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ABSTRACT
The paper presents an improvement of the n-shifting technique to identify the frequency response of an
industrial process using a fully asymmetric and delaying relay. The n-shifting approach allows the calcu-
lation of n+ 1 points of G(s) by an asymmetric relay experiment. This set of n points is composed of G(0),
G(jωosc), . . . , G(jnωosc), being ωoscthe oscillation frequency, and where G(jωosc) is in most cases located in
the third quadrant of the Nyquist map. By delaying the relay output and repeating a similar experiment it
can be generated n additional points of G(s) where the first point is G(jω’osc) with 0 < ω’osc < ωosc . In this
way, it is possible to depict the full output spectrum of G(s) from zero to very high frequencies by a short
relay experiment. An example of identification and tuning of a PID controller with data from the n-shifting
are presented to show the validity of the approach.
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1. Introduction

Parametric and non-parametric relay-based feedback identifi-
cation is a set of methods widely used in control engineering.
From its origins in the 80’s, the use of the describing func-
tion of a simple relay has been the most common of these
methods to get the ultimate gain, frequency and phase lag of
the process. With these data, it is possible to fit a first-order
transfer function. If more information is required to fit a more
complex model, additional experiments are necessary to force
the system to oscillate at other frequencies to find additional
points in the Nyquist map. Techniques to generate oscillations
at lower frequencies than the original ωosc are based on includ-
ing additional time delays (Leva et al., 2006; Li et al., 1991; Scali
et al., 1999; Tan et al., 1996), inserting an integrator (Friman
& Waller, 1997; Sung & Lee, 2006; Wang & Shao, 1999), or
modifying the hysteresis (Liu & Gao, 2012) or the asymme-
try of the relay (Kishore et al., 2018). The original idea of
this family of methods was proposed in a seminal paper by
Åström & Hägglund, 1984. By using a delay or an integrator,
the phase lag of the process is increased, and modifying the
hysteresis, the negative reciprocal of the describing function of
the relay is moved down along the negative axis of the Nyquist
map.

However, as the describing function (DF) based methods
give points in the Nyquist map whose accuracy depends on the
filtering capacity of the process, other methods have been pro-
posed based on different modifications of the Fourier transform
(Cheon et al., 2010; Cheon et al., 2011; Ma & Zhu, 2006; Sung &
Lee, 2000; Wang et al., 1997; Wang et al., 1999). All these algo-
rithms have in common that they use all the process data from
the initial transient region to the final cyclic steady-state part
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of the experiment. Such feature allows these algorithms to esti-
mate points in the Nyquist map for any frequency going from
0 to the oscillation frequency ωosc induced by the relay. With
all these data it is possible to depict the spectrum of the process
in this range of frequencies or to use some of them to estimate
the parameters of a transfer function template. An interesting
feature of these Fourier transform-based methods is that they
only demand one relay-based experiment to generate the set of
estimated points in the Nyquist map.

A method that allows obtaining two points in the Nyquist
map is the 2-shifting method described in (Hofreiter, 2016,
2017, 2018; Hofreiter & Hornychová, 2019; Hornychová &
Hofreiter, 2019). Through this procedure, it is possible to deter-
mine two points G(jωosc) and G(j2ωosc) during one relay test
by generating a second set of signals of frequency 2ωosc directly
from y(t) and u(t). The generalisation of this method to obtain
n points G(jkωosc) k = 1 . . . n has been described in (Sánchez
et al., 2021) and it is known as n-shiftingmethod.; in such paper,
some examples of process identification using the data provided
by the n-shifting approach are described. This approach to esti-
mate many points in one experiment constitutes the basis of the
new scheme presented in this work.

The method presented in this paper allows estimating the
full output spectrum of an unknown process G(s) by combin-
ing a short relay experiment and the n-shifting approach. In
(Sánchez et al., 2021), n points from ωosc to nωosc are calcu-
lated in the experiment. In the approach presented in this paper,
a set of n points from ω’osc to nω’osc can be produced taking
into account that 0 < ω’osc ≤ ωosc. So, the approach in (Sánchez
et al., 2021) allows to study the system from a frequency ωosc,
corresponding to a point with a phase lag in the third quadrant
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Figure 1. Configuration of the feedback control loop with a detailed view of the
fully asymmetric and delaying relay.

[180°–270°] to high frequencies, while the approach described
here captures the behaviour of the system at frequencies lower
than ωosc completing a full portrait of the output spectrum of
the system.

The flexibility of the method is possible thanks to a fully
asymmetric and delaying relay or FAD relay for short. Figure 1
presents the control scheme considered in this paper. The only
difference with regard to a classical relay feedback control loop
is that the FAD relay is biased in its input and output and can
introduce a certain user-defined delay to its output. Modifying
the biases and the delay, it is possible to change the initial oscil-
lation frequency ωoscfrom which to start the estimation of the
behaviour of the system at frequencies nωosc n = 2, 3, 4, . . . in
each new experiment.

The paper is structured as follows. Section 2 is devoted
to describing why and how the FAD relay can modify the
behaviour of the system; to help explain it the describing func-
tion of the FAD relay will be calculated. Section 3 explains the
n-shiftingmethod to extract n points ofG(s) using the informa-
tion stored in one oscillation period of y(t) and u(t). Although
it is feasible to calculate the analytical expressions for relay feed-
back responses when the process is known (Panda & Yu, 2003),
it is not possible to characterise the signals resulting from the
shifting of y(t) for a generic process because its dynamics is
unknown. However, it is feasible for the relay because its input-
output relationship is known beforehand but the result of the
shifting applied to the relay output may not be very intuitive.
For this reason, Section 4 presents a complete characterisation
of the n-shifting approach applied to u(t), which is a function
of n and the FAD relay configuration. Section 5 describes differ-
ent examples of the effectiveness of the method for estimating
the full output spectrum of a process and of the tuning of a PID
controller using the high accuracy of the estimation obtained by
the n-shifting approach. Finally, some conclusions and further
lines of work are given in Section 6.

