
Vol.:(0123456789)1 3

Plant Growth Regulation (2022) 96:269–281 
https://doi.org/10.1007/s10725-021-00774-w

ORIGINAL PAPER

Biochemical and hormonal changes associated with root growth 
restriction under cadmium stress during maize (Zea mays L.) 
pre‑emergence

Carolina L. Matayoshi1 · Liliana B. Pena1,2   · Vicent Arbona3 · Aurelio Gómez‑Cadenas3 · Susana M. Gallego1,2

Received: 27 May 2021 / Accepted: 7 November 2021 / Published online: 18 November 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Cadmium (Cd) pollution of agricultural soils is a growing global concern. Plant growth restriction is the main visible symp-
tom of Cd toxicity, and this metal may be particularly harmful to the preformed, seminal root during the pre-emergence 
stage. In the present study, we focused on Cd phytotoxicity in seminal root growth, nutrient composition, redox status, and 
hormone homeostasis during the pre-emergence stage of maize (Zea mays L) plants, distinguishing between the root apex 
and the remaining root tissue. After 72 h of metal exposure (50 and 100 µM CdCl2), root length and biomass, as well as Ca, 
Fe, Mg, and Mn contents, were diminished. A redox imbalance was evidenced by changes in peroxidase activities and the 
ascorbate–dehydroascorbate ratio decreased in both root parts. There were fewer carbonylated proteins in both root frac-
tions after exposure to 50 µM Cd, compared to 100 µM Cd, which was related to increased 20S proteasome activities. Cd 
incremented ABA, IAA, and SA contents, but drastically reduced the biologically active gibberellin GA4 and the conjugate 
jasmonoyl-isoleucine (JA-Ile). We demonstrated that the whole root tissue is involved in the maize response to Cd stress, 
which entails redox and hormonal rearrangements, probably directed to widen the plant defense lines at the expense of root 
growth.
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Introduction

Cadmium (Cd) is a transition metal ion released into the 
environment by industrial activities and urbanization. In 
cultivated soils, Cd derives mainly from P fertilizers (Ster-
ckeman et al. 2018). Due to its relatively high mobility and 
high toxicity for living organisms–even at very low doses–, 
cadmium is considered a particularly dangerous pollutant 
(Vardhan et al. 2019). The increasing contamination of soil 
and food crops represents a serious global problem nowa-
days (Rehman et al. 2018; Dala-Paula et al. 2018; Cai et al. 
2019). Plant growth restriction is one of the main visible 
symptoms of Cd phytotoxicity (Gallego et al. 2012). Despite 
being a redox-inactive metal, Cd toxicity has been partly 
associated with oxidative stress production (Gallego and 
Benavides 2019).

It is known that plant growth regulation and plant 
responses to stress depend on the interplay between hormo-
nal and redox balances (Santner and Estelle 2009; De Tullio 
et al. 2010; Bartoli et al. 2013). Plant hormones comprise a 
series of natural compounds required at low concentrations 
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to fulfill their function. While each plant hormone has its 
specific pathway that acts in a non-redundant way, their 
activities are interconnected by a complex network, and it 
is the interaction and cooperation between hormones that 
dynamically regulate plant development and physiology 
(Vanstraelen and Benková 2012). It has been described that 
the exogenous application of phytohormones reduces the 
toxic effects of metals, in part through the improvement of 
the cell antioxidant potential (Singh et al. 2016).

On the other hand, it is known that plant cell redox 
homeostasis is controlled by a complex system known as 
the Foyer-Halliwell-Asada pathway that is responsible for 
reactive oxygen species (ROS) scavenging (Foyer and Noc-
tor 2011). This antioxidant defense machinery includes 
several enzymes such as superoxide dismutase (SOD, EC 
1.15.1.1), which converts superoxide anion (O2

.−) to H2O2, 
catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, 
EC 1.11.1.11), and a variety of general peroxidases that 
catalyze the breakdown of H2O2. Non-enzymatic antioxi-
dants include low molecular weight compounds, such as 
glutathione (GSH) and ascorbic acid (ASC) (Foyer and Noc-
tor 2016). Nevertheless, an excessive ROS production that 
overwhelms the protective antioxidant mechanism can occur 
when plants are subjected to adverse environmental condi-
tions (Gill and Tuteja 2010). A consequence of cell redox 
imbalance is protein oxidative damage, commonly expressed 
by carbonyl group increases (Møller et al. 2007). Carbon-
ylated proteins can form high-molecular-weight aggregates 
that compromise several cellular functions (Nyström 2005). 
Because protein carbonylation is a covalent, non-reversible 
modification, oxidatively damaged proteins have to be rap-
idly degraded, mainly by the 20S proteasome activity in the 
cytoplasm and nucleus (Pena et al. 2007; Polge et al. 2009).

