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Abstract. In this paper, we introduce a concept of norm-attainment in the projective
symmetric tensor product ⊗̂π,s,NX of a Banach space X, which turns out to be naturally
related to the classical norm-attainment of N -homogeneous polynomials on X. Due to
this relation, we can prove that there exist symmetric tensors that do not attain their
norms, which allows us to study the problem of when the set of norm-attaining elements
in ⊗̂π,s,NX is dense. We show that the set of all norm-attaining symmetric tensors is

dense in ⊗̂π,s,NX for a large set of Banach spaces as Lp-spaces, isometric L1-predual
spaces or Banach spaces with monotone Schauder basis, among others. Next, we prove
that if X∗ satisfies the Radon-Nikodým and the approximation property, then the set
of all norm-attaining symmetric tensors in ⊗̂π,s,NX∗ is dense. From these techniques,
we can present new examples of Banach spaces X and Y such that the set of all norm-
attaining tensors in the projective tensor product X⊗̂πY is dense, answering positively
an open question from the paper [10].

1. Introduction

Recently, it was studied the set of the nuclear operators T : X −→ Y between two
Banach spaces X, Y that attains their nuclear norm in the sense that

T =
∞∑
n=1

x∗n ⊗ yn, and ‖T‖N =
∞∑
n=1

‖x∗n‖ ‖yn‖

for some (x∗n)∞n=1 ⊆ X∗ and (yn)∞n=1 ⊆ Y [10]. From a practical point of view, it has been
shown that this new concept has great connections with different norm-attainment con-
cepts like the norm-attainment of bounded functionals, the norm-attainment of operators
and the norm-attainment of bilinear forms coming from the identification (X⊗̂πY )∗ =
L(X, Y ∗) = B(X × Y ) (see [10, Proposition 3.10 and Corollary 3.11]). In this paper, we
focus on a related norm-attaining notion on the N -fold symmetric tensor product of a
Banach space X: we say that an element z ∈ ⊗̂π,s,NX attains its norm if

z =
∞∑
n=1

λnx
N
n , and ‖z‖ =

∞∑
n=1

|λn|

for some (λn)∞n=1 ⊆ K and (xn)∞n=1 ⊆ X. Due to the fact that the dual (⊗̂π,s,NX)∗ of
the N -fold symmetric tensor product of a Banach space X is identified with the space
P(NX) of all N -homogeneous polynomials on X, this norm-attainment notion turns out
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to be closely related to the theory of norm-attaining homogeneous polynomials for which
the reader is referred to [1, 7, 9, 21].

We present a characterization for the set of all norm-attaining elements in ⊗̂π,s,NX,
denoted by NAπ,s,N(X), and we use it to prove that if every element in ⊗̂π,s,NX attains
its norm, then the set NA(NX) of all N -homogeneous polynomials which attain their
norms in dense in P(NX). This, together with the fact that there are Banach spaces
X such that the set NA(NX) is not dense in P(NX) (see [1, 18]), allows us to get our
first examples of spaces X so that we can guarantee the existence of non-norm-attaining
elements in ⊗̂π,s,NX. As there exist elements in ⊗̂π,s,NX which do not attain their norms,
it is natural to ask when the set of norm-attaining elements in ⊗̂π,s,NX forms a dense
subset. We prove that, under the metric π-property (see [8, 19]) on X, the denseness of
NAπ,s,N(X) holds from the fact that every tensor in ⊗̂π,s,NZ attains its norm whenever
Z is a finite dimensional space. This shows that, for a large class of Banach spaces, as
for instance Lp-spaces, L1-predual spaces, and Banach spaces with monotone Schauder
basis, the set NAπ,s,N(X) is dense in ⊗̂π,s,NX. We also present a result not covered by
the previous ones which holds under the Radon-Nikodým property assumption. More
precisely, we show that if X∗ has the Radon-Nikodým property and the approximation
property, then the set of tensors in ⊗̂π,s,NX∗ which attain their norms is dense. Moreover,
we observe that the problem whether the set NAπ,s,N(X) is dense in ⊗̂π,s,NX for every
Banach space, is separably determined.

We finish the paper by considering the set NAπ(X⊗̂πY ) of all norm-attaining tensors in
X⊗̂πY and obtaining some positive results on the denseness of the set NAπ(X⊗̂πY ). For
instance, we prove that if X is the convex hull of a finite set and Y is a dual space, then
every element inX⊗̂πY attains its norm, which seems to be surprising somehow since there
exists a Banach space X so that NAπ(X⊗̂π`22) 6= X⊗̂π`22 (see [10, Example 3.12.(a)]). This
result allows us to show that if X is a polyhedral Banach space with the metric π-property,
then the set NAπ(X⊗̂πY ) is dense in X⊗̂πY whenever Y is a dual space. Moreover, in
the same line as the symmetric tensor product case, we give a positive answer to an open
question from [10] by proving that NA(X∗⊗̂πY ∗) is dense in X∗⊗̂πY ∗, provided that
X∗ and Y ∗ both have the Radon-Nikodým property, and at least one of them has the
approximation property.

2. Notation and Preliminary Results

In this section, we give the necessary notation and some preliminaries results we will
be using throughout the paper.