2. The dual-input describing function of a fully
asymmetric delaying relay

Thedescribing function (DF) allows explaining theoretically the
advantage that a FAD relay (see Figure 1) provides to estimate
the spectrum response of a process.

Let us start with the fully asymmetric relay. The dual-input
describing function (DIDF) approximation studies the sus-
tained oscillations of a periodic wave with a bias, which is
assumed to be e∗(t) = B + A sin(ωt). This approximation char-
acterises the behaviour of the non-linear part of a system with
two different DFs (Gelb & Van der Velde, 1968), one related to
the DC component B, which is the relation between input and

output bias, and another one related to the oscillatory compo-
nent of the input A sin(ωt), which is the relation between the
non-linearity output with regard to the sinusoidal input. TheDF
for the sinusoid is given by (see Appendix A):

NA(A,B) = uA − uB
πA

⎡
⎣

√
1 − (eA − B)2

A2 +
√
1 − (eB − B)2

A2

⎤
⎦

− j
(uA − uB)(eA − eB)

πA2 (1)

and for the bias is given by

NB(A,B) = (uA + uB)
2B

+ (uA − uB)
2πB[

arcsin
−eB + B

A
− arcsin

eA − B
A

]
(2)

A and B are the amplitude of the first harmonic and the
value of the bias, respectively. A is usually approximated by
the limit cycle amplitude. It must be fulfilled that A − |B| >

max(eA, |eB|) and B is calculated as

B = uA + uB
2

+ eA + eB
2

(3)

The DIDF,NA, andNB, provides necessary but not sufficient
conditions for the existence of a limit cycle (Gelb & Van der
Velde, 1968). As G(s) is unknown but it is supposed to be oper-
ating in a limit cycle, from the conditions for the existence of
oscillations it is only necessary to use this relation:

G(s) = − 1
NA(A,B)

(4)

This expression states that when there is an oscillation, an
intersection of G(s) with the negative reciprocal of NA (criti-
cal locus) in the Nyquist map occurs. The intersection point is
known as the critical point G(jωosc), being ωosc the frequency
of the limit cycle. Figure 2 presents four configurations of the
relay and the intersections of −1/NA with a process at two dif-
ferent frequencies. An increment of the hysteresis or horizontal
asymmetryHA = |eA − eB|produces a displacement of the hor-
izontal line −1/NA along the vertical axis allowing to intersect
with the process at lower frequencies. The modification of the
vertical asymmetry, defined as VA = |uA − uB|, introduces a
similar displacement plus an additional bending of −1/NA. It
must be noticed that when VA = 0, the bending effect disap-
pears but the horizontal line can be moved down by decreasing
uA and |uB| even with HA = 0.

The other component of the FAD relay is the time delay
Td. As this phenomenon is linear, its DF is exactly its transfer
function. So, we have

NA = cosωTd − j sinωTd (5)

The approximate DF of two series-connected nonlinearities
can be computed directly by multiplication of the DFs of the
individual nonlinearities. Such procedure assumes that the out-
put of the first nonlinearity may be considered sinusoidal in
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Figure 2. Example of the shift of−1/NA as a function of the relay asymmetry: fully
symmetric (yellow), horizontal asymmetry (blue), vertical asymmetry (purple), fully
asymmetric (red). The three dashed lines represent the effect that each type of

asymmetry produces in−1/NA . The transfer function is G(s) = 3e−0.5s

s+1 .

Figure 3. Examples of the counterclockwise rotation of−1/NA of the FAD relay as
a function of the time delay for the FAD relay. Td = 0, 0.1, 0.5, 1, 2, 5, and 10.

order to use the DF of the second nonlinearity in the subse-
quent overall calculation of the DF of two elements connected
in series. Assuming the input is sinusoidal, the first component
of the FAD relay, the time delay, produces a sinusoidal out-
put that constitutes the input to the second nonlinearity, the
asymmetric relay. So, the multiplication of the delay and the
asymmetric relay DFs can be considered a good approximation
for the calculation of the DF of the FAD relay.

Figure 3 presents an example of the counterclockwise rota-
tion of the −1/NA of the FAD relay with a fully asymmetric
setup and the same G(s) as in Figure 2. It can be appreciated
the effect that increasing the time delay has on the reduction
of the frequency of the limit cycle generated. From a limit
cycle at ωosc = 2.23 with Td = 0, it can be reached another at
ωosc = 0.27 if Td = 10. It could be assumed that with a very
high delay Td, −1/NAwould be completely located in the first
quadrant, meaning no oscillation because there is no inter-
section with G(s). Actually, the drawing of −1/NA in the first
quadrant happens but the oscillations exist, obviously at very
low frequencies. The reason for this is that the process with very
high Td produces a nearly square signal as output, very far from

Figure 4. Waveforms of two cycles of y(t) (red) and u(t) (black) (upper plot) and
their 2-shifting y2(t) (red) and u2(t) (lower plot).

a sinusoidal, existing a big discrepancy between the DF theory
and the real situation.

3. Identification of G(s) by the n-shifting technique

The n-shifting method is an extension of the original shifting
approach that allows to generate a set of N − 1 periodic signals
fn(t) at frequencies nωosc, n = 2, 3, . . . , N, from a periodic sig-
nal f (t) of frequencyωosc = 2π /T with non-equal semi periods,
that is, T = T1 +T2 and T1 �=T2. The expression to calculate
fn(t) from f (t) is:

fn(t) =
n−1∑
j=0

f
(
t − jT

n

)
= f (t) + f

(
t − T

n

)
+ . . .

+ f
(
t − (n − 1)T

n

)
(6)

where n = 2, 3, . . . , N. These new signals are obtained by sums
of the original signal and successive delayed copies. It must be
noticed that the period of the new signal fn(t) is T/n.

If expression (6) is applied to a set of cycles of the sig-
nals y(t) and u(t) generated during a test with the FAD relay
over a system G, it is possible to synthetise a set of N-1 sig-
nals yn(t) and un(t) of frequencies nωosc. Figure 4 shows the
result of the n-shifting withN = 2 for the processG(s) = 3e−0.5s

s+1
using two cycles of y(t) and u(t) and the following FAD relay
setup: uA = 0.3, uB = −0.5, eA = 0.5, eB = −0.3, Td = 5. In
this example, ωosc = 0.473 rad/s.

