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We further investigate the weak topology generated by the irreducible unitary 
representations of a group G. A deep result due to Ernest [13] and Hughes [22]
asserts that every weakly compact subset of a locally compact (LC) group G is 
compact in the LC-topology, generalizing thereby a previous result of Glicksberg 
[19] for abelian locally compact (LCA) groups. Here, we first survey some recent 
findings on the weak topology and establish some new results about the preservation 
of several compact-like properties when going from the weak topology to the original 
topology of LC groups. Among others, we deal with the preservation of countable 
compactness, pseudocompactness and functional boundedness.
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1. Introduction

In contrast to what happens with abelian groups, where the Bohr compactification and Bohr topology 
display many nice features, the Bohr compactification presents important shortcomings when applied to 
non-commutative groups. For example, it may happen that the Bohr compactification of a locally compact 
group becomes trivial, what makes it useless in order to study the structure of those non-abelian groups. 
On the other hand, it is known, as a consequence of the celebrated Gel’fand and Rǎıkov Theorem, that 
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the set of all irreducible unitary representations of a locally compact group G contains all the information 
necessary to recover the topological and algebraic structure of the group (see [12]). Therefore, it seems 
appropriate to consider the weak topology generated by the irreducible unitary representations of a group 
G as the genuine weak topology of general not necessarily LC group G (as a matter of fact, they coincide 
for abelian topological groups, by Schur’s Lemma). This is what we have done in [15] and, here, we further 
develop this approach, which was initiated by Hughes in [22].

There is a plethora of results that concern the weak topology of abelian topological groups and, although 
there still are interesting open questions in this setting, we have plenty of information about the weak 
topology of abelian LC groups. The literature in this regard is vast, so we only mention [7] and the references 
therein. On the other hand, there also are some crucial findings that have been already established for general 
LC groups, which are less known so far but form the basis for an in-depth study of weak topologies in the 
setting of not necessarily abelian groups. It is pertinent to mention here the task developed by Ernest [13] and 
Hughes [22], who proved that every weakly compact subset of a LC group G is compact in the LC-topology, 
generalizing thereby a previous result of Glicksberg [19] for abelian locally compact (LCA) groups. The 
main goal of this paper is twofold. First, we survey some recent results on the weak topology of LC groups. 
On the other hand, we further develop this research line by studying the preservation of several compact-
like properties when going from the weak topology to the original topology of LC groups. Among others, 
we deal with the preservation of countable compactness, pseudocompactness and functional boundedness. 
The preservation of the aforementioned properties has been widely treated for the Bohr topology of locally 
compact abelian groups previously. We remark here that the basic role played by Gliscksber’s theorem [19]
in the subsequent study of the Bohr topology of locally abelian groups has its counterpart in the papers by 
Ernest [13] and Hughes [22] in the case of the weak topology of general locally compact groups. We now 
collect some definitions and basic facts that will be used along the paper.

2. Basic facts

2.1. The Bohr topology

The Bohr compactification of a topological group is a well known notion that has been widely treated 
in the setting of topological groups. Nevertheless, we remind here its most basic features for the reader’s 
sake. With every (not necessarily abelian) topological group G there is associated a compact Hausdorff 
group bG, the so-called Bohr compactification of G, and a continuous homomorphism b of G onto a dense 
subgroup of bG such that bG is characterized by the following universal property: given any continuous 
homomorphism h of G into a compact group K, there is always a continuous homomorphism h̄ of bG into 
K such that h = h̄ ◦ b (see [21, V §4], where a detailed study on bG and their properties is given). The Bohr 
topology of a topological group G is the one that inherits from bG as the initial topology with respect to 
the map b.

In the sequel, following a terminology introduce by Trigos-Arrieta [31], if G is a topological group, we 
denote by G+ the same algebraic group but equipped with the Bohr topology. However, when the group G
is discrete, we will use the symbolism G� used by van Douwen in [19].

As far as we know, the first main result about the Bohr topology is due to Glicksberg [19].