Maize (Zea mays L.) is one of the most important crops 
used for human and animal diet in the world (Godfray et al. 
2010), and in some cases, maize-producing lands are at 
high risk of cadmium contamination (Chumbley and Unwin 
1982; Dharma-Wardana 2018). It has been reported that Cd 
reduces growth, induces chlorosis, alters chloroplast ultra-
structure, produces oxidative damage, modifies cell wall 
composition, and affects polyamine metabolism in maize 
plants (Anjum et al. 2015; Vatehová et al. 2016; Seifikalhor 
et al. 2020). Furthermore, previous data indicate that maize 
plants tend to retain and accumulate cadmium at the root 
level (Anjum et al. 2015; Vatehová et al. 2016), where ROS 
production is induced soon after metal exposure (Liu et al. 
2019).

The emergence of maize coleoptile to the soil surface 
delimits the onset of plant phototrophic lifestyle and takes 
place 5 to 7 days after planting under favorable, natural 
conditions (Abendroth et al. 2011). The embryonically pre-
formed root type dominates during this stage of develop-
ment (Hochholdinger 2009). In addition to being vital for the 

vigor of young maize plants during the first weeks after ger-
mination, the embryonic root system is the first plant organ 
expected to interact with the underground environment and 
eventually suffer the toxic effects caused by Cd present in 
soils (Tai et al. 2016). Several reports indicate a higher Cd2+ 
influx at the root tip region, even when cadmium acquisition 
could be achieved through the entire root utilizing metal 
transporters. Direct xylem loading due to the absence of 
the Casparian band and higher expression of transport sys-
tems associated with Cd uptake located close to the root tip 
have been related to this phenomenon (Piñeros et al. 1998; 
Laporte et al. 2013; Chen et al. 2018). Thus, the root apex 
could be the main site prone to suffering the toxic effects of 
metal ions.

In this study, the impact of Cd on nutrient composition, 
redox balance, and phytohormone profile of embryonic 
maize roots was analyzed, distinguishing between the first 
5 mm from the root tip, considering the root apex (Ap), and 
the remaining root tissue (Rt). Because plants are still under 
a chemoheterotrophic lifestyle at the pre-emergence stage, 
our analysis leaves aside the well-known effects of cadmium 
on photosynthesis.

Materials and methods

Plant material and growing conditions

Maize seeds (Zea mays L. cv 2741MGRR2 were kindly pro-
vided by DON MARIO Semillas, Buenos Aires, Argentina) 
were imbibed and germinated on filter paper in a plastic 
box containing deionized water for 72 h. Then, uniformly 
developed seedlings with primary roots of approximately 
1.5 cm length were carefully transferred to a hydroponic 
system containing 250 mL of diluted (1/10) Hoagland’s 
nutrient solution (Hoagland and Aron 1950) without (con-
trol, C) or with 50 or 100 µM CdCl2; 30 seedlings were dis-
tributed in each container. These environmentally relevant 
Cd concentrations were selected based on previous reports 
(Adhikari et al. 2018; Liu et al. 2019; Singh et al. 2019). 
Cd speciation was calculated using Visual MINTEQ version 
3.1 (J P Gustafsson, KTH, Sweden). In the nutrient solution 
containing 100 μM of Cd, about 88% was in Cd2+ form, 
which appears to be the most phytoavailable form. Plants 
were grown in a controlled climate room at 24 ± 2 °C, with 
50% relative humidity. All the experiments were carried out 
under darkness to mimic soil conditions during germination 
and post-germinative growth. After 72 h of treatment, roots 
were gently washed with distilled water. The tissue collected 
from each container was considered a biological replicate. 
Root length, fresh weight (FW), and dry weight (DW, deter-
mined after drying the roots at 80 ºC until constant weight), 
were measured. Additionally, dried root powder was used 
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to determine Cd and nutrient content. Determinations were 
performed in parallel using root apical segments obtained 
from the first 5 mm from the tip (Ap) or the remaining root 
tissue (Rt).

Nutrient composition of maize roots

Elemental analysis was performed at the INQUISAL Spec-
trometry Core Facility, Universidad Nacional de San Luis 
(UNSL-CONICET). