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Abstract. In this paper we present a Stone-Weierstrass type result in
the context of continuous interval-valued functions defined on a compact
Hausdorff space. We also provide a Jackson type approximation result
involving the modulus of continuity of interval-valued functions based on
the gH-difference of intervals. Finally we show how an interval-valued
continuous function can be approximated using interval neural networks.
All the proofs are constructive.

1. Introduction

When modelling a complex process, some uncertainty in the input and
output variables is expected. In such situations, input and output data
should mix numbers and intervals. So, often in these modelling processes,
it is needed to deal with functions giving an interval as an output rather
than real numbers. Interval Analysis is a relatively new branch of research
of Numerical Analysis which studies how to handle such interval uncer-
tainty which appears in a lot of computer-mathematical models of certain
real-world phenomena; in particular, in control theory, linear programming,
optimization problems, etc. The first principles of interval arithmetic were
set independently, and almost simultaneously, in the fifties by Paul S. Dwyer
([7]) and Ramon E. Moore ([17], [18]) in the Unites States, Mieczyslaw War-
mus ([25]) in Poland, and Teruo Sunaga ([24]) in Japan, although Interval
Analysis is often said to have begun with Moore’s book [19].

Interval-valued functions, that is, functions defined on a topological space
taking values in the space of closed intervals, should play a central role in
Interval Analysis, just like real-valued functions do in the Classical Analy-
sis. However some difficulties arise when dealing with these interval-valued
functions, mainly because the space they form is not a linear space; indeed
it is not a group with respect to addition.

Stimulated by the interaction between Interval Analysis and Optimiza-
tion Theory, interval-valued functions have received considerable attention
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recently motivated mainly by the necessity of formulating a formal frame-
work for a differential calculus in this context. Namely, an appropriate met-
ric space and a well-behaved subtraction are needed for such development.
Thus, for the theoretical framework of calculus of interval-valued functions
and among others, Hukuhara ([12]) introduced a concept of difference of
two intervals (H-difference) which was used to define the H-derivative of an
interval-valued function. This concept, however, turned out to be a very
restrictive concept. So, in 2008, Stefanini proposed an improved version of
the H-difference (the gH-difference) which seems to be a very useful tool
for dealing with interval-valued functions.

The literature on other aspects of the theory of interval-valued functions
is reduced compared to the plethora of results dealing with the differential
calculus mentioned in the previous paragraph. One of such aspects is the
study of the approximation of continuous interval-valued functions.

In this paper, by combining certain techniques from [8], [14]) and [21],
we provide some sufficient conditions on a subset of the space of continu-
ous interval-valued functions in order that it be dense, which is to say, a
Stone-Weierstrass type result for interval-valued continuous functions which
doesn’t seem to have made its way into the literature yet. The proofs are
constructive and use only straightforward concepts.

In this context, we also provide a Jackson type approximation result in-
volving the modulus of continuity of interval-valued functions based on the
gH-difference mentioned above.

Finally, based on the results of the previous sections and taking advan-
tage of an striking result by Guliyev and Ismailov ([10]), we show how an
interval-valued continuous function can be approximated using interval neu-
ral networks.

2. Preliminaries

Following [6], let KC denote the set of all finite closed intervals of the real
line R.

KC = {[a, b] : a, b ∈ R, a ≤ b}.
where [a, a] denotes the singleton {a}.

In KC we shall consider two operations, (Minkowski) addition and scalar
multiplication, defined by

I + J = {a+ b : a ∈ I, b ∈ J}

and, for every λ ∈ R,

λI = {λa : a ∈ I}.
Hereafter 0 will denote the singleton [0, 0] = {0}. and it is the neutral

element for the Minkowski addition. Unless J is a singleton , J + (−J) 6= 0.
So, in general, there is no inverse for the sum operation and the structure
of KC is that of a cone rather than a linear space.



APPROXIMATION OF CONTINUOUS INTERVAL-VALUED FUNCTIONS 3

We consider now the metric space (KC , dH), where dH is the Pompeiu-
Hausdorff metric defined as

dH(I, J) = max

{
max
a∈I

d(a, J),max
b∈J

d(I, b)

}
where

d(a, J) = min
b∈J
|a− b| and d(I, b) = min

a∈I
|a− b|.