The letters X, Y , and Z stand for Banach spaces over the field K which will be R or C.
We denote by BX and SX the closed unit ball and unit sphere of X, respectively. Given
a subset B ⊆ X, we denote the convex hull of B by co(B). The symbol aco(B) stands
for the absolutely convex (i.e., the convex and balanced) hull of the set B. If A,B are
subsets of X, Y , respectively, we denote by A⊗B the set {x⊗y ∈ X⊗Y : x ∈ A, y ∈ B}.
Given a subset C of X, a point x ∈ C is said to be an extreme point of C if x cannot
be written as a convex combination of points in C which are different from x itself. We
denote by ext (C) the set of all extreme points of C.
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For two Banach spaces X and Y , the symbol L(X, Y ) stands for the space of all bounded
linear operators from X into Y . By B(X × Y ) we mean the space of all bilinear forms on
X×Y taking values in K. The Banach space of all scalar-valued N -homogeneous polyno-
mials on X is denoted by P(NX), which is endowed with the norm ‖P‖ = supx∈BX |P (x)|
for every P ∈ P(NX). In this case, P is said to attain its norm when this supremum
becomes a maximum. We denote by NA(NX) the set of all N -homogeneous polynomials
which attain their norms on X. For background on homogeneous polynomials we refer
the refer to [13, 16, 23].

The projective and injective tensor product between X and Y , denoted by X⊗̂πY and
X⊗̂εY , are the completion of the algebraic tensor product X⊗Y endowed with the norms

(2.1) ‖z‖π := inf

{
n∑
i=1

‖xi‖‖yi‖ : z =
n∑
i=1

xi ⊗ yi

}
,

where the infimum is taken over all such representations of z, and∥∥∥∥∥
n∑
i=1

xi ⊗ yi

∥∥∥∥∥
ε

= sup

{∣∣∣∣∣
n∑
i=1

x∗(xi)y
∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y
∗ ∈ BY ∗

}
.

It is well known that BX⊗̂πY = co(BX ⊗BY ) and that (X⊗̂πY )∗ = B(X × Y ) =

L(X, Y ∗). There is a canonical operator J : X∗⊗̂πY −→ L(X, Y ) with ‖J‖ = 1 defined
by z =

∑∞
n=1 x

∗
n ⊗ yn 7→ Lz, where Lz : X −→ Y is given by Lz(x) =

∑∞
n=1 x

∗
n(x)yn.

The operators that arise in this way are called nuclear operators and we denote them by
N (X, Y ) endowed with the nuclear norm

(2.2) ‖T‖N := inf

{
∞∑
n=1

‖x∗n‖‖yn‖ : T (x) =
∞∑
n=1

x∗n(x)yn

}
where the infimum is taken over all representations of T of that form. Let us notice that
every nuclear operator is the limit (in the operator norm) of a sequence of finite-rank
operators, so every nuclear operator is compact.

Recall that a Banach space X satisfies the approximation property (AP, for short) if
for every compact subset K of X and for every ε > 0, there exists a finite-rank operator
T : X −→ X such that ‖T (x) − x‖ 6 ε for every x ∈ K. It turns out that whenever X∗

or Y has the approximation property, then X∗⊗̂πY = N (X, Y ). For a detailed account
on tensor products and nuclear operators, we refer the reader to [11, 26].

Given a natural number N ∈ N, we denote by zN the element z⊗ N. . . ⊗z ∈ X⊗ N. . . ⊗X
for every z ∈ X. The (N -fold) projective symmetric tensor product of X, denoted by
⊗̂π,s,NX, is the completion of the linear space ⊗π,s,NX, generated by {zN : z ∈ X}, under
the norm given by

(2.3) ‖z‖π,s,N := inf

{
n∑
k=1

|λk| : z :=
n∑
k=1

λkx
N
k , n ∈ N, xk ∈ SX , λk ∈ K

}
,

where the infimum is taken over all the possible representations of z. Its topological
dual

(
⊗̂π,s,NX

)∗
can be identified (there exists an isometric isomorphism) with P(NX).
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Indeed, every polynomial P ∈ P(NX) acts as a linear functional on ⊗̂π,s,NX through its
associated symmetric N -linear form P and satisfies

P (x) = P (x, . . . , x) = 〈P, xN〉
for every x ∈ X. We also have that B⊗̂π,s,NX = aco({xN : x ∈ SX}). To save notation, by

a symmetric tensor we will refer to a generic element of ⊗̂π,s,NX. For more information
about symmetric tensor products, we send the reader to [14] and also to recent papers as
[4, 5, 6].

Throughout the paper, we will be interested in studying the concepts of norm-attainment
on X⊗̂πY , N (X, Y ), and ⊗̂π,s,NX meaning that their norms (2.1), (2.2), and (2.3) are
respectively attained. More precisely, we have the following definitions, which will be our
main notions in this paper:

(1) z ∈ X⊗̂πY attains its projective norm if there is a bounded sequence (xn, yn) ⊆
X × Y with

∑∞
n=1 ‖xn‖‖yn‖ < ∞ such that z =

∑∞
n=1 xn ⊗ yn and that ‖z‖π =∑∞

n=1 ‖xn‖‖yn‖. In this case, we say that z is a norm-attaining tensor.

(2) T ∈ N (X, Y ) attains its nuclear norm if there is a bounded sequence (x∗n, yn) ⊆
X∗× Y with

∑∞
n=1 ‖x∗n‖‖yn‖ <∞ such that T =

∑∞
n=1 x

∗
n⊗ yn and that ‖T‖N =∑∞

n=1 ‖x∗n‖‖yn‖. In this case, we say that T is a norm-attaining nuclear operator.