Theorem 2.1 (Glicksberg, 1962). Let (G, τ) be a LCA group. It holds that A ⊆ G is τ -compact if and only 
if is τ+-compact.

However, the systematic study of the Bohr topology was started by van Douwen [19] in the setting of 
discrete abelian groups.
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Theorem 2.2 (van Douwen, 1990). Every A ⊆ G contains a subset D with |D| = |A| that is relatively 
discrete and C-embedded in G� as well as C∗-embedded in bG.

In addition to the previous main result, van Douwen studied the Bohr topology of a discrete abelian 
group in depth. It is remarkable that, except for the standing abelian hypothesis, his proofs of results 
concerning �-groups made no use whatsoever of specific algebraic properties. This probably led him to ask 
whether two groups G1 and G2 with the same cardinality should have G�

1 and G�
2 homeomorphic. Some 

years later Kunen [24] and, independently, Dikranjan and Watson [10], gave examples of torsion groups with 
the same cardinality having nonhomeomorphic �-spaces. Still, much remains unknown, even among groups 
of countable cardinality. One can get an idea of how involved the situation is by taking into account, see 
[9], that Q� and ((Q/Z) ×Z)� are homeomorphic.

Van Douwen’s work on the Bohr topology of discrete abelian groups was continued by Trigos-Arrieta, for 
locally compact abelian (LCA) groups, in his doctoral dissertation [31]. There, the author introduces the 
following notion:

Definition 2.3 (Trigos-Arrieta, 1991). Let G be a topological group and let P be a topological property. We 
say that G respects P if for any subset F of G the following holds: the subspace F of G has P if and only if 
the subspace F of G+ has P.

For example, since G = G+ for G compact, it is obvious that compact groups respect all topological 
properties. In [31], Trigos-Arrieta proves that LCA groups respect most compact-like properties: pseudo-
compactness, functional boundedness, and other topological properties: Lindelöfness and connectedness.

Further properties concerning the Bohr topology of a LCA group can be found in [8,9,17,20]

2.2. The weak topology of LC groups

Given a locally compact group (G, τ), we denote by Irr(G) the set of all continuous unitary irreducible 
representations σ defined on G. That is, continuous in the sense that each matrix coefficient function 
g �→ 〈σ(g)u, v〉 is a continuous map of G into the complex plane. Thus, fixed σ ∈ Irr(G), if Hσ denotes 
the Hilbert space associated to σ, we equip the unitary group U(Hσ) with the weak (equivalently, strong) 
operator topology. For two elements π and σ of Irr(G), we write π ∼ σ to denote the relation of unitary 
equivalence and we denote by Ĝ the dual object of G, which is defined as the set of equivalence classes in 
(Irr(G)/∼). We refer to [11,16,2] for all undefined notions concerning the unitary representations of locally 
compact groups.

Adopting, the terminology introduced by Ernest in [13], set Hn
def= Cn for n = 1, 2, . . .; and H0

def= l2(Z). 
The symbol IrrCn (G) will denote the set of irreducible unitary representations of G on Hn, where it is 
assumed that every set IrrCn (G) is equipped with the compact open topology. Finally, define IrrC(G) =


n≥0

IrrCn (G) (the disjoint topological sum).

We denote by Gw = (G, w(G, Irr(G)) the group G equipped with the weak (group) topology generated 
by Irr(G). Since equivalent representations define the same topology, we have Gw = (G, w(G, Ĝ)). That is, 
the weak topology is the initial topology on G defined by the dual object. Moreover, in case G is a separable, 
metric, locally compact group, then every irreducible unitary representation acts on a separable Hilbert 
space and, as a consequence, is unitary equivalent to a member of IrrC(G). Thus Gw = (G, w(G, IrrC(G)))
for separable, metric, locally compact groups. We will make use of this fact in order to avoid the proliferation 
of isometries (see [11]). In case the group G is abelian, the dual object Ĝ is a group, which is called dual 
group, and the weak topology of G reduces to the weak topology generated by all continuous homomorphisms 
of G into the unit circle T . That is, the weak topology coincides with the Bohr topology of G.
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2.3. The weak compactification of LC groups