In particular, if I = [a, b] and J = [c, d], then

dH(I, J) = max{|a− c|, |b− d|}.

It is well known that (KC , dH) is a complete metric space (see [1]).

Proposition 2.1. The metric dH satisfies the following properties:

(1) dH(
∑m

i=1Ai,
∑m

i=1Bi) ≤
∑m

i=1 dH(Ai, Bi) where Ai, Bi ∈ KC for i =
1, ...,m.

(2) dH(αA,αB) = αdH(A,B) where A,B ∈ KC and α > 0.
(3) dH(αA, βA) =| α− β | dH(A, 0), where A ∈ KC, α, β ≥ 0.
(4) dH(αA, βB) ≤| α − β | dH(A, 0) + βdH(A,B), where A,B ∈ KC,

α, β ≥ 0.
(5) dH(A+ C,B + C) = dH(A,B), where A,B,C ∈ KC.

Proof. The proofs of (1) and (2) can be found, for example, in [6]. In
order to prove (3), let us assume that β < α and rewrite αA and βA as
αA = (β + (α − β))A = βA + (α − β)A and βA = βA + (α − β)0. By (1),
we know that

dH(αA, βA) ≤ dH(βA, βA) + dH((α− β)A, (α− β)0) =| α− β | dH(A, 0).

Consequently, by (2) and (3),

dH(αA, βB) ≤ dH(αA, βA) + dH(βA, βB) ≤| α−β | dH(A, 0) +βdH(A,B).

For (5), take A = [a−, a+], B = [b−, b+] and C = [c−, c+]. Then

dH(A+ C,B + C) = max{|a− + c− − (b− + c−)|, |a+ + c+ − (b+ + c+|}
= max{|a− − b−|, |a+ − b+|} = dH(A,B)

�

In the sequel, letK be a compact Hausdorff space and let C(K,KC) denote
the space of continuous functions from K to the metric space (KC , dH), that
is, the space of continuous interval-valued functions defined on K. We shall
consider C(K,KC) endowed with the supremum metric:

D∞(f, g) = sup
t∈K

dH(f(t), g(t)),

which induces, as usual, the uniform convergence topology on C(K,KC).
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Proposition 2.2. Let f ∈ C(K,KC) and ϕ ∈ C(K,R+). Then the mapping
from K to KC defined by k 7→ ϕ(k)f(k), belongs to C(K,KC) as well.

Proof. Since ϕ(k) > 0 for all k ∈ K, then the pointwise product ϕ(k)f(k) is
well defined. Let us see that the mapping is continuous. Choose k1, k2 ∈ K.
By Proposition 2.1 (4), we know that

dH(ϕ(k1)f(k1), ϕ(k2)f(k2)) ≤ |ϕ(k1)− ϕ(k2)|dH(f(k1), 0)

+ ϕ(k2)dH(f(k1), f(k2)).

The proof follows since both ϕ and f are continuous and bearing in mind
that every continuous function from a compact space to a metric space is
bounded. �

3. A version of the Stone-Weierstrass theorem in Interval
Valued Analysis.

The Stone-Weierstrass Theorem is a main tool in the General Approxi-
mation Theory. Our version states conditions for a subset H of continuous
interval-valued functions from a compact space K being dense in the whole
space of continuous interval-valued functions, endowed with the supremum
metric. That is, to find, for every continuous interval-valued function f ,
another one close enough to f and belonging to this smaller subset of con-
tinuous interval-valued functions. Following [8], we introduce a useful tool
to get our main theorem (Theorem 3.8).

Definition 3.1. Let H be a nonempty subset of C(K,KC). We define

Conv(H) = {ϕ ∈ C(K, [0, 1]) : ϕf + (1− ϕ)g ∈ H for all f, g ∈ H}.
This set, Conv(H), have some nice properties that will be helpful in order

to prove our results.

Proposition 3.2. Let H be a nonempty subset of C(K,KC). Then we have:

(1) φ ∈ Conv(H) implies that 1− φ ∈ Conv(H).
(2) If φ, ϕ ∈ Conv(H), then φ · ϕ ∈ Conv(H).
(3) If φ belongs to the uniform closure of Conv(H), then so does 1− φ.
(4) If φ, ϕ belong to the uniform closure of Conv(H), then so does φ ·ϕ.