(3) z ∈ ⊗̂π,s,NX attains its projective symmetric norm if there are bounded se-
quences (λn)∞n=1 ⊂ K and (xn)∞n=1 ⊆ BX such that ‖z‖π,s,N =

∑∞
n=1 |λn| for

z =
∑∞

n=1 λnx
N
n . In this case, we say that z is a norm-attaining symmetric tensor.

When there is no confusion of misunderstanding and it is clear on what spaces we are
working with, we denote the norms ‖ · ‖π, ‖ · ‖N , and ‖ · ‖π,s,N simply by ‖ · ‖. Therefore,
we set

(i) NAπ(X⊗̂πY ) =
{
z ∈ X⊗̂πY : z attains its projective norm

}
,

(ii) NAN (X, Y ) =
{
T ∈ N (X, Y ) : T attains its nuclear norm

}
,

(iii) NAπ,s,N(X) =
{
z ∈ ⊗̂π,s,NX : z attains its symmetric norm

}
.

Recall that a subspace Y of a Banach space X is said to be an ideal of X if for
every finite-dimensional subspace E of X and every ε > 0, there is a linear operator
T ∈ L(E, Y ) such that T (e) = e for every e ∈ E ∩ Y and ‖T‖ 6 1 + ε. Let us notice
that 1-complemented subspaces are ideals and that the concept of being an ideal of X
coincides with the one of locally complemented subspace of X (see [20]). The following
result is motivated by [24, Theorem 1.(a)], where the author proves that if X and Z are
Banach spaces and Y is an ideal of Z, then X⊗̂πY is a subspace of X⊗̂πZ and it is an
ideal. In what follows, ⊗̂π,s,NY being an isometric subspace means that if we consider the
natural embedding of it into ⊗̂π,s,NX, then the norms in ⊗̂π,s,NY and ⊗̂π,s,NX coincide
on ⊗̂π,s,NY .

Theorem 2.1. Let X be a Banach space and Y an ideal of X. Then, ⊗̂π,s,NY is an
isometric subspace of ⊗̂π,s,NX.
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Proof. Notice first that, by a denseness argument, it is enough to prove the theorem for
z =

∑n
i=1 λiyi ∈ ⊗π,s,NY ⊆ ⊗π,s,NX. By the definition of the norm (see (2.3)), we have

that ‖z‖⊗̂π,s,NX 6 ‖z‖⊗̂π,s,NY . Now, let us prove the other inequality.

Let ε > 0 be given. Since the norm on a symmetric tensor product is finitely generated
(see [14, Subsection 2.2]), there exists a finite-dimensional subspace F of X containing
{y1, . . . , yn} such that ‖z‖⊗̂π,s,NF < ‖z‖⊗̂π,s,NX +ε. Since Y is an ideal in X, there exists a

linear operator T ∈ L(F, Y ) such that ‖T‖ 6 N
√

1 + ε and T (yi) = yi for every i = 1, . . . , n.
Let us define TN ∈ L(⊗̂π,s,NF, ⊗̂π,s,NY ) by TN(mN) := T (m)N for every m ∈ F . This
operator is well-defined and satisfies ‖TN‖ = ‖T‖N 6 1 + ε (see [14, Subsection 2.2]).
Therefore, we have that

n∑
i=1

λiy
N
i =

n∑
i=1

λiT (yi)
N =

n∑
i=1

TN(yNi ) = TN

(
n∑
i=1

λiy
N
i

)
and then∥∥∥∥∥

n∑
i=1

λiy
N
i

∥∥∥∥∥
⊗̂π,s,NY

=

∥∥∥∥∥TN
(

n∑
i=1

λiy
N
i

)∥∥∥∥∥
⊗̂π,s,NY

6 ‖TN‖

∥∥∥∥∥
n∑
i=1

λiy
N
i

∥∥∥∥∥
⊗̂π,s,NF

6 (1 + ε)‖z‖⊗̂π,s,NF
< (1 + ε)(‖z‖⊗̂π,s,NX + ε).

Since ε > 0 is arbitrary, ‖z‖⊗̂π,s,NY 6 ‖z‖⊗̂π,s,NX and we are done. �

We will be using also the following straightforward fact.

Lemma 2.2. Let X be a Banach space. Let ε > 0 and x, y ∈ SX Then,

‖xN − yN‖⊗̂π,s,NX 6
NN+1

N !
‖x− y‖.

Proof. By the polarization constant (see [14, Subsection 2.3]), we have that

‖xN − yN‖⊗̂π,s,NX 6
NN

N !
‖xN − yN‖X⊗̂πX...⊗̂πX .

Now, let us notice that

xN − yN =
N∑
k=1

xN−k ⊗ (x− y)⊗ yk−1.

This proves the statement since

‖xN − yN‖X⊗̂π ...⊗̂πX 6
N∑
k=1

‖x‖N−k‖x− y‖‖y‖k−1 = N‖x− y‖.

�
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3. Results for Symmetric Tensor Products

In this section we show that there are symmetric tensors that do not attain their norms
and study the denseness problem for norm-attaining elements in ⊗̂π,s,NX. We start by
giving a relation between the concepts of norm-attainment for symmetric tensors and
N -homogeneous polynomials.