Definition 2.4. We denote by P (G) the set of continuous positive definite functions on (G, τ). If σ ∈ Irr(G)
and v ∈ Hσ, then the positive definite function:

ϕ : g �→ 〈σ(g)v, v〉, g ∈ G

is called pure, and the family of all such functions is denoted by I(G). When G is abelian, the set I(G)
coincides with the dual group Ĝ of the group G.

The proof of the lemma below is straightforward.

Lemma 2.5. Let G be a locally compact group. Then Gw = (G, w(G, I(G))).

Definition 2.6. Let G be a locally compact group and consider the following natural embedding:

w : G ↪→
∏

ϕ∈I(G)

ϕ(G) with w(g) = (ϕ(g))ϕ∈I(G)

The weak compactification wG of G is the pair (wG, w), where wG 
def= w(G).

This compactification has been previously considered in [5,6] using different techniques. Also Akemann 
and Walter [1] extended Pontryagin duality to non-abelian locally compact groups using the family of pure 
positive definite functions. Again, in case G is abelian, the compactification (wG, w) coincides with bG, the 
Bohr compactification of G.

A better known compactification of a locally group G which is closely related to wG is defined as 
follows (cf. [14,30]): let B(G)

‖·‖∞ denote the commutative C∗-algebra consisting of the uniform closure of 
the Fourier-Stieltjes algebra of G. Here, the Fourier-Stieltjes algebra is defined as the matrix coefficients 
of the unitary representations of G. Following [26] we call the spectrum eG of B(G)

‖·‖∞ the Eberlein 
compactification of G. Since the Eberlein compactification eG is defined using the family of all continuous 
positive definite functions, it follows that wG is a factor of eG and, as a consequence, inherits most of its 
properties. In particular, wG is a compact involutive semitopological semigroup.

We now recall some known results about unitary representations of locally compact groups that are 
needed in the proof of our main result in this section. One main point is the decomposition of unitary 
representations by direct integrals of irreducible unitary representations. This was established by Mautner 
[25] following the ideas introduced by von Neuman in [27].

Theorem 2.7 (F.I. Mautner, [25]). For any representation (σ, Hσ) of a separable locally compact group G, 
there is a measure space (R, R, r), a family {σ[p]} of irreducible representations of G, which are associated 
to each p ∈ R, and an isometry U of Hσ such that

UσU−1 =
∫
R

σ[p]drp.

Remark 2.8. The proof of the above theorem given by Mautner assumes that the representation space Hσ

is separable but, subsequently, Segal [29] removed this constraint. Furthermore, it is easily seen that we can 
assume that σ[p] belongs to IrrC(G) locally almost everywhere in the theorem above (cf. [23]).

A remarkable consequence of Theorem 2.7 is the following corollary about positive definite functions.
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Corollary 2.9. Every Haar-measurable positive definite function ϕ on a separable locally compact group G
can be expressed for all g ∈ G outside a certain set of Haar-measure zero in the form

ϕ(g) =
∫
R

ϕp(g)drp,

where ϕp is a pure positive definite functions on G for all p ∈ R.

The following proposition is contained in the proof of Lemma 3.2 of Bichteler [3, pp. 586-587]

Proposition 2.10. Let G be a locally compact group. If H is an open subgroup of G, then each continuous 
irreducible representation of H is the restriction of a continuous irreducible representation of G.

3. Locally compact groups respect compactness

In this section we prove an old result by Ernest [13] (cf. [23]) and Hughes [22], asserting that the weak 
topology of locally compact groups respects compactness, that is it holds that every weakly compact subset 
is compact for the original locally compact group topology. In fact, Ernest first proved that, for separable 
metric locally compact groups, every weakly convergent sequence is convergent for the locally compact 
topology and this result was subsequently extended by Hughes by proving that the weak topology of locally 
compact groups respects compactness.