As it has been demonstrated in previous works (Hofreiter,
2016, 2017; Sánchez et al., 2021), the original 2-shifting tech-
nique and its n-shifting extension can be successfully applied to
relay-feedback identification. The original signals y(t) and u(t)
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and the artificial N − 1 yn(t) and un(t) can be used to estimate
N + 1 points in the Nyquist map: G(0), G(jωosc), G(j2ωosc), . . . ,
G(jNωosc).

In the following, it is explained how to obtain these points.
Suppose that in a FAD relay feedback experiment at t = ts, the
system reaches a periodic stationary oscillation status and the
period and frequency areT andωosc, respectively. Also, consider
that the length of the signals y(t) and u(t) to get the Nyquist
points by the n-shifting is limited to one full cycle. Once the data
corresponding to a cycle are saved, the first step is to discount
the effect of the additional delay of the FAD relay in the process
output generating a new y’(t).

This operation is done by rotating to the left the samples
that compound the cycle of y(t). Thus, if the sampling period
is h, and y(t) = [y0, . . . , yl−1], then the rotation to the left to
discount the delay is done by

y′(t) = [yd+1, . . . , yl−1, y0, . . . , yd] (7)

where d = Td/h.After that operation, then-shifting can be cor-
rectly applied on the signals y’(t) and u(t) to synthetise the new
signals y’n(t) and un (t) by applying (6).

The following step is to calculate the Nyquist points. The
Laplace transforms of the signals y’(t) and u(t) are:

Y ′(s) = 1
1 − e−Ts

∫ T

0
y′(t)e−stdt (8)

U(s) = 1
1 − e−Ts

∫ T

0
u(t)e−stdt (9)

Therefore, the transfer function of G(s) is

G(s) = Y ′(s)
U(s)

=
1

1−e−Ts ∫T0 y′(t)e−stdt
1

1−e−Ts ∫T0 u(t)e−stdt
= ∫T0 y′(t)e−stdt

∫T0 u(t)e−stdt
(10)

Consequently, the process frequency response at ωosc can be
obtained by substituting s in (10) by jωosc.. So, we get

G(jωosc) = ∫T0 y′(t)e−jωosctdt
∫T0 u(t)e−jωosctdt

(11)

Applying the same rationale to the signals derived from the
n-shifting, we get

G(jnωosc) = ∫
T
n
0 y′

n(t)e
−jnωosctdt

∫
T
n
0 un(t)e−jnωosctdt

(12)

The static gain is derived from (11) by setting ωosc = 0. So,
we have

G(0) = ∫T0 y′(t)dt
∫T0 u(t)dt

(13)

So, once the relay feedback experiment is running, the sta-
tionary oscillation has been reached and the value of ωosc is
measured, it is only necessary to process one cycle of y(t) and
u(t).With these data and applying (11), (12) and (13), theN + 1
points of G(s) are estimated. Table 1 presented an excerpt of the
code to make the n-shifting of a cycle of y(t) and u(t), including
the discount of the effect of Td.

3.1 On the selection of Td

A convenient selection of Td is key to improve the estima-
tion of the full output spectrum of G(s) from 0 to Nωosc.
For example, the cycles presented in Figure 4 correspond to
an experiment with Td = 5 that produces a limit cycle at
ωosc = 0.473 rad/s withG(jωosc) presenting a phase lag of 40°; if
the same experiment is run with Td = 0, the limit cycle gener-
ated hasωosc = 2.236 rad/s and the phase lag ofG(jωosc) is 130°.
With the second experiment, there is a range of points with a
phase lag from0° to 130°without information of their frequency
response. Figure 5 presents the estimation of the output spec-
trum for the experiment described in the example of Figure 4
with Td = 5; the number of points calculated by the n-shifting
has been 39 (N = 40) providing a total of 41 points represented
in the figure at frequencies 0, ωosc, 2ωosc, . . . , 40ωosc.

The effect of Td is explained by the rotation of the −1/NA of
the FAD relay (see previous section).Higher values ofTd involve
that the intersection with G(s) will happen at lower frequen-
cies. So, the higher Td that the experiment can accept will allow
accessing to lower frequencies.

However, determining the optimal value ofTd is a tricky issue
because there is not a priori information of the process that is
being estimated. A way to obtain a guess is by making an ini-
tial experiment with Td = 0 and fitting a first-order plus time
delay model GFOPTD(s) = G(0)e−Ls/(Ts + 1) by applying the
following two expressions (Sánchez et al., 2018) once the initial
experiment is finished,

T =
√
G(0)2 − |G(jωosc)|2

ωosc|G(jωosc)| (14)

L = arg|G(jωosc)| + arctan(ωoscT)

ωosc
(15)

With this FOPTDmodel, it is easy to estimate a value for Td
that will force the intersection of the −1/NA of the FAD relay
with G(s) near a low frequency ω’osc.The expression to obtain
the value is

argGFOPTD(jωosc) − argGFOPTD(jω′
osc) = ω′

oscTd (16)

The idea is to calculate the value of the delay that produces
that the pointG(jω’osc) is rotated near to the area in the Nyquist
map where the intersection with −1/NA of the FAD relay with
Td = 0 is produced, that is, to the point G(jωosc). An example
of the calculation of Td by estimation of the model is presented
in Example 2.

3.2 On the selection of N

If the n-shifting approach is used to generate points for fitting
a transfer function, the approach must set to generate N + 1
points where N ≥ M, being M the order of the transfer func-
tion. However, if the approach is used to discover the output
spectrum, a nice feature of the n-shifting approach is that the
number of points of G(s) to estimate can be done off-line, when
the real experiment has finished. Once the samples correspond-
ing to one stable cycle of y(t) and u(t) are saved, this information
can be processed to generate N + 1 points. If these points were
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Table 1. Excerpt of the code that implements the n-shifting of a cycle of y(t) and u(t).