Theorem 3.1. Let X be a Banach space and suppose that every element in ⊗̂π,s,NX
attains its norm. Then, the set of all N-homogeneous polynomials that attain their norms
is dense in the space of all N-homogeneous polynomials. In other words,

NA(NX) = P(NX).

In order to prove Theorem 3.1, we present a characterization for elements of ⊗̂π,s,NX
to attain their norms. We have the following result, which is the counterpart of [10,
Theorem 3.1] for symmetric tensors and homogeneous polynomials. We denote by sign(λ)

the complex number λ
|λ| for each λ ∈ C \ {0}.

Lemma 3.2. Let X be a Banach space and let

z =
∞∑
n=1

λnx
N
n ∈ ⊗̂π,s,NX

where λn ∈ C \ {0} and (xn)∞n=1 ⊆ SX . Then, the following statements are equivalent.

(1) ‖z‖ =
∑∞

n=1 |λn|; in other words, z ∈ NAπ,s,N(X).
(2) There exists P ∈ SP(NX) such that P (xn) = sign(λn),∀n ∈ N.
(3) Every P ∈ SP(NX) such that P (z) = ‖z‖ satisfies P (xn) = sign(λn), ∀n ∈ N.

Proof. Let us suppose that (1) holds. Pick any P ∈
(
⊗̂π,s,NX

)∗
= P(NX) with ‖P‖ = 1

and P (z) = ‖z‖. We have that
∞∑
n=1

|λn| = ‖z‖ = P (z) =
∞∑
n=1

λnReP (xn) 6
∞∑
n=1

|λn|,

which implies that P (xn) = sign(λn) for every n ∈ N. This shows that (3) holds. The
implication (3) ⇒ (2) is immediate. Assume now that (2) holds. Then, there exists
P ∈ P(NX) with ‖P‖ = 1 such that P (xn) = sign(λn) for every n ∈ N. So,

∞∑
n=1

|λn| > ‖z‖ > P (z) =
∞∑
n=1

λnP (xn) =
∞∑
n=1

|λn|

and this implies ‖z‖ =
∑∞

n=1 λn. Therefore, (2) implies (1). �

By using Lemma 3.2 above, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Let ε > 0 and P ∈ P(NX) = (⊗̂π,s,NX)∗ with ‖P‖ = 1 be given.
By the Bishop-Phelps theorem for the Banach space ⊗̂π,s,NX, there are P0 ∈ P(NX) with
‖P0‖ = 1 and z0 ∈ S⊗̂π,s,NX such that

P (z0) = 1 and ‖P0 − P‖ < ε.
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By hypothesis we have that z0 ∈ NAπ,s,N(X). So, there are (λn)∞n=1 ⊆ R \ {0} and
(xn)∞n=1 ⊆ SX such that ‖z0‖ =

∑∞
n=1 λn for z0 =

∑∞
n=1 λnx

N
n . By Lemma 3.2, P0(xn) =

sign(λn) for every n ∈ N. In particular, P0 ∈ NA(NX) and we are done. �

Now we are able to present some examples where there exist symmetric tensors z which
do not attain their norms.

Remark 3.3. It is known (see [1, 18]) that if X = d∗(w, 1) with w ∈ `2 \ `1, the predual
of Lorentz sequence space, then the set P(NX), for N > 2, of all norm-attaining N -
homogeneous polynomials on X, is not dense in P(NX). Thus, Theorem 3.1 implies that
there exists an element z in ⊗̂π,s,NX which does not attain its norm.

In contrast to Remark 3.3, when X is finite-dimensional, we do have that every sym-
metric tensor is norm-attaining (we send the reader also to Theorem 4.1 for an analogous
phenomenon on projective tensor products). Its proof can be obtained by arguing as in
[10, Proposition 3.5] with the aid of the fact that a convex hull of a compact set in a finite
dimensional space is again compact and that B⊗̂π,s,NX = aco({xN : x ∈ SX}).

Proposition 3.4. Let X be a finite dimensional Banach space. Then, every symmetric
tensor attains its projective symmetric tensor norm. In other words,

NAπ,s,N(X) = ⊗̂π,s,NX.

As promised, we shall investigate when it is possible to approximate an arbitrary el-
ement z ∈ ⊗̂π,s,NX by a norm-attaining symmetric tensor. Similarly to what it is done
in [10], this is achieved under the assumption that X contains “many” 1-complemented
subspaces.

Definition 3.5. Let X be a Banach space. We say that X has the metric π-property
if given ε > 0 and {x1, . . . , xn} ⊆ SX , we can find a finite dimensional 1-complemented
subspace M ⊆ X and x′i ∈M with ‖xi − x′i‖ < ε for every i = 1, . . . , n.

We invite the reader to [8] (and also to [19, 22]) for more information about π-properties.
Moreover, [10, Example 4.12] sums up known examples of Banach spaces satisfying the
metric π-property. Just to name a few, it is known that Lp-spaces, L1-predual spaces,
and Banach spaces with a finite dimensional decomposition with decomposition constant
1 satisfy such a property. Now, we present the following result analogous to [10, Theo-
rem 4.8].

Theorem 3.6. Let X be a Banach space with the metric π-property. Then, every sym-
metric tensor can be approximated by symmetric tensors which attain their norms. In
other words,

NAπ,s,N(X)
‖·‖π,s,N

= ⊗̂π,s,NX.