Proof. (1) is clear. To see (2), let us assume that φ, ϕ ∈ Conv(H). To get
that φ · ϕ ∈ Conv(H), we use the identity

1− φ · ϕ = (1− φ) + φ(1− ϕ)

which implies, for every pair f, g ∈ H, that

(φ · ϕ)f + (1− φ · ϕ)g = φ[ϕf + (1− ϕ)g] + (1− φ)g ∈ H.
To show (3), let us suppose that there exists a sequence {φn} ⊂ Conv(H)

uniformly converging to φ ∈ C(K, [0, 1]). Hence, {1−φn}, which is contained
in Conv(H) by (1), converges uniformly to 1− φ.

Finally, (4) can be proved in the same way.
�
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We still need to state another property of Conv(H) whose proof follows
from two technical lemmas that can be found in [14].

Lemma 3.3. [14, Lemma 2] Let 0 ≤ a < b ≤ 1 and 0 < δ < 1
2 . There exists

a polynomial p(x) = (1− xm)n such that

(1) p(x) > 1− δ for all 0 ≤ x ≤ a,
(2) p(x) < δ for all b ≤ x ≤ 1.

Lemma 3.4. [14, Theorem 1] For every 0 < ε < 1
32 , there exists a poly-

nomial in two variables q(x, y) = (1 − p1(x))p2(x)(1 − p3(y))p4(y), with
pk(z) = (1− zmk)nk , mk, nk ∈ N, k = 1, 2, 3, 4; such that

|x ∧ y − q(x, y)| < ε, for every x, y ∈ [0, 1]

where x ∧ y stands for min{x, y}.
Proposition 3.5. Let H ⊆ C(K,KC). Given two elements of Conv(H), its
maximum lies in the uniform closure of Conv(H).

Proof. Let φ and ψ be two elements in Conv(H). Let φ ∨ ψ stand for the
maximum of φ and ψ. By property (3) of Proposition 3.2, since

φ ∨ ψ = 1− ((1− φ) ∧ (1− ψ)),

it suffices to prove that (1− φ) ∧ (1− ψ) belongs to the uniform closure of
Conv(H).

Take 0 < ε < 1/32 and the corresponding polynomial q(x, y) given by
Lemma 3.4. Then,

|(1− φ(s) ∧ (1− ψ(s)− q(1− φ(s), 1− ψ(s))| < ε

for all s ∈ K. By (1) and (2) of Proposition 3.2 and the given form of q(x, y)
we can claim that ϕ := q(1−φ, 1−ψ) belongs to Conv(H). So we have just
shown that there exists ϕ ∈ Conv(H) with

|(1− φ(s)) ∧ (1− ψ(s))− ϕ(s)| < ε

for all s ∈ K and we get the conclusion.
�

It is convenient to remark that not only the maximum of two elements of
Conv(H) belongs to the uniform closure of Conv(H), but also its minimum.

Definition 3.6. Let H be a subset C(K, [0, 1]). It is said that H separates
the points of K if given s, t ∈ K, there exists φ ∈ H such that φ(s) 6= φ(t).

The next lemma provides the selection of the elements φ ∈ Conv(H)
needed for the construction of the approximation function g in our main
result. The proof is similar to the one from [8] but we include it here for the
sake of completeness.

Lemma 3.7. Let H be a subset of C(K,KC) such that Conv(H) separates
the points of K. Given x0 ∈ K and an open neighborhood V of x0, there
exists a neighborhood U of x0, with U ⊆ V , such that, for all 0 < δ < 1

2 ,
there is φ ∈ Conv(H) satisfying
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(1) φ(t) > 1− δ, for all t ∈ U ;
(2) φ(t) < δ, for all t /∈ V .

Proof. Let W = K \ V . Since Conv(H) separates the points of K, we
can assume, with no loss of generality, that for each t ∈ W , there is a
ϕt ∈ Conv(H) such that ϕt(t) < ϕt(x0).