1 % Main variables
2 % dataY: One cycle of y(t).
3 % dataU: One cycle of u(t).
4 % h: Sampling period.
5 % n: Level of shifting.
6 % T1: Cycle of y(t) and u(t).
7 % wosc: Oscillation frequency.
8
9 %Discounting Td of y(t)
10
11 l = length(dataY);
12 delayTd = Td/h;
13 dataY = [dataY(delayTd+1:l-1) dataY(1:delayTd)];
14
15
16 % n-shifting of y(t) and u(t)
17
18 dataY_(1,:) = dataY;
19 dataU_(1,:) = dataU;
20
21 for i= 2:n
22 dataY_i = dataY;
23 dataU_i = dataU;
24
25 for j= 2:i
26 delay = round((j-1)∗T1/(i∗sampling));
27 dataYd = [dataY(delay+1:l-1) dataY(1:delay+1)];
28 dataUd = [dataU(delay+1:l-1) dataU(1:delay+1)];
29 dataY_i = dataY_i + dataYd;
30 dataU_i = dataU_i + dataUd;
31 end
32 dataY_(i,:) = dataY_i;
33 dataU_(i,:) = dataU_i;
34 end
35
36 % Computation of G(0)
37
38 auxY = 0; auxU = 0;
39 for t= 1:l
40 auxY = auxY + dataY_(1,t);
41 auxU = auxU + dataU_(1,t);
42 end
43 G0 = -auxY/auxU;
44
45 % Computation G(1), G(2),..., G(n)
46
47 for j= 1:n
48 auxY = 0; auxU = 0; p = 0;
49
50 for t= 1:l
51 p = p + h;
52 auxY = auxY + dataY_(j,t)∗exp(-1i∗j∗wos∗p);
53 auxU = auxU + dataU_(j,t)∗exp(-1i∗j∗wos∗p);
54 end
55 G(j) = -auxY/auxU;
56 end

not enough to cover the output spectrum, N can be increased
and generate additional points at higher frequencies.

The computational effort to obtain theN points of the output
spectrum must not be considered high because basically the n-
shifting technique consists in rotating one cycle of y(t) and u(t)
and making sums. Also, the job can be done off-line, once the
experiment has finished and the data from one cycle are saved.

3.3 On the setup of the relay

The setup of the parameters eA, eB, uA, and uB can be more
problematic because we do not have previous information of
the process dynamics. Thus, it could be necessary to make

preliminary tests in order to know the values that forces the
system to oscillate using a symmetric setup, that is, eA = −eB
and uA = −uB. Once this configuration is known, it is neces-
sary to set it in an asymmetric setup, that is, eA �= −eB and/or
uA �= −uB. Such configuration avoids that the sums of the semi
periods for n odd in (12) and in (13) become zero. As a con-
clusion, if the relay is fully symmetric, it is only possible to
obtain G(jnωosc) with n = 1, 3, 5, . . . A byproduct result is that
if G(0) = ∞ then G(s) has integrators.

So, for example, if with eA = −eB = α and uA = −uB = β ,
the system enters in an oscillation when a set-point change is
introduced, them eA > α or/and uA > β would be a valid setup
to apply the n-shifting.
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Figure 5. Estimation of the output spectrum of G(s) = 3e−0.5s

s+1 . The continuous
blue line represents the system; asterisks correspond to the 41 points estimated
by the n-shifting but only the seven first ones have been labelled.

4. Characterisation of the n-shifting signals un(t)

It is interesting to analyse the possible waveforms un(t) resulting
from shifting the relay output u(t). Now, it is known that any sig-
nal un(t) resulting from the sum of n− 1 delayed relay outputs
u(t), that can be expressed as

un(t) =
n−1∑
j=0

u
(
t − jT

n

)
= u(t) + u

(
t − T

n

)
+ . . .

+ u
(
t − (n − 1)T

n

)
(17)

is periodic. In this section, un(t) is going to be characterised as a
function of the relay hysteresis and the length of the summation
n. To study that, let analyse the length of the semi periods of
u(t) that the asymmetric relay can produce depending on the
hysteresis when its input is a sinusoidal signal of period T:

e∗(t) = sin
(
2π
T

t
)

(18)

As the input signal is sinusoidal, the relationship between the
switching times and the hysteresis limits is defined by

t1 = T
2π

arcsin(eA) (19)

t2 = T
2

+ T
2π

arcsin(|eB|) (20)

Without loss of generality, let consider the limits of the
relay are (−1, 1) in both axes. As the hysteresis values are
within the ranges 0 < eA < 1 and −1 < eB < 0, the switch-
ing times are bounded by the ranges 0 < t1 < T/4 and
T/2 < t2 < 3T/4, and the positive semi period will always sat-
isfy that T/4 < t2−t1 < 3 T/4 (see Figure 6). So, we have

eA → 0 ⇒ t1 → 0 eB → 0 ⇒ t2 → T
2

eA → 1 ⇒ t1 → T
4

eB → −1 ⇒ t2 → 3T
4

Figure 6. Example of the output signal (in black) of the asymmetric relay.

To characterise the waveforms that the summation (17) can
generate it is necessary to analyse how the semi periods of the
delayed signals overlap depending on the hysteresis and the
delay applied.

Let us start by analysing the waveforms of un(t) that can be
obtained applying the shifting method when n = 2, that cor-
responds to a delay of T/2 and u2(t) = u(t)+ u(t−T/2). So,
there are three possible cases:

Case 1. T/4 < t2 − t1 < T/2. That situation corresponds to
(Figure 7a). The result is a digital signal of frequency T/2
and amplitudes 2uB and uA + uB.

Case 2. T/2 < t2 − t1 < 3T/4. It is obtained when |eA| > |eB|
(Figure 7b). The amplitudes are uA + uB and 2uA.

Case 3. t2 − t1 = T/2. That corresponds to |eA| = |eB|. The
shifting result is zero because u(t) = −u

(
t − T

2
)
.

So, in this case, the result of the 2-shifting can be two wave-
forms that change their amplitudes depending on the hysteresis.