Proof. Let u ∈ S⊗̂π,s,NX and ε > 0 be given. There are (λn)∞n=1 ⊆ R\{0} and (xn)∞n=1 ⊆ SX
such that

u =
∞∑
n=1

λnx
N
n and

∞∑
n=1

|λn| < 1 + ε.
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Find k ∈ N large enough such that

‖u− z‖ < ε

2
for z =

k∑
n=1

λnx
N
n ∈ ⊗π,s,NX.

Since X has the metric π-property, we can find a finite dimensional space M of X which
is 1-complemented and such that, for every n ∈ {1, . . . , k}, there exists x′n ∈M such that

‖xn − x′n‖ <
N !

NN+1
· ε

4
.

Define z′ :=
∑k

n=1 λn(x′n)N ∈ ⊗π,s,NM . Since M is finite dimensional, by Proposi-
tion 3.4 we have z′ ∈ NAπ,s,N(M), and, since ‖z′‖⊗̂π,s,NM = ‖z′‖⊗̂π,s,NX , we also have

z′ ∈ NAπ,s,N(X). Finally, by using Lemma 2.2, we have that

‖z′ − z‖ =

∥∥∥∥∥
k∑

n=1

λn

(
(x′n)N − xNn

)∥∥∥∥∥ 6
k∑

n=1

|λn|‖(x′n)N − xNn ‖ <
ε

2
.

Therefore, ‖z′ − u‖ < ε and we are done. �

Before proceeding, let us use Theorem 3.6 to point out the following observation on the
hypothesis of Theorem 3.1.

Remark 3.7. In Theorem 3.1, the assumption that every element of ⊗̂π,s,NX attains its
norm cannot be relaxed to the case that NAπ,s,N(X) is dense in ⊗̂π,s,NX. Indeed, if
X = d∗(w, 1) with w ∈ `2 \ `1, then X has monotone symmetric basis (see, for instance,
[29, Proposition 2.2] and [18, Lemma 2.2]) and, therefore, satisfies the metric π-property
(see, for instance, [10, Example 4.12]), which implies that NAπ,s,N(X) is dense in ⊗̂π,s,NX
by Theorem 3.6. On the other hand, as we already have mentioned in Remark 3.3, the
set of all norm-attaining N -homogeneous polynomials is not dense in P(NX) for N > 2.

Our next goal will be obtaining the following result on the denseness of norm-attaining
elements in ⊗̂π,s,NX∗ under the hypothesis of Radon-Nikodým property (for short, RNP),
see Theorem 4.5 and Corollary 4.6 for its counterpart for nuclear operators and projective
tensor products, respectively.

Theorem 3.8. Let X be a Banach space. Suppose that X∗ has the RNP and the AP.
Then, every symmetric tensor in ⊗̂π,s,NX∗ can be approximated by symmetric tensors that
attain their norms. In other words,

NAπ,s,N(X∗)
‖·‖π,s,N

= ⊗̂π,s,NX∗.

In order to prove Theorem 3.8, we need two preliminary results. Let us start with the
following general lemma for spaces satisfying the RNP, which will also be used to prove
Theorem 4.5.

Lemma 3.9. Let X be a Banach space with the RNP. Then,

A :=

{
x =

n∑
i=1

λixi ∈ X : λ1, . . . , λn > 0, x1, . . . , xn ∈ ext (BX) , ‖x‖ =
n∑
i=1

λi

}
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is dense in X.

Proof. Let x0 ∈ SX . Pick x∗ ∈ SX∗ to be such that x∗(x0) = 1. Now, let us consider
the closed convex set C := {x ∈ BX : x∗(x) = 1}. Since X has the RNP, we have
that C = co ext (C). Moreover, C is a face of BX and so ext (C) ⊆ ext (BX). Thus,
x0 ∈ co{x ∈ ext (BX) : x∗(x) = 1}. To conclude, it suffices to check that

co{x ∈ ext (BX) : x∗(x) = 1} ⊆ A.

To this end, take v =
∑n

i=1 λixi, where xi ∈ ext (BX), x∗(xi) = 1 and λi > 0 for all
i = 1, . . . , n, and

∑n
i=1 λi = 1. Then,

1 > ‖v‖ > 〈x∗, v〉 =
n∑
i=1

λi = 1

and so v ∈ A. A straightforward homogeneity argument allows us to restrict the assump-
tion ‖x0‖ = 1, and the lemma is proved. �

We also need the following result, which is a consequence of Lemma 3.2 and Lemma 3.9.

Lemma 3.10. Let X be a Banach space. Assume that ⊗̂π,s,NX has the RNP and that

ext
(
B⊗̂π,s,NX

)
⊆ {±xN : x ∈ BX}. Then, every symmetric tensor can be approximated

by symmetric tensors which attain their norms. In other words,

NAπ,s,N(X)
‖·‖π,s,N

= ⊗̂π,s,NX.