Pick two real numbers at and bt such that ϕt(t) < at < bt < ϕt(x0).
Taking δ = 1

4 in Lemma 3.3, we can find a polynomial pt(x) = (1 − xm)n

such that pt(x) < 1
4 for bt ≤ x ≤ 1, and pt(x) > 3

4 for 0 ≤ x ≤ at. Hence,

pt(ϕt(x0)) <
1
4 and pt(ϕt(t)) >

3
4 .

Then, for every t ∈W , we can define

U(t) := {s ∈ K : pt(ϕt(s)) >
3

4
},

which is an open neighborhood of t. Since W is compact, there exist
t1, ..., tm ∈W such that W ⊂ U(t1)∪U(t2)∪...∪U(tm). For each i = 1, ...,m
and all s ∈ K we can define

ϕi(s) = pti(ϕti(s)).

We have pti(ϕti(s)) = (1− [ϕti(s)]
m)n and since ϕti(s) ∈ Conv(H), we infer,

by Proposition 3.2, that so is ϕi = pti(ϕti), for all i = 1, ...,m.
Let us define ψ(s) = ϕ1(s) ∨ ... ∨ ϕm(s), s ∈ K and, by Proposition 3.5,

we know that ψ lies in the uniform closure of Conv(H). We remark that
ψ(x0) <

1
4 and ψ(t) > 3

4 , for all t ∈ W due to the properties of the polyno-
mials pt(x). Now, let us define

U = {s ∈ K;ψ(s) <
1

4
}.

Clearly, U is an open neighborhood of x0 in K. We claim that U is contained
in V . Indeed, if s ∈ U and s /∈ V , then s ∈ W and, consequently, ψ(s) > 3

4
which means it cannot be in U .

Take 0 < δ < 1
2 and let p be the polynomial defined by Lemma 3.3,

applied to a = 1
4 , b = 3

4 and δ/2. Define µ(s) = p(ψ(s)), for s ∈ K. By
Proposition 3.2, (3) and (4), the function µ also belongs to the uniform
closure of Conv(H).

If s ∈ U , then µ(s) > 1− δ/2 by construction. If s /∈ V , then s ∈W and
ψ(s) > 3

4 gives µ(s) < δ/2.
Since µ belongs to the uniform closure of Conv(H), there exists φ ∈

Conv(H) such that ‖ φ−η ‖∞= sups∈K | φ(s)−µ(s) |< δ/2. Consequently,
φ satisfies the desired properties. �

We can now state and prove a version of the Stone-Weierstrass theorem
for continuous interval-valued functions, gathering the information obtained
above.

For every x ∈ K let fx ∈ C(K,KC) be the constant function which takes
the constant value f(x).
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Theorem 3.8. Let H be a subset of C(K,KC) that contains the constant
functions. Assuming that Conv(H) separates points, then H is D∞-dense
in C(K,KC).

Proof. Let f be in C(K,KC) and fix ε > 0. We need to find g ∈ H such
that D∞(f, g) < ε.

Take x ∈ K and 0 < ε(x) < ε and let us define the following open
neighborhood of x:

V (x) := {t ∈ K : dH(f(t), f(x)) < ε(x) < ε}.

Apply, then, Lemma 3.7 to get U(x), an open neighborhood of x, satisfying
the properties there.

Fix any point x1 ∈ K and take W = K \ V (x1) which turns out to be a
compact set; so we can find a finite number of points, namely x2, . . . , xm, in
W such that

W ⊂ U(x2) ∪ . . . ∪ U(xm).

Take M = max1≤i≤m{D∞(f, fxi)} and ε′ = max1≤i≤m{ε(xi)} and let us
choose 0 < δ < 1

2 such that δMm < ε− ε′.
On the other hand, Lemma 3.7 also gives φ2, · · · , φm ∈ Conv(H) such

that, for all i = 2, . . . ,m,

(i) φi(t) > 1− δ, for all t ∈ U(xi);
(ii) 0 ≤ φi(t) < δ, if t /∈ V (xi).

Let us define the following functions which belong to Conv(H) as well:
ψ2 := φ2,
ψ3 := (1− φ2)φ3,
...
ψm := (1− φ2)(1− φ3) · · · (1− φm−1)φm.