When the n-shiftingmethod is extended to n = 3, the result-
ing waveform is obtained by ū(t) = u(t) + u(t − T/3) + u(t −
2T/3), that is, applying successive delays multiple of T/3 to the
original relay output. Now, three are the situations that can be
obtained by combining the relay constraint T/4 < t2 − t1 <

3T/4 and the delay T/3:

Case 1. T/4 < t2 − t1 < T/3 (Figure 8a). The waveform is a
square signal of frequency T/3 and amplitudes 3uA and
2uA + uB By some calculations, it is obtained that in this

Figure 7. Possible u2(t) waveforms when the 2-shifting method is applied. The
black line corresponds to u(t), the continuous red line to u(t− T/2), and the dashed
red line to u2(t). (a) Case T/4 < t2 − t1 < T/2, (b) Case T/2 < t2 − t1 < 3T/4
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Figure 8. Possible u3(t) waveforms when the 3-shifting method is applied. The
black line corresponds to u(t), the continuous red line to u(t− T/3), the continuous
green line to u(t− 2T/3), and the dashed red line to u3(t). (a) Case T/4 < t2 − t1 <

T/3, (b) Case T/3 < t2 − t1 < 2T/3, (c) Case 2T/3 < t2 − t1 < 3T/4.

case it is satisfied

eA = −
√
3
√
1 − e2B
2

− eB
2

Case 2. T/3 < t2 − t1 < 2T/3 (Figure 8b). The amplitudes are
2uA + uB and uA + uB. This case satisfies the following
relationship:

−
√
3
2

< −eB
√
1 − e2A − eA

√
1 − e2B <

√
3
2

Case 3. 2T/3 < t2 − t1 < 3T/4 (Figure 8c). The amplitudes are
uA + 2uB and 3uB. The expression that is always fulfilled in
this case is

√
3
√
1 − e2B
2

− eB
2

= eA

If n = 4, u4(t) is obtained by the summation of four periodic
signals successively delayed multiples of T/4. Knowing that 0 <

t1 < T/4 andT/2 < t2 < 3T/4, the ranges for the positive semi
period are two: T/4 < t2 − t1 < 2T/4 and 2T/4 < t2 − t1 <

2T/4. The amplitudes of the two resulting binary waveforms
are 2uA + 2uB and uA + 3uB, and 2uA + 2uB and 3uA + uB,
respectively. For the sake of brevity, the figures showing the two
waveforms are not included.

Observing in Figures 7 and 8 the waveforms resulting from
the n-shifting technique, it is possible to extrapolate the rela-
tionships between n and the number of resultingwaveforms and
their amplitudes. Table 2 shows these relationships from n = 2
to 8.According to this table, the possibleun(t) that then-shifting
approach can generate modifying the hysteresis of the relay is

N = 2
(
n − 1
4

+ 1
)

− sin
(
n
π

2

)
(21)

where x is the largest integer less than or equal to x.

Table 2. Examples of application of the n-shifting method.

Shifting N
Possible positive semi periods of
u(t) in relation to the delay T/n

Total of possible
un(t)

Amplitudes of the
semi periods of un(t)

2
T/4 < t2 − t1 < T/2
T/2 < t2 − t1 < 3T/4 2 2uA and uA + uB

uA + uB and 2uB

3
T/4 < t2 − t1 < T/4
T/3 < t2 − t1 < 2T/4
2T/3 < t2 − t1 < 3T/4

3 3uA and 2uA + uB
2uA + uB and 3uA
uA + 2uB
uA + 2uB and 3uB

4
T/4 < t2 − t1 < 2T/4
2T/4 < t2 − t1 < 3T/4 2 3uA + uB and 2uA + 2uB

2uA + 2uB and uA + 3uB

5
T/4 < t2 − t1 < 2T/5
2T/5 < t2 − t1 < 3T/5
3T/5 < t2 − t1 < 3T/5

3 4uA + uB and 2uA + 3uB
2uA + 3uB and uA + 4uB

6

T/4 < t2 − t1 < 2T/6
2T/6 < t2 − t1 < 3T/6
3T/6 < t2 − t1 < 4T/6
4T/6 < t2 − t1 < 3T/4

4 5uA + uB and 4uA + 2uB
4uA + 2uB and 3uA + 3uB
3uA + 3uB and 2uA + 4uB
2uA + 4uB and uA + 5uB

7

T/4 < t2 − t1 < 2T/7
2T/7 < t2 − t1 < 3T/7
3T/7 < t2 − t1 < 4T/7
4T/7 < t2 − t1 < 5T/7
5T/7 < t2 − t1 < 3T/4

5 6uA + uB and 5uA + 2uB
5uA + 2uB and 4uA + 3uB
4uA + 3uB and 3uA + 4uB
3uA + 4uB and 2uA + 5uB
2uA + 5uB and uA + 6uB

8

T/4 = 2T/8 < t2 − t1 < 3T/8
3T/8 < t2 − t1 < 4T/8
4T/8 < t2 − t1 < 5T/8
5T/8 < t2 − t1 < 6T/8 = 3T/4

4 6uA + 2uB and 5uA + 3uB
5uA + 3uB and 4uA + 4uB
4uA + 4uB and 3uA + 5uB
3uA + 5uB and 2uA + 6uB
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The amplitudes of the semi periods of the N possible wave-
forms are defined by(

n + N
2

− i
)
uA +

(
n − n + N

2
+ i

)
uB and(

n + N
2

− 1 − i
)
uA +

(
n − n + N

2
+ 1 + i

)
uB (22)

with i = 0 . . . N− 1. The general idea is that to generate a new
waveform un(t), each cycle of u(t) is divided into T/n sections
and the overlapping of the delayed versions of u(t) with u(t) is
produced in one of these sections depending on the value of
t2 − t1.

5. Examples

Next paragraphs are dedicated to explaining four examples of
application of the n-shifting approach with the FAD relay: esti-
mation of the output spectrumof a high-order process, guessing
the Td value, tuning of a PID controller, and analysis of the
impact of measurement noise.