Unfortunately, even though the formulation of Hugues’ result quoted above can be found in [22], its 
full proof only appears in his Doctoral dissertation but has never been published later. Therefore, we have 
decided to include it here for the reader’s sake. Our proof is complete since it contains both Ernest’s and 
Hughes’ results. We first need a further definition and several previous lemmas.

Definition 3.1. Let U be an open neighborhood of the identity of a topological group G. We say that a 
sequence {gn}n<ω is U -discrete if gnU ∩ gmU = ∅ for all n 
= m ∈ ω.

Lemma 3.2. (J. Ernest, 1971) Let (G, τ) be a separable metric locally compact group. Then every convergent 
sequence {gn}n<ω in Gw is also τ -convergent in G.

Proof. Remark that there is no loss of generality in assuming that {gn}n<ω converges to eG in Gw. We 
must verify that {gn}n<ω is τ -convergent to eG.

In order to do so, take a continuous positive definite function ψ ∈ P (G). Since G is separable, by 
Corollary 2.9, there is a measure space (R, R, r), a family {ψp} of pure positive definite functions on G, 
which are associated to each p ∈ R, such that

ψ(g) =
∫
R

ψp(g)drp for all g ∈ G.

Therefore

ψ(gn) =
∫
R

ψp(gn)drp for all n < ω.

Now, for each n < ω, consider the map fn on R by fn(p) def= ψp(gn). Then fn is integrable on R and, since 
{gn}n<ω is weakly convergent to eG, it follows that {fn(p)} converges to ψp(eG) for all p ∈ R. Furthermore, 
if ψp(g) = 〈σp(g)vp, vp〉 for some σp ∈ Irr(G) and vp ∈ Hσp

, it follows that
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|fn(p)| = |ψp(gn)| = |〈σp(gn)vp, vp〉| ≤ ‖vp‖2.

Thus defining f on R as the pointwise limit of {fn}, we are in position to apply Lebesgue’s dominated 
convergence theorem in order to obtain that

ψ(eG) =
∫
R

ψp(eG)drp =
∫
R

f(p)drp = lim
n→∞

∫
R

ψp(gn)drp = lim
n→∞

ψ(gn).

In other words, the sequence {ψ(gn)} converges to ψ(eG) for all ψ ∈ P (G). Hence {gn} τ -converges to 
eG in G and we are done. (see [18] or [16, Prop. 3.33]). �
Theorem 3.3 (J.R. Hughes, 1972). Let (G, τ) be a locally compact group. Then (G, τ) and Gw contain the 
same compact subsets.

Proof. Let B be a weakly compact subset of G. Remark that if B were τ -precompact, since B is τ -closed 
in G, it would follow that B is τ -compact in G.

Thus, reasoning by contradiction, we assume that B is not τ -precompact in G. Then there exists an open, 
symmetric and relatively compact neighborhood of the identity U in G such that B contains a U -discrete 
sequence {gn}n<ω.

Consider the subgroup H
def= 〈U ∪ {gn}n<ω〉, which σ-compact and open in G. By Kakutani-Kodaira’s 

theorem, there exists a normal, compact subgroup K of H such that K ⊆ U and H/K is metrizable, and 
consequently separable (Polish). Let p : H → H/K be the quotient homomorphism and let p : wH → wH/K

denote its canonical extension to the weak compactifications. By Proposition 2.10, we have that H wG is 
canonically homeomorphic to wH. Therefore {gn}n<ω weakly converges to the neutral element in H. Hence 
{p(gn)}n<ω weakly converges to the neutral element in H/K, which is a separable, metrizable, LC group. 
Thus, by Lemma 3.2, the sequence {p(gn)}n<ω τ/K-converges to the neutral element in H/K. Then by a 
theorem of Varopoulos [32], the sequence {p(gn)}n<ω can be lifted to a sequence {xn}n<ω ⊆ H converging 
to some point x0 ∈ H. This entails that x−1

n gn ∈ K for all n ∈ ω. Thus the sequence {gn}n<ω would be 
contained in the compact subset ({xn}n<ω ∪ {x0})K, which is a contradiction since {gn}n<ω was supposed 
to be U -discrete. This contradiction completes the proof. �
3.1. Weakly Cauchy sequences