Proof. By Lemma 3.9, the set

A =

{
z =

n∑
i=1

εiλix
N
i ∈ ⊗̂π,s,NX : εi ∈ {1,−1}, λi > 0, xi ∈ SX , ‖z‖ =

n∑
i=1

λi

}

=

{
z =

n∑
i=1

λix
N
i ∈ ⊗̂π,s,NX : λi ∈ R, xi ∈ SX , ‖z‖ =

n∑
i=1

|λi|

}
is dense in X. Clearly, A ⊆ NAπ,s,N(X). �

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let us observe first that if X∗ has the RNP and the AP, then
⊗̂π,s,NX∗ has the RNP. Indeed, by using [14, Subsection 2.3], we have that ⊗̂π,s,NX∗ is
isomorphic to a subspace of X∗⊗̂π . . . ⊗̂πX∗. Since X∗ has the RNP and AP, we have
that X∗⊗̂π . . . ⊗̂πX∗ has the RNP (see [12, Theorem VIII.4.7]) and then we can conclude
that ⊗̂π,s,NX∗ has the RNP. Now by using [4, Proposition 1], we have that

ext
(
B⊗̂π,s,NX∗

)
= ext

(
B(⊗̂ε,s,NX)∗

)
⊆ {±ϕN : ϕ ∈ X∗, ‖ϕ‖ = 1}

and by Lemma 3.10, the set NAπ,s,N(X∗) is dense in ⊗̂π,s,NX∗, as desired. �
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Notice that if X∗ has the RNP, then PI(NX), the Banach space of all N -homogeneous
integral polynomials on X, has the RNP. Consequently, ⊗̂ε,s,NX cannot contain an iso-
morphic copy of `1, which in turn implies that PI(NX) is isometrically isomorphic to the
Banach space Pnu(NX) of all N -homogeneous nuclear polynomials on X (see [4, Theo-
rem 2]).

Theorem 3.11. Let X be a Banach space. Suppose that ⊗̂ε,s,NX does not contain a copy
of `1. Then the set of norm-attaining elements in Pnu(NX) is w∗-dense in Pnu(NX) =
(⊗̂ε,s,NX)∗.

Proof. Let P ∈ SPnu(NX) be given. By the Bishop-Phelps theorem [3], given ε > 0, we can
find P0 ∈ S(⊗̂ε,s,NX)∗ so that P0 attains its norm at some u0 ∈ S⊗̂ε,s,NX and ‖P0− P‖ < ε.

We will prove that P0 can be approximated by norm-attaining elements in Pnu(NX) in
the w∗-topology. For this, let us consider the set

C :=
{
Q ∈ B(⊗̂ε,s,NX)∗ : 〈Q, u0〉 = 1

}
.

Notice that C is a w∗-compact and convex set. It follows from Krein-Milman theorem
(see, for instance, [2, Theorem 7.68]) that C = cow

∗
(ext (C)). As C is a face of B(⊗̂ε,s,NX)∗ ,

thanks to [4, Proposition 1], we have that

C ⊆ cow
∗
({
± (x∗)N : x∗ ∈ SX∗ , 〈±(x∗)N , u0〉 = 1

})
.

It follows from Lemma 3.2 that P0 can be approximated by norm-attaining elements in
Pnu(NX) in the w∗-topology and we are done. �

Recall that Pnu(NX) coincides with ⊗̂π,s,NX∗ isometrically whenever X∗ has the AP.
It is known that the James-Hagler space JH is an example of a Banach space whose dual
does not have the RNP while the symmetric injective tensor product ⊗̂ε,s,NJH does not
contain a copy of `1 (see [15]). Thus, the assumption in Corollary 3.12 below is strictly
weaker than that of Theorem 3.8.

Corollary 3.12. Let X be a Banach space such that X∗ has the AP. If ⊗̂ε,s,NX does not
contain a copy of `1, then the set NAπ,s,N(X∗) is w∗-dense in ⊗̂π,s,NX∗.

Let us observe that so far we have presented only positive results on the (w∗-) denseness
of symmetric tensors which attain their norms in ⊗̂π,s,NX. In fact, we do not know
whether the set NAπ,s,N(X) is dense in ⊗̂π,s,NX for every Banach space X. The first
candidate that would pop up in our minds would be a Banach space X such that the set
NAπ(X⊗̂πX) is not dense in X⊗̂πX. Nevertheless, the techniques from [10, Section 5]
(where the authors show that there exist subspaces X of c0 and Y of the Read’s space
R such that the set NAπ(X⊗̂πY ∗) is not dense) do not seem to work. Indeed, the idea
behind was requiring that every element of NA(X, Y ∗) has finite rank, and then working
with a bounded operator T : X −→ Y which can not be approximated by finite rank
operators from the failure of the approximation property. This construction is doable
since X and Y are isomorphic and then T can be taken as a formal identity thanks to
classical results on AP. However, for one such example of the form X⊗̂πX, we would need
to work with an operator T : X −→ X∗, for a certain subspace X of c0, which is not



ON NORM-ATTAINMENT IN (SYMMETRIC) TENSOR PRODUCTS 11

approximable by finite rank operators and, to the best of our knowledge, the existence of
such a space X and such a T is unknown. Despite that, we shall conclude this section by
showing that this open problem is separably determined.

Theorem 3.13. Let N ∈ N be fixed. If NAπ,s,N(Y ) is dense in ⊗̂π,s,NY for every separable
Banach space Y , then NAπ,s,N(X) is dense in ⊗̂π,s,NX for every Banach space X.

Proof. Let X be a Banach space, z ∈ ⊗̂π,s,NX, and let ε > 0 be given. Choose a rep-
resentation z =

∑∞
n=1 λnx

N
n with (λn)∞n=1 ⊆ R \ {0} and (xn)∞n=1 ⊆ SX satisfying that∑∞

n=1 |λn| < ‖z‖⊗̂π,s,NX + ε. Let Z := span{xn : n ∈ N}. Thus, Z is a separable

Banach space. By [28, Proposition 2] (see also [17, Lemma 4.3]), there exists a separa-
ble ideal Y of X such that Z ⊆ Y . As Y is an ideal, by Theorem 2.1, we have that
‖z‖⊗̂π,s,NX = ‖z‖⊗̂π,s,NY . By the hypothesis, there exists z′ =

∑∞
n=1 µny

N
n ∈ NAπ,s,N(Y )

with ‖z′‖⊗̂π,s,NY =
∑∞

n=1 |µn| which satisfies that ‖z − z′‖⊗̂π,s,NY < ε. Considering z′ as

an element of ⊗̂π,s,NX, we notice that

∞∑
n=1

|µn| = ‖z′‖⊗̂π,s,NY = ‖z′‖⊗̂π,s,NX 6
∞∑
n=1

|µn|,

which implies that z′ ∈ NAπ,s,N(X). Finally, ‖z − z′‖⊗̂π,s,NX = ‖z − z′‖⊗̂π,s,NY < ε. �

4. Results for Projective Tensor Products

In this section, we present some results on the denseness of tensors in projective tensor
products of Banach spaces.

Let us first notice that when X = L1(T), where the unit circle T is equipped with the
Haar measure, and Y is the two-dimensional Hilbert space `22, we have that NAπ(X⊗̂πY ) 6=
X⊗̂πY [10, Example 3.12 (a)]. This shows that finite dimensionality on just one of the
factors is not enough to guarantee that every tensor in X⊗̂πY is norm-attaining. Never-
theless, we have the following result.

Theorem 4.1. Let X be a Banach space with BX = co ({x1, . . . , xn}) for some x1, . . . , xn ∈
SX and assume that Y is a dual space. Then, every tensor in X⊗̂πY attains its projective
tensor norm. In other words,

NAπ(X⊗̂πY ) = X⊗̂πY.

Proof. Let us assume that Y = Z∗. Notice first that since X is finite dimensional, we
have that L(X,Z) = K(X,Z) = X∗⊗̂εZ and then L(X,Z)∗ = X⊗̂πZ∗. We will use this
fact to prove the following statement.

Claim: The set {xi} ⊗BZ∗ is a w∗-compact convex subset of X⊗̂πZ∗.

Indeed, for each i = 1, . . . , n, let us take Ti : L(X,Z) −→ Z to be defined by Ti(T ) :=
T (xi) for every T ∈ L(X,Z). Therefore, its adjoint operator T ∗i : Z∗ −→ L(X,Z)∗ =
X⊗̂πZ∗ satisfies T ∗i (z∗) = xi ⊗ z∗ for every z∗ ∈ Z∗ and i = 1, . . . , n. This implies that
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T ∗i (BZ∗) = xi ⊗ BZ∗ and since T ∗ is w∗-w∗ continuous, we can conclude that {xi} ⊗ BZ∗

is w∗-compact convex in X⊗̂πZ∗.

Thus, A := co (
⋃n
i=1 xi ⊗BZ∗) is w∗-compact as being the convex hull of a finite number

of w∗-compact convex sets (see, for instance, [2, Lemma 5.29]). So, in particular, A is
w∗-closed and then norm-closed. Finally, if z ∈ BX ⊗ BZ∗ , then there are λi > 0 with∑n

i=1 λi = 1 such that

z =

(
n∑
i=1

λixi

)
⊗ y =

n∑
i=1

λixi ⊗ y.

Therefore, BX ⊗ BZ∗ ⊆ A and by taking convex hulls, we get A = BX⊗̂πZ∗ = BX⊗̂πY .
In particular, every element of SX⊗̂πZ∗ can be written as a finite convex combination of
basic tensors in BX ⊗BZ∗ , so it is norm attaining. �

Recall a Banach space X is said to be polyhedral if the unit ball of every finite-
dimensional subspace is a polytope, that is, the convex hull of a finite set. We can
use Theorem 4.1 to get the following denseness result.

Theorem 4.2. Let X be a Banach which is polyhedral and satisfies the metric π-property.
Assume that Y is a dual space. Then, every tensor in X⊗̂πY can be approximated by
tensors that attain their norms. In other words,

NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY.

Proof. Let u ∈ SX⊗̂πY and ε ∈ (0, 1) be given. Then, there exist sequences (λn) ⊆ R+,
(xn) ⊆ SX , and (yn) ⊆ SY with u =

∑∞
n=1 λnxn ⊗ yn and

∑∞
n=1 λn < 1 + ε. We may find

k ∈ N so that ‖u − z‖ < ε
2
, where z :=

∑k
n=1 λnxn ⊗ yn. Since X satisfies the metric

π-property, we can find a finite-dimensional subspace M of X which is 1-complemented
and such that for every n ∈ {1, . . . , k}, there exists x′n ∈ M such that ‖xn − x′n‖ < ε

4
.

Define z′ :=
∑k

n=1 λnx
′
n ⊗ yn and notice that

‖z′ − z‖ =

∥∥∥∥∥
k∑

n=1

λnx
′
n ⊗ yn −

k∑
n=1

λnxn ⊗ yn

∥∥∥∥∥ =

∥∥∥∥∥
k∑

n=1

λn(x′n − xn)⊗ yn

∥∥∥∥∥
6

∞∑
n=1

λn‖x′n − xn‖‖yn‖

<
ε

4

k∑
n=1

λn

<
ε

2
.