Next we can compute the sum ψ2 + . . . + ψj , j = 2, . . . ,m and we are
going to show, by induction, that,

ψ2 + . . .+ ψj = 1− (1− φ2)(1− φ3) · · · (1− φj), j = 2, . . . ,m.

It is clear that ψ2 + ψ3 follows the rule since

ψ2 + ψ3 = φ2 + (1− φ2)φ3 = 1− (1− φ2) · (1− φ3).

Assume that it is also true for a certain j ∈ {4, ...,m− 1} and let us check

ψ2 + . . .+ ψj + ψj+1 = 1− (1− φ2)(1− φ3) · · · (1− φj)(1− φj+1).

Then, it is easily checked that

ψ2 + . . .+ ψj + ψj+1 = 1− (1− φ2)(1− φ3) · · · (1− φj)
+ (1− φ2)(1− φ3) · · · (1− φj)φj+1

= 1− (1− φ2)(1− φ3) · · · (1− φj)(1− φj+1)
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as was to be checked and letting us define ψ1 := (1−φ2) · · · (1−φm), which
also belongs to Conv(H) by Proposition 3.2, allows us to get m functions
in Conv(H) satisfying

ψ1 + ψ2 + . . .+ ψm = 1.

Next we claim that

ψi(t) < δ for all t /∈ V (xi), i = 1, . . . ,m. (3.1)

It is apparent when i ≥ 2, since ψi(t) ≤ φi(t) < δ for all t /∈ V (xi) from (ii)
above. So we only need to show it for i = 1. If t /∈ V (x1), we have t ∈ W .
Hence, t ∈ U(xj) for some j = 2, . . . ,m. From (i), we have 1 − φj(t) < δ
and then

ψ1(t) = (1− φj(t))
∏
i 6=j

(1− φi(t)) < δ.

Finally, we can define

g := ψ1fx1 + ψ2fx2 + . . .+ ψmfxm , (3.2)

Since ψi ∈ Conv(H) for i = 1, ...,m (see Definition 3.1), we have g ∈ H and
it remains to show that this function g satisfies the requested property.

Fix now x0 ∈ K and, from Proposition 2.1, we get that

dH(f(x0), g(x0)) = dH

(
m∑
i=1

ψi(x0)f(x0),
m∑
i=1

ψi(x0)f(xi))

)

≤
m∑
i=1

ψi(x0)dH(f(x0), f(xi)).

Let us split the set {1, 2 . . . ,m} into two disjoint sets: I = {1 ≤ i ≤ m :
x0 ∈ V (xi)} and J = {1 ≤ i ≤ m : x0 /∈ V (xi)}. Then, for all i ∈ I, we
have

ψi(x0)dH(f(x0), f(xi)) ≤ ψi(x0)ε
′

and, for all i ∈ J , the inequality (3.1) yields

ψi(x0)dH(f(x0), f(xi)) ≤ δM.

From these two inequalities, we deduce

m∑
i=1

ψi(x0)dH(f(x0), f(xi)) ≤
∑
i∈I

ψi(x0)ε
′ +
∑
i∈J

δQ ≤ ε′ + δMm < ε.

Finally, gathering all the information above, we infer dH(f(x0), g(x0)) < ε
for all x0 ∈ K, which yields D∞(f, g) ≤ ε as desired.

�

Given J ∈ KC , we shall keep writing J to denote the function in C(K,KC)
which takes the constant value J .
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Corollary 3.9. Given f ∈ C(K,KC), there exist finitely many functions
ψi ∈ C(K, [0, 1]) and Ji ∈ KC, i = 1, ...,m, such that

D∞(f, ψ1J1 + ...+ ψmJm) < ε.

Proof. Let us first remark that Conv(C(K,KC)) = C(K, [0, 1]), which clearly
separates the points ofK. Then, it is enough to take Ji := f(xi), i = 1, ...,m,
in the definition of the function g in the proof of Theorem 3.8 (see for-
mula (3.2)).