5.1 Example 1: estimation of the output spectrum of a
high-order process

The first example corresponds to the following process

G1(s) = 1
(s + 1)8

(23)

previously used as case study in (Ma & Zhu, 2006; Wang et al.,
1997, 1999). Before starting the experiment, the FAD relay setup
was fixed to eA = 0.5, eB = −0.3, uA = 0.6, uB = −0.6, and
Td = 0 and the N value in the n-shifting approach was set to
15 to estimate 16 points. The oscillation frequency generated in
the experiment with such relay setup was ωosc = 0.287.

Figure 9a,b present the 15 signals obtained by applying the
n-shifting to two full cycles of the signals y(t) and u(t). It seems
in Figure 10a that the signals from y7(t) to y15(t) correspond to
a stationary but it is not true; the signals are really oscillating but
their amplitudes are very low to be appreciated.

Figure 9c shows theNyquist plot with the 16 points estimated
by then-shifting approach and the red line depicting the−1/NA.
It can be seen the difference between the theoretical critical
point corresponding to the intersection of −1/NA and G1(s)
with the critical point corresponding to G1(jωosc) that repre-
sents the real oscillation of the system. In this example, the signal
y(t) is very sinusoidal so the discrepancy between the theoreti-
cal critical point defined by the DF and the real one is very close.
The points from G1(j5ωosc) to G1(j15ωosc) are not visible in
Figure 9c because they are concentrated in the high-frequency
area of the curve and they overlapped.

Figure 10 presents a similar experiment with the same pro-
cess but considerably increasing Td, for instance to 40, to iden-
tify frequencies below the oscillation frequency of the previous
experiment, that isωosc = 0.287. It can be noticed in Figure 10a
the new position of −1/NA in the Nyquist plot thanks to Td. In
this new experiment, the system oscillates at ωosc = 0.0617 and
the discrepancies between the theoretical critical point and the

real critical point are high, which is a consequence of the form
of the signal y(t) that is far from resembling a sinusoid and is
closer to a square signal (see Figure 10b).

As said before, it is important to notice that the value of N
can be fixed when the experiment has concluded, and the sig-
nals y(t) and u(t) have been saved. It is only necessary to store
the samples corresponding to one stable cycle of both signals
to apply the n-shifting approach. The only limitation to fix N
is determined by the number of samples that compound one
cycle of yN(t) and uN(t). Each time that new signals yn(t) and
un(t) are calculated by (6), the number of samples that com-
pound the cycle of the signals is reduced and the accuracy of
the integrations in (11) can became compromised.

So, if a cycle of y(t) and u(t) is formed by M samples, one
cycle of yN(t) and uN(t) will count with M/N samples. The
relationship betweenM and N must be high enough to guaran-
tee that the number of samples in (11) allows integrating with
accuracy.

In the two study cases of Example 1, one cycle of y(t) and
u(t) is composed approximately by 4500 and 10,000 samples
(see Figures 9a and 10b). That means that forN = 15, one cycle
of y15(t) and u15(t) is formed by 4500/15 = 300 samples and
10,000/15 = 666.66 samples in each case. These amounts of
samples are reasonable to calculate G1(j15ωosc) with accuracy
in both cases.

5.2 Example 2: making a guess of Td by a FOPTDmodel

In this example, it is described how to estimate a value for
Tdbased on a FOPTD model of the real process following the
procedure explained in Section 3.1. The process chosen is

G2(s) = 1
(s + 1)4

(24)

and the configuration of the relay for an initial experiment in
order to fix Td is

ea = 0.5, eb = −0.5, ua = 1, ub = −0.8,Td = 0

After running a first experiment and applying the shifting
approach to one cycle of u(t) and y(t), the following values were
measured

wosc = 0.59 rad/s

G2(0) = 0.999699

G2(jwosc) = −0.293756 − 0.464535j

With these values, the following FOPTDmodel was obtained

GFOPTD(s) = 0.999
2.5767s + 1

e−1.9392s (25)

Let suppose that we want to know the output spectrum of
G2(s) from ω’osc = 0.1 rad/s. By applying (16)

argGFOPTD(j0.59) − argGFOPTD(j0.1) = 0.1Td (26)

it is obtained Td = 17. Running a new experiment but with
Td = 17, the oscillation frequency is lower than the orig-
inal one, that is, ωosc = 0.1403 rad/s, near to the pursued
ω’osc = 0.1.
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Figure 9. (a) and (b)Waveforms obtained by the n-shifting of two cycles of y(t) and u(t) (thick blue lines) from the experiment corresponding to the estimation ofG1(s) =
(s + 1)−8. (c) Nyquist plot of G1(s) with the 16 points estimated from the waveforms obtained by n-shifting.

Figure 10. (a) Nyquist plot of G1(s) = (s + 1)−8 with the estimated points obtained by fixing Td = 40 in the FAD relay. (b) Waveforms obtained by the n-shifting of one
cycle of y(t) (thick blue line).
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If a lower frequency is necessary, for example ω’osc =
0.01 rad/s, applying (16) it is obtained Td = 200. Now, run-
ning another experiment with this Td, the oscillation frequency
obtained is ωosc = 0.015 rad/s. As a conclusion, the method
based on a FOPTD model can be considered good enough to
obtain a guess of Td.

5.3 Example 3: tuning of a PID controller

The following example is focused onpresenting the advantage of
exploiting the accurate estimation of the n-shifting approach for
the tuning of an PID controller using genetic algorithms (GAs).

The procedure followed in this example has been (a) to
estimate the output spectrum of an unknown process by the n-
shifting approach; (b) to generate a N-order transfer function
with the points obtained from the n-shifting, and (c) to tune a
PID controller by an evolutionary algorithm using the N-order
model with the goal, for example, of minimising the integrated
absolute error (IAE) after a set-point change. After that, the per-
formance has been compared and contrasted with another PIDs
tuned with the GA but using the real process and reduced-order
models, for instance, FOPTD and SOPTD models

Consider the following process studied in the literature (Kaya
& Atherton, 2001; Liu & Gao, 2012; Wang et al., 1997).

