2.1) [2, 25]. However, accumulated infections give rise to increas-
ing sample paths, which would contradict the everywhere non-differentiability of Itô
processes.

Some limitations of the present work, which define potential avenues for future research, are
the following: (a) Ideally, the probabilistic interval for the model output should be narrower. It
would be of interest to investigate alternative deterministic models (the averaged, smooth curve)
or Bayesian approaches. (b) We needed to consider the logarithms of the daily new infections
to have an adequate resampling of residuals for which increasing sample paths (accumulated
infections) or negative values (daily new infections) were not a problem. It would be interesting
to directly define a model error for the accumulated infections that takes into account the
correlation between successive days. This correlation is due to the increasing character of the
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curve. (c) Spatial, behavioral, or environmental effects have been neglected. These conditions
may provide a more faithful fit of the COVID-19 data, albeit at the expense of higher complexity.
Nonetheless, when uncertainty is present on the phenomenon itself and the data, sometimes
it may be preferable to simply consider the model as uncertain, rather than augmenting its
complexity.

5. Conclusion

We have shown in the paper that the sum of four generalized logistic growth curves allows
for a proper fit of the accumulated reported infections along the four waves of the COVID-19
epidemic in Castilla-Leon (Spain). Daily new reported infections are described by consecutive
differences. The input parameters are pointwise calibrated by least-squares fitting. However,
this calibration lacks of probabilistic interpretations.

Taking into account the significant variability in the daily reported data, with noisy features,
stochasticity is incorporated into the model by treating the input parameters and the model
errors as random variables. This conception of uncertainty matches with the Bayesian for-
malism of Statistics. The Bayesian bootstrap is an adequate approach for inverse uncertainty
quantification and infers the probability distributions of the parameters. The model response is
stochastic and includes realizations that permit a more reliable fit of the daily new COVID-19
reported cases, compared to the smooth deterministic counterpart.
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[4] Berihuete A, Sánchez-Sánchez M, Suárez-Llorens A (2021) A Bayesian model of COVID-19 cases based on
the Gompertz curve. Mathematics 9(3):228.

[5] Birch CP (1999) A new generalized logistic sigmoid growth equation compared with the Richards growth
equation. Annals of Botany 83(6):713–723.

[6] Chitnis N, Schpira A, Smith D, Hay SI, Smith T, Steketee R (2010) Mathematical modelling to support
malaria control and elimination. Roll Back Malar Prog Impact Ser (World Health Organization, Progress &
impact series) 5:1–48.



14

[7] Chowell G, Hincapie-Palacio D, Ospina JF, Pell B, Tariq A, Dahal S, Moghadas SM, Smirnova A, Simonsen
L, Viboud C (2016) Using phenomenological models to characterize transmissibility and forecast patterns
and final burden of Zika epidemics. PLoS Currents 8.

[8] Chowell G, Simonsen L, Viboud C, Kuang Y (2014) Is west Africa approaching a catastrophic phase or is
the Ebola epidemic slowing down? Different models yield different answers for Liberia. PLoS Curr 2014(6).

[9] da Silva EV, da Silva Melo J, Leite MA (2020) Modelo bi-loǵıstico aplicado aos primeiros 1015 casos de
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