�

4. A Jackson type approximation result for interval-valued
functions.

As pointed out in the corollary above, the family of all finite sums of the
form

∑m
i=0 ψi(x)Ai, where ψi(x) are continuous functions from K into [0, 1]

and Ai are closed intervals of the real line, is dense in C(K,KC). When
we consider the particular case K = [a, b], we will be able to provide an
upper bound of the approximation error between a continuous function and
a member of such family, obtaining a Jackson-type result. Similar results
can be in found in, e.g., [5], [11] and [2] for classical neural networks and in
[9] in the fuzzy setting. We follow the techniques in [5], but some difficul-
ties arise because we deal with interval arithmetic, whose properties differ
considerably from those of the arithmetic of real numbers. Without loss of
generality, we will consider the unit interval instead of [a, b].

Let f ∈ C([0, 1],KC). The modulus of continuity of f is defined to be

ω(f, δ) := sup{dH(f(x), f(y)) : x, y ∈ [0, 1]; |x− y| < δ}.
Let Tn denote the family{

n∑
i=0

ψi(x)Ai : ψi ∈ C([0, 1], [0, 1]); Ai ∈ KC ,= 0, 1, 2, . . . n

}
.

Define the approximation error between a member of Tn and a continuous
function f ∈ C([0, 1],KC) by

En,f := inf
g∈Tn

D∞(f, g)

As usual, the main concern when dealing with interval-valued functions is
to find a well-behaved substraction for intervals with respect to the Hausdorff
metric and with some sort of cancelation law. Namely, Minkowski difference
has not the desired properties but there have been other approaches to pro-
vide suitable interval differences (see, for instance, Hukuhara [12], Markov
[16], Lodwick [15], Chalco-Cano et al [3]). Maybe the most used, due to
its simplicity, is the Hukuhara difference which was generalized in 2008 by
L. Stefanini ([22],[23]). This generalization has the requested properties we
need.
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Let us denote by A�B the generalized Hukuhara difference, gH-difference
for short, defined in [22] by

A�B = C ⇔


A = B + C

or

B = A+ (−1)C

It is worth remarking that the gH-difference always exists in KC and in fact,

[a−, a+]� [b−, b+] = [min{a− − b−, a+ − b+},max{a− − b−, a+ − b+}]

If A = {a} and B = {b} are two singletons, then A�B = a− b.
We denote by L(A) the diameter or length of the interval A; that is,

L(A) = a+ − a−, when A = [a−, a+].
The following properties will be useful in the sequel and can be found in

[23]:

Proposition 4.1. Let A = [a−, a+], B = [b−, b+] be in KC. Then

(1) A�A = 0.
(2) Either A+ (B �A) = B or B − (B �A) = A.
(3) If L(A) ≤ L(B), then A+ (B �A) = B.
(4) dH(A�B, 0) = dH(A,B)

The cancelation law (item (3) above) allows us to provide the following
property:

Proposition 4.2. Let {Aj}nj=0 be a family of subsets of KC.

(1) If L(Aj) ≥ L(Aj+1), for all j = 0, 1, . . . , n− 1 then, for any 0 ≤ k ≤
n− 1,

An +

n−1∑
j=k

(Aj �Aj+1) = Ak

(2) If L(Aj) ≤ L(Aj+1), for all j = 0, 1, . . . , n− 1 then, for any 0 ≤ k ≤
n− 1,

A0 +
k∑

j=0

(Aj+1 �Aj) = Ak+1
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Proof. For (1) we use that, for every j, Aj+1 + (Aj �Aj+1) = Aj .

An +
n−1∑

j=k+1

(Aj �Aj+1) = An + (An−1 �An)

+ (An−2 �An−1) + . . .

= An−1 + (An−2 �An−1)

+ (An−3 �An−2) + . . .

...

= Ak+2 + (Ak+1 �Ak+2) + (Ak �Ak+1)

= Ak+1 + (Ak �Ak+1) = Ak

The proof of (2) is similar but using Aj + (Aj+1 � Aj) = Aj+1, for every
j. �

Next set Aj := f(j/n) ∈ KC for j = 0, 1, . . . , n−1, where f ∈ C([0, 1],KC).
Then, Proposition 4.2 forces us to demand some kind of monotonicity as
follows: for a continuous function f ∈ C([0, 1],KC) we define the length
function len(f) : [0, 1]→ R as

len(f)(x) = f(x)+ − f(x)−, for all x ∈ [0, 1]

where f(x) = [f(x)−, f(x)+]. As usual, the length function is said non-
increasing when

len(f)(x) ≥ len(f)(y), when x ≤ y. (4.1)

and non-decreasing when

len(f)(x) ≤ len(f)(y), when x ≤ y. (4.2)

For instance, type (i)-gH-differentiable functions satisfy (4.2) and type
(ii)-gH-differentiable functions satisfy (4.1) (see [4, Proposition 3.8]).