G3(s) = e−0.5s

(s2 + s + 1)(s + 1)
(27)

The configuration of the FAD relay chosen for the
experiment is

ea = 0.5, eb = − 0.5, ua = 1, ub = − 0.8,Td = 0

where the Td parameter has been fixed to zero because know-
ing information from the low frequencies range located in the
fourth quadrant of the Nyquist map is not relevant for our
tuning purposes.

After running the experiment, and as indicated in Subsection
3.2, then-shifting approach is set to generateN + 1pointswhere
N ≥ M, beingM the order of the transfer function to fit. With-
out loss of generality, in this example, a stable 10-order system
is estimated using the tfest function from the System Identifica-
tion Toolbox of Matlab/Simulink to gather all the dynamics of
the unknown process. Thus, the transfer function estimated by
tfest is

Gtfest(s) = 1.137 · 106
s10 + 15.65 s9 + 335 s8 + 3621 s7 + 3.4 · 104 s6
+2.154 · 105s5 + 9.75 · 105 s4 + 2.67 · 106 s3

+3.63 · 106 s2 + 2.87 · 106 s + 1.13 · 106
(28)

Figure 11 shows theNyquist plot of the real process, the high-
order model using the 10 points from the n-shifting approach,
and the FOPTD and SOPTD models fitted by other relay feed-
back identification approaches presented in (Kaya & Atherton,
2001; Liu & Gao, 2012; Sánchez et al., 2018; Wang et al., 1997),

GS′a nchez(s) = e−2.126s

0.814s + 1
(29)

Figure 11. Nyquist plots of G3(s) (black) and the five models estimated by differ-
ent relay feedback identificationmethods:Gtfest (red),GSánchez (green),GWang (blue),
GKaya (yellow), GLiu (magenta).

GWang(s) = e−2.1s

1.152s + 1
(30)

GKaya(s) = e−1.633s

(0.785s + 1)2
(31)

GLiu(s) = e−1.3105s

0.9744s2 + 1.4194s + 1
(32)

It can be appreciated in Figure 11 that the dynamics of the
real processG3(s) is gathered by the high-ordermodelGtfest (the
plot of G3(s) is nearly overlapped by the Gtfest model) and the
differences existing with the low-order models, specially at high
frequencies.

Once the high-order model was estimated, the tuning of the
PID controller for the real process and the five models is done
by using a GA with the objective of minimising the IAE after a
set-point change. The GA was run using the ga function from
the Global Optimization Toolbox of Matlab with a population
size of 30. The simulation time for running the simulation of
the system in each generation of the GA was fixed to 150s. Also,
the space of search ofKp, Ti and Td was fixed to [0.001, 10], [0.1,
500], and [0.1, 50], respectively.

Table 3 presents the results of the tuning and the IAE for
the six systems. It can be appreciated in Table 3 that the set of
parameters more similar to the obtained from tuning the real
process with the GA corresponds to the model Gtfest , fitted with
the points obtained from the n-shifting approach.

Table 3. Comparative of PID tuning parameters and IAE.

Process Kp Ti Td IAE

G3 1.0439 2.3181 1.2985 2.7319
Gtfest 0.9933 2.2760 1.3005 2.7931
GSánchez 0.5942 1.8168 0.6024 3.170
GWang 0.7281 2.2202 0.6518 3.2156
GKaya 0.8084 2.3499 0.7642 3.1302
GLiu 0.7838 2.0851 0.9669 2.9298
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Figure 12. Nyquist plot of G2(s) and points estimated by n-shifting with different levels of noise: 5% (a), 10% (b), 20% (c), and 50% (d). Legend: without noise (red ∗), 1
cycle (black ∗), 3 cycles (black o), 6 cycles (black+), and 10 cycles (black� ).

5.4 Example 4: effect of themeasurement noise

One of the advantages of the FAD relay is that the hysteresis
band δ = eA − eB reduces the influence of the measurement
noise n0 avoiding by false switching and producing a noiseless
control action when the level of noise is not very high. However,
the process output is not free of noise and in presence of relevant
measurement noise would be convenient a previous filtering of
the process output because the signals yn(t) are synthetised by
the n-shifting of y(t), and the influence of noise would be trans-
mitted to them. If there was not filtering of y(t) or n0 was not
fully removed, the n-shifting could be applied using more than
one cycle of the signals y(t) and u(t) to reduce the noise mean
value.

To analyse how the noise affects the results and how using
more than one cycle in the n-shifting could reduce the influ-
ence of noise, a set of experiments have been conducted for the
balanced process used in the Example 2, that is, G2(s) = 1

(s+1)4
.

To introduce noise in the simulations, band-limited white noise
was connected to the process output with different ampli-
tudes, n0 = [0.05δ, 0.1δ, 0.2δ, 0.5δ]. The configuration of the
FAD relay was fixed to full asymmetry with a Td value to access
to the low-frequency range of the spectrum (see Example 2),

ea = 0.6, eb = − 0.4, ua = 1, ub = − 0.8,Td = 17,N = 10

With such setting, the n-shifting approach was applied
increasing the number of cycles used of y(t) and u(t) to apply

the expressions (6), (7), (11) and (12). Figure 12 presents the
results.

A noise level of 5% and 10%does not deteriorate the accuracy
of the estimates regardless the number of cycles used. However,
it can be appreciated that a noise level of 20% already intro-
duces small discrepancies in the results but if the level of noise
is increased to 50%, the values are not acceptable.

After examining the results in Figure 12, the conclusion is
that the number of cycles of y(t) andu(t) used for applying then-
shifting approach does not improve the estimations and that the
approach can cope with levels of noise lower than 10% without
filtering the signals.

6. Conclusions

An approach for the estimation of the output spectrum of an
unknown system has been presented in this paper. The method
is based on inserting a FAD relay in a feedback loop and run
an experiment to put the system to oscillate. Once the system
has reached a stable limit cycle, the data corresponding to one
cycle of the signals y(t) and u(t) are processed by the n-shifting
approach to generate the output spectrum.