Notice now that z′ ∈ M⊗̂πY and since M is 1-complemented in X, we have that
‖z′‖M⊗̂πY = ‖z′‖X⊗̂πY . Moreover, since X is a polyhedral, we have that BM is equal to

co {x1, . . . , xm} for some x1, . . . , xm ∈ SM . Theorem 4.1 shows then that z′ ∈ NAπ(M⊗̂πY )
and, therefore, z′ ∈ NAπ(X⊗̂πY ). Finally, ‖z′ − u‖ 6 ‖z′ − z‖+ ‖z − u‖ < ε. �
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The Banach space c0 endowed with ‖ · ‖∞ is the canonical example of a polyhedral
space. So, we have the following immediate consequence of Theorem 4.2, which is not
covered by [10, Theorem 4.8].

Corollary 4.3. Let Y be a dual space. Then, NAπ(c0⊗̂πY ) is dense in c0⊗̂πY .

Remark 4.4. Notice that in Theorem 4.2 the hypothesis of X having the metric π-property
is essential. Indeed, in [10, Section 5] the authors show that if X is a closed subspace
of c0 (and hence polyhedral since this property is hereditary) failing the approximation
property and Y := (X, |||·|||) is a renorming of X, where |||·||| is the norm that defines
Read’s space, then NAπ(X⊗̂πY ∗) is not dense in X⊗̂πY ∗.

Next, we can prove the following result on the denseness of nuclear operators which
attain their nuclear norms under the RNP assumption.

Theorem 4.5. Let X, Y be Banach spaces such that X∗ and Y ∗ have the RNP. Then,
every nuclear operator from X into Y ∗ can be approximated by norm-attaining nuclear
operators. In other words,

NAN (X, Y ∗)
‖·‖N

= N (X, Y ∗).

Proof. Suppose that X∗ and Y ∗ have the RNP. Then, N (X, Y ∗) = (X⊗̂εY )∗ also has the
RNP (this is shown in [12, Theorem VIII.4.7, pg. 249] under the additional assumption
that X∗ or Y ∗ have the AP, which is only used to get N (X, Y ∗) = X∗⊗̂πY ∗). Also,

ext
(
BN (X,Y ∗)

)
= ext

(
B(X⊗̂εY )∗

)
⊆ SX∗ ⊗ SY ∗ (cf. [27]). By Lemma 3.9, the set

A =

{
T =

n∑
i=1

λix
∗
i ⊗ y∗i : λi > 0, x∗i ∈ SX∗ , y∗i ∈ SY ∗ for i = 1, . . . , n, ‖T‖ =

n∑
i=1

λi

}
is dense in N (X, Y ∗). Clearly, A ⊆ NAN (X, Y ∗). �

If we are under the hypotheses of Theorem 4.5 together with the extra assumption that
one of the spaces has the approximation property, then the equality X∗⊗̂πY ∗ = N (X, Y ∗)
holds (see, for instance, [25, Corollary 4.8]). By using Theorem 4.5, we get the following
counterpart of Theorem 3.8 for non-symmetric tensors, which provides a positive answer
for [10, Question 6.1] in the case that one of the spaces has the approximation property.

Corollary 4.6. Let X, Y be Banach spaces such that X∗ and Y ∗ have the RNP and at
least one of them has the AP. Then, every tensor in X∗⊗̂πY ∗ can be approximated by
tensors that attain their norms. In other words,

NAπ(X∗⊗̂πY ∗)
‖·‖π

= X∗⊗̂πY ∗.

Even if we weaken the assumption in Theorem 4.5 so that only X∗ has the RNP,
we are still able to obtain the denseness result, but in the w∗-topology, of the set of
norm-attaining nuclear operators as in Theorem 3.11. Notice that N (X, Y ∗) is identified
with (X⊗̂εY )∗, the dual of injective tensor space, under the assumption that X∗ has the
RNP. Arguing in the same way as in the proof of Theorem 3.11 but using the fact that
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ext
(
B(X⊗̂εY )∗

)
⊆ SX∗ ⊗ SY ∗ and [10, Theorem 3.2] instead of [4, Proposition 1] and

Lemma 3.2, respectively, the following result can be obtained.

Theorem 4.7. Let X be a Banach space such that X∗ has the RNP. Then, the set
NAN (X, Y ∗) is w∗-dense in N (X, Y ∗) = (X⊗̂εY )∗ for any Banach space Y .

Using the equality X∗⊗̂πY ∗ = N (X, Y ∗) provided that one of X∗ or Y ∗ has the AP,
we get the following immediate consequence of Theorem 4.7.

Corollary 4.8. Let X, Y be Banach spaces such that X∗ has the RNP and at least one of
X∗ or Y ∗ has the AP. Then, the set NAπ(X∗⊗̂πY ∗) is w∗-dense in X∗⊗̂πY ∗ = (X⊗̂εY )∗.
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Rodŕıguez for fruitful conversations on the topic of the paper. The first author was
supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16 019/0000778 and by the
Estonian Research Council grant PRG877. The second author is supported in part by the
grants MTM2017-83262-C2-2-P and Fundación Séneca Región de Murcia 20906/PI/18.
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