So, for every j = 0, 1, . . . n− 1, we have:

Aj+1 + (Aj �Aj+1) = Aj , when (4.1) is satisfied.

and

Aj + (Aj+1 �Aj) = Aj+1, when (4.2) is satisfied.

Now, we are ready to show the following Jackson-type theorem:

Theorem 4.3. Let f ∈ C([0, 1],KC) satisfying (4.1). Then, for every n ∈ N,

En,f ≤ 2ω

(
f,

1

n

)
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Proof. Fix ε > 0 and n ∈ N. Consider the points aj = j
n , j = 0, 1, . . . , n.

Take 0 < δ < 1
2n . Being f a continuous function on a compact set, it is

bounded, so we can find a constant M > 0 such that dH(f(x), f(y)) ≤ 2M ,
for all x, y ∈ [0, 1]. Take ε′ = ε

2nM and apply Lemma 3.3 to aj − δ < aj + δ.
So we can find n+ 1 continuous functions ψj , j = 0, 1, . . . n, with

(1) ψj(t) < ε′, for t ≥ aj + δ, for all j = 0, 1, . . . , n− 1;
(2) ψj(t) > 1− ε′, for t ≤ aj − δ, for all j = 1, . . . , n.

For every j = 0, 1, . . . , n, set Aj = f(aj). Define now

g(x) := An +
n−1∑
j=0

ψj(x)
(
Aj �Aj+1

)
∈ Tn

Now, take any x ∈ [0, 1]. We are going to study the value of dH(f(x), g(x))
and two cases arise depending on where x is located.

Case 1. There exists k with x ∈ [ak − δ, ak + δ] (or 0 ≤ x ≤ δ if k = 0 or
1− δ ≤ x ≤ 1 if k = n).

In this case, x > aj + δ, for j < k and x < aj − δ, for j > k. Then
ψj(x) < ε′ for j < k and 1− ψj(x) < ε′, for j > k.

Then we can rewrite g(x) as

g(x) =
k−1∑
j=0

ψj(x)
(
Aj �Aj+1

)
+ ψk(x)

(
Ak �Ak+1

)
+

n−1∑
j=k+1

ψj(x)
(
Aj �Aj+1

)
+An

(4.3)

Using (5) from Proposition 2.1 and (1) from Proposition 4.2, we have

dH(g(x), f(x)) = dH(g(x) +Ak, f(x) +Ak)

= dH

(
g(x) +Ak, f(x) +An + (Ak �Ak+1) +

n−1∑
j=k

(Aj �Aj+1)
)
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Finally, by (1) and (2) in Proposition 2.1, we infer

dH(g(x), f(x)) ≤
k−1∑
j=0

ψj(x)dH(Aj �Aj+1, 0)

+ dH

(
ψk(x)(Ak �Ak+1), Ak �Ak+1

)
+

n−1∑
j=k+1

dH

(
ψj(x)(Aj �Aj+1), Aj �Aj+1

)
+ dH(Ak, f(x))

≤
k−1∑
j=0

ψj(x)dH(Aj , Aj+1)

+ (1− ψk(x))dH(Ak, Ak+1)

+

n−1∑
j=k+1

(1− ψj(x))dH(Aj , Aj+1)

+ dH(Ak, f(x))

≤ kε′ 2M + ω(f, 1/n) + (n− 1− k)ε′ 2M + ω(f, 1/n)

< 2ω(f, 1/n) + ε

Case 2. There exists 0 ≤ k ≤ n− 1 with x ∈ (ak + δ, ak+1 − δ). In this
case, x > aj + δ, for j ≤ k and x < aj − δ, for j > k. Then ψj(x) < ε′ for
j ≤ k and 1− ψj(x) < ε′, for j > k.