The advantage of the n-shifting for identification appears
really when the transfer functions to fit is of a high order, for
example N, and N + 1 points of G(s) must be estimated from
one experiment. It allows the fitting of a stable model of the
order necessary to gather the dynamics of the real process and
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take advantage of such fact by using, for example, an evolution-
ary algorithm as PID tuning procedure. Also, the insertion of
the FAD relay allows to improve the approach by forcing G(s)
to oscillate at lower frequencies than using a simple asymmetric
relay. In this way, the output spectrum of the system that can be
discovered in one experiment is much more complete because
the range of frequencies analysed can start at frequencies near
zero.

Themain issue detected is to establish a relationship between
the time delayTd of the FAD relay and the frequency of the oscil-
lation; and it is difficult because the system is unknown. A way
to solve such issue is by making a first experiment with Td = 0
and fitting a simple first-order plus time delay model; with this
model, it is easy to suggest a value for the time delay that will
force the intersection of the −1/NA of the FAD relay with G(s)
at the desired frequency.

Further lines of work are oriented to extend this approach
to an event-based PI context using as event-based sampler a
symmetric send-on-delta strategy.
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Appendix A: Calculation of the DIDF of a fully
asymmetric relay
Let consider the asymmetric relay presented in Figure 1 whose input wave-
form x(t) = B + A sinϕ is composed of a sinusoid plus a bias. Analysing
the output waveform generated by the relay (see Figure A1), we know

eA = B + A sinφ1 ⇒ φ1 = arcsin
eA − B

A
(A1)
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Figure A1. Input and output waveforms for the asymmetric relay.

eB = B − A sinφ2 ⇒ φ2 = arcsin
−eB + B

A
(A2)

The DIDF of an asymmetric relay consists of two gains (Gelb & Van der
Velde, 1968) defined as

NB(A,B) = 1
2πB

∫ 2π

0
y(ϕ)dϕ (A3)

NA(A,B) = j
πA

∫ 2π

0
y(ϕ)e−jϕdϕ (A4)

A.1 Calculation of NB(A,B)

From (A3)

NB(A,B) = 1
2πB

∫ 2π

0
y(ϕ)dϕ = 1

2πB

∫ 2π

0
y(B + A sinϕ )dϕ

= 1
2πB

[∫ φ1

0
uBdϕ +

∫ π+φ2

φ1

uAdϕ+
∫ 2π

π+φ2

uBdϕ
]

= 1
2πB

[φ1uB + (π + φ2 − φ1)uA + (π − φ2)uB]

= uA + uB
2B

+ uA − uB
2πB

(φ2 − φ1) (A5)

Substituting (A1) and (A2) in (A5), we obtain the final expression

NB(A,B) = (uA + uB)
2B

+ (uA − uB)
2πB

[
arcsin

−eB + B
A

− arcsin
eA − B

A

]
(A6)

A.2 Calculation of NA(A,B)

NA(A,B) = j
πA

∫ 2π

0
y(ϕ)e−jϕdϕ = j

πA

∫ 2π

0
y(B + A sinϕ)e−jϕdϕ

= j
πA

[∫ φ1

0
uBe−jϕdϕ+

∫ π+φ2

φ1

uAe−jϕdϕ+
∫ 2π

π+φ2

uBe−jϕdϕ
]

= j
πA

[uBje−jϕ |φ1
0 + uAje−jϕ |π+φ2

φ1
+ uBje−jϕ |2ππ+φ2

]

= j
πA

[uBj(e−jφ1 − 1) + uAj(e−j(π+φ2) − e−jφ1 )

+ uBj(e−j2π − e−j(π+φ2))]

= j
πA

[uBj(cosφ1 − j sinφ1 − 1) + uAj(cos(π + φ2)

− j sin(π + φ2) − cosφ1 + j sinφ1)

+ uBj(cos 2π − j sin 2π − cos(π + φ2) + j sin(π + φ2))]

= −1
πA

[uB(cosφ1 − j sinφ1 − 1)

+ uA(− cosφ2 + j sinφ2 − cosφ1 + j sinφ1)

+ uB(1 + cosφ2 − j sinφ2)]

= −1
πA

[uB(cosφ1 − 1) + uA(− cosφ2 − cosφ1)

+ uB(1 + cosφ2)]

− j
πA

[−uB sinφ1 + uA(sinφ2 + sinφ1) − uB sinφ2]

= −1
πA

[uB(cosφ1 + cosφ2) − uA(cosφ2 + cosφ1)]

− j
πA

[−uB(sinφ1 + sinφ2) + uA(sinφ2 + sinφ1)] (A7)

From (A1) and (A2), we know

sinφ1 = eA − B
A

⇒ cosφ1 =
√
1 − (eA − B)2

A2 (A8)

sinφ2 = −eB + B
A

⇒ cosφ2 =
√
1 − (eB − B)2

A2 (A9)

Applying (A7) and (A8) to (A6), we obtain

NA(A,B) = uA − uB
πA

⎡
⎣

√
1 − (eA − B)2

A2 +
√
1 − (eB − B)2

A2

⎤
⎦

− j
πA

(uA − uB)
[
eA − B

A
− eB − B

A

]
(A10)

and reordering the terms, we get the final expression

NA(A,B) = uA − uB
πA

⎡
⎣

√
1 − (eA − B)2

A2 +
√
1 − (eB − B)2

A2

⎤
⎦

− j
(uA − uB)(eA − eB)

πA2 (A11)

When drawing − 1
N A(A,B) in a Nyquist plot, it is necessary to fix the

initial valueA to avoid the imaginary values that can appear from the square
roots of (A11). Observing the two square roots, the value of Bmust be fixed
from the relay setting. This d.c. gain in the relay output can be estimated
from the asymmetric setup as

B = uA + uB
2

+ eA + eB
2

So, substituting B in the two inequalities obtained from the square roots
in (A11)

1 − (eA − B)2

A2 ≥ 0

1 − (eA − B)2

A2 ≥ 0

Solving the inequalities, the range of valid values of A is (Amin,∞),
where

Amin = max
(
eA − eB − uA − uB

2
,
eA − eB + uA + uB

2

)