In some special cases, Hughes’ theorem implies the convergence of weakly Cauchy sequences. Indeed, let 
us denote by inv(wG) the group of invertible elements of wG. It is known (see [28, Proposition II.4.6.(i)]) 
that every maximal subgroup of a compact semitopological semigroup is a topological group that is complete 
with respect to the two-sided uniformity. In particular, this applies to inv(wG), which is a complete (for 
the two-sided uniformity) topological group.

Proposition 3.4. Let (G, τ) be a locally compact group and suppose that {gn}n<ω is a Cauchy sequence in 

Gw. If {gn}n<ω
wG ⊆ inv(wG), then {gn}n<ω is τ -convergent in G.

Proof. Assume that {gn}n<ω is a Cauchy sequence in Gw. First, we verify that the sequence is a precompact 
subset of (G, τ).

Indeed, we have that {gn}n<ω converges to some element p ∈ inv(wG). If {gn}n<ω were not precompact 
in (G, τ), there would be a neighborhood of the neutral element U and a subsequence {gn(m)}m<ω such that 
g−1
n(m) · gn(l) /∈ U for each m, l < ω with m 
= l. On the other hand, since inv(wG) is a topological group, we 

have that the sequence {g−1 · gn(m+1)}m<ω converges to p−1p, the neutral element in Gw. This takes us 
n(m)
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to a contradiction because, by Proposition 3.3, it follows that {g−1
n(m) · gn(m+1)}m<ω must also converge to 

the neutral element in (G, τ).
Therefore, the sequence {gn}n<ω is a precompact subset of (G, τ). This implies that p ∈ G and we are 

done. �
4. Locally compact groups respect other compactness-like properties

4.1. Countable compactness

In this subsection we prove that LC groups respect countable compactness.

Theorem 4.1. Let G be a LC group and let A ⊆ G be countably compact in Gw. Then A is countably compact 
in G.

Proof. First, we assume that G is a σ-compact LC group. If K := A
Gw

is weakly compact, by Hughes [22], 
K must also be compact in the LC topology. Therefore, the identity map is a homeomorphism of Aw onto 

A. Therefore, A is countably compact in the LC topology. On the other hand, if AGw

is not compact, there 
must be some point p ∈ A

wG \ G. Since the weak topology on G is weaker than the original LC topology 
of G, we have that Gw is also σ-compact. That is, there is a collection {Kn : n ∈ ω} of weakly compact 
subsets such that G =

⋃
n∈ω

Kn. For every n ∈ ω, take fn ∈ C(wG) such that 0 ≤ fn(x) ≤ 1/2n for all 

x ∈ wG, fn(p) = 0 and fn(Kn) = {1/2n}. Set f =
∑
n∈ω

fn. Then p ∈ Z(f) and Z(f) ∩G = ∅. Thus, the map 

1/f is weakly continuous and, since p ∈ A
wG \ G, is not bounded on A. This is a contradiction since A is 

countably compact in Gw. This completes the proof when G is σ-compact.
In the general case, assume that A is a countably compact subset of Gw. In case A is precompact in 