Now, we can rewrite g(x) as

g(x) =

k∑
j=0

ψj(x)
(
Aj �Aj+1

)

+
n−1∑

j=k+1

ψj(x)
(
Aj �Aj+1

)
+An

(4.4)
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And, as in the previous case, but bearing in mind that now dH(Ak+1, f(x)) ≤
ω(f, 1/n) as well,

dH(g(x), f(x)) = dH(g(x) +Ak+1, f(x) +Ak+1)

= dH

(
g(x) +Ak+1, f(x) +An +

n−1∑
j=k+1

(Aj �Aj+1)
)

≤
k∑

j=0

ψj(x)dH(Aj , Aj+1)

+

n−1∑
j=k+1

(1− ψj(x)) dH(Aj , Aj+1)

+ dH(Ak+1, f(x))

≤ (k + 1)ε′ 2M + (n− 1− k)ε′ 2M + ω(f, 1/n)

< 2ω(f, 1/n) + ε

So we get, for all x ∈ [0, 1],

dH(g(x), f(x)) ≤ 2ω

(
f,

1

n

)
+ ε

which means,

D∞(f, g) = sup
x∈[0,1]

dH(f(x), g(x)) ≤ 2ω

(
f,

1

n

)
+ ε

Then,

inf
h∈Tn

D∞(f, h) ≤ D∞(f, g) ≤ 2ω

(
f,

1

n

)
+ ε

and being true for all ε > 0, we finally get

En,f ≤ 2ω

(
f,

1

n

)
.

�

Theorem 4.4. Let f ∈ C([0, 1],KC) satisfying 4.2. Then, for every n ∈ N,

En,f ≤ 2ω

(
f,

1

n

)
Proof. The proof goes parallel to the previous theorem but taking φi = 1−ψi

and considering the function in Tn defined by

g(x) := A0 +

n−1∑
j=0

φj(x)(Aj+1 �Aj) ∈ Tn

�
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5. Approximation by means of interval-valued neural networks

In [13] (see also [20]), an architecture of neural networks with interval
weights and interval biases was proposed. Such networks maps an input
of real numbers to an output interval and they are called interval neural
networks.

Based on the results of the previous section and taking advantage of an
striking result by Guliyev and Ismailov ([10]), we show how an interval-
valued continuous functions can be approximated using interval neural net-
works. Namely, we shall deal with interval neural networks of the following
form:

H(x) =

m∑
i=1

Wi (ci1 · σ(x− θi1) + ci2 · σ(x− θi2))

for each x ∈ R, where the weights Wi ∈ KC and the weights cij and the
thresholds θij are real numbers for i = 1, ...m and j = 1, 2. Here σ : R→ R
stands for the activation function in the hidden layer.

Theorem 5.1. Let K be a compact subset of R and let f ∈ C(K,KC) and
ε > 0. Then there exists a sigmoidal function σ : R → R and an interval
neural network H(x) as above such that D∞(f,H) < ε.

Proof. By Corollary 3.9, there exist finitely many functions ψi ∈ C(K, [0, 1])
and Ji ∈ KC , i = 1, ...,m, such that

D∞(f, ψ1Ĵ1 + ...+ ψmĴm) <
ε

2
.

On the other hand, by [10, Theorem 4.2], we know that, for each ψi,
i = 1, ...,m, there exist weights ci1, ci2, thresholds θi1, θi2, in R and a
sigmoidal function σ : R→ R such that

∣∣∣∣∣ψi(x)−
m∑
i=1

(ci1 · σ(x− θi1) + ci2 · σ(x− θi2))

∣∣∣∣∣ < ε

2m · dH(Ji, 0)
,

for all x ∈ K. Hence

D∞

(
(ci1 · σ(x− θi1) + ci2 · σ(x− θi2)) Ĵi, ψi(x) · Ĵi

)
= sup

x∈K
dH ((ci1 · σ(x− θi1) + ci2 · σ(x− θi2)) Ji, ψi(x) · Ji)

= sup
x∈K
|ψi(x)− (ci1 · σ(x− θi1) + ci2 · σ(x− θi2))| dH(Ji, 0) <

ε

2m

which clearly yields

D∞

(
f,

m∑
i=1

Ĵi (ci1 · σ(x− θi1) + ci2 · σ(x− θi2))

)
< ε.

�
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