G, it follows that K := A
G is compact in G and, as a consequence, is also compact in Gw. Therefore 

both topologies, the weak topology and the LC-topology, coincide on K. Therefore, we may repeat the 
same argument used in the paragraph above to conclude that A is countably compact in the LC topology. 
Thus we may assume that A is not precompact in the LC topology. As a consequence, there is a compact 
neighborhood of the identity U and a sequence (an) ⊆ A such that (an) is U -discrete; that is anU ∩amU = ∅
if n 
= m. Set H the group generated by U ∪ (an). Clearly, H is a σ-compact open subgroup of G. By [15, 
Prop. 3.12] (cf. [3, Lem. 3.2]), it follows that H is closed in Gw and the weak topology in Hw coincides 
canonically with the weak topology that H inherits from Gw. As a consequence, it follows that A ∩H is 
countably compact in Hw. Since the group H is σ-compact, it follows that A ∩H is countably compact in 
H. This is a contradiction because (an) ⊆ A ∩H is U -discrete. This completes the proof. �
4.2. Functional boundedness

A subset A of a topological space X is said to be functionally bounded when f|A is bounded for every 
f ∈ C(X). The topological space X is a μ-space when every functionally bounded subset of X is relatively 
compact. In this subsection, we prove that Gw is a μ-space for all LC group G.

Lemma 4.2. Let A be functionally bounded subset of Gw for an LC group G. If p ∈ A
wG, then p belongs to 

the Gδ-closure of G in wG and δp is tp(G)-continuous on each countable subset F ⊆ I(G).

Proof. Remark that Z(f) ∩G 
= ∅ for all f ∈ C(wG) such that p ∈ Z(f). Indeed, if Z(f) ∩G = ∅, then 1/f
would be weakly continuous and, since p ∈ A

wG, we would have that 1/f ought to be unbounded on A, a 
contradiction. In general, given an arbitrary Gδ-open subset N in wG containing p, it is readily seen that 
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there is a zero-set Z(f) ⊆ wG such that p ∈ Z(f) ⊆ N , which implies that N ∩G 
= ∅. This verifies that p
belongs to Gδ-closure of G in wG.

Now, given an arbitrary countable subset F of I(G), set N := ∩{ϕ−1(ϕ(p)) : ϕ ∈ F}. Then N is a Gδ

open subset in wG and p ∈ N . As a consequence N ∩ G 
= ∅. Take g ∈ N ∩ G. Then ϕ(p) = ϕ(g) for all 
ϕ ∈ F , which yields the continuity of δp on (F, tp(G)). �
Proposition 4.3. Let G be an LC group and let A be a countable subset of G. If p ∈ A

wG and δp is tp(G)-
continuous on each countable subset of I(G), then δp is continuous on every compact subset of I(G).

Proof. We define the following equivalence relation on I(G): ϕ1 ∼ ϕ2 if and only if ϕ1|A = ϕ2|A. Let K be 
a compact subset of I(G). Take the quotient map

π : (I(G), tp(G)) → ( I(G)
∼ , tp(A))

that is clearly continuous. This means that π(K) is compact in ( I(G)
∼ , tp(A)). Therefore density(π(K)) ≤

weight(π(K)) = |A| = ω. Let D be a countable subset of K such that π(D) is dense in π(K). Since D is 
countable, and p belongs to the Gδ-closure of G in wG, there is g ∈ G such that ϕ(p) = ϕ(g) for all ϕ ∈ D. 
Furthermore, using the continuity of δg and δp on each countable subset of I(G), it follows that we can 

extend δp = δg to a continuous map on D
I(G) (indeed, δp is continuous on D ∪ {ϕ} for all g ∈ D

I(G) and 

by [4, I.57.5], this implies the continuity of δp throughout D I(G).
Consider the following diagram

I(G) π

δp

I(G)
∼

δ̄p

D

where δ̄p is defined by δ̄p(π(ϕ)) = δp(ϕ).
Remark that δ̄p is properly defined because δp(ϕ1) = δp(ϕ2) whenever ϕ1 ∼ ϕ2. Furthermore, it holds 

that δ̄p is continuous on π(D I(G)). Indeed, in order to verify this, it will suffice to prove that for every 

ϕ ∈ D
I(G) and each net (ϕi) in D

I(G) such that π((ϕi)) converges to π(ϕ), there is a subnet (ϕm) such 
that δp((ϕm)) converges to δp(ϕ).

Now, since D
I(G) is compact, it follows that there is a subnet (ϕm) converging to ϕ′ ∈ D

I(G). By the 
continuity of π the net π((ϕm)) must converge to π(ϕ′) but, by our previous assumption, will also converge 

to π(ϕ). This means that ϕ ∼ ϕ′ and, as a consequence, δp(ϕ) = δp(ϕ′). The continuity of δp on D
I(G)

implies the convergence of δp((ϕm)) to δp(ϕ) = δp(ϕ′). Bearing in mind the definition of δ̄p, the continuity 
of this map has been proved.

Now, since π(D) is dense in π(K), it follows that π(D I(G)) = π(K). Thus, we have proved the continuity 
of δ̄p on π(K). The commutativity of the diagram

K
π

δp

π(K)

δ̄p

D

implies the continuity of δp on K, which completes the proof. �
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Now follows the main result of this paper. It extends to non-necessarily abelian groups a previous result 
of Trigos-Arrieta [23] for locally compact Abelian groups.

Theorem 4.4. Let G be a LC group. Then the group Gw is a μ-space.

Proof. We must verify that every closed functionally bounded subset of Gw is compact in Gw. Let A be a 
closed functionally bounded subset of Gw. If A is countably compact in Gw then, by Theorem 4.1, it follows 
that A is closed and countably compact in G. Hence, we have that A is compact in G and, as a consequence, 
in Gw.

Therefore, from here on, we assume that A is not countably compact in Gw without loss of generality. 
This implies that there is some sequence (an) ⊆ A that has no closure points in Gw. Let p ∈ (an)

wG \ G. 
By Lemma 4.2, p belongs to the Gδ-closure of G in wG and δp is t(G)-continuous on each countable subset 
of I(G). Then, by Proposition 4.3, we deduce that δp is tp(G)-continuous on each compact subset of I(G).

The proof now requires a case-study approach on the structure of the group G.

(1) G is σ-compact and metrizable and, therefore, a Polish LC group. In this case, the space (I(G), tk(G)) is 
metrizable and, as a consequence, a k-space. Since we have verified that δp is tp(G)-continuous on each 
compact subset of I(G), it follows that δp is continuous on I(G). Applying Akenmann duality theorem
[1], it follows that p ∈ G and, as a consequence, that AwG ⊆ G.

(2) Suppose first that (an) is not precompact in G. Then we may assume, with some notational abuse, 
that (an) is U -discrete for some compact neighborhood of the identity U . Therefore, by Kakutani-
Kodaira’s theorem, there exists a normal, compact K of G such that K ⊆ U and G/K is metrizable, 
and consequently Polish. Let p : G → G/K be the quotient map, which is also continuous for the weak 
topologies p : Gw → (G/K)w, since every pure positive definite map on G/K can be lifted canonically to 
G. Therefore p((an)) is a functionally bounded subset in (G/K)w. By (1) p((an)) is relatively compact 
in G/K, which is a contradiction because (an) was assumed to be U -discrete and K ⊆ U . Thus, we 
may assume, without loss of generality, that (an) is precompact in G. This means that (an) is relatively 

compact in A, which is a closed subset of G. Therefore, we have again that AwG ⊆ G.
(3) G is LC. Again, we suppose first that (an) is not precompact in G and, with some notational abuse, 

that (an) is U -discrete for some compact neighborhood of the identity U . Consider the subgroup H

generated by U ∪ {gn}n<ω, which σ-compact and open in G. Since H
wG is canonically homeomorphic 

to wH, we may identify {gn}n<ω
wH

with {gn}n<ω
wG

. Hence we may assume, without loss of generality, 
that G is σ-compact and the proof follows from (2). The case (an) is precompact follows also from (2).

Thus, we have proved that AwG ⊆ G for every functionally bounded subset A of Gw, which proves that 
Gw is a μ-space. �
Corollary 4.5. Every LC group respects pseudocompactness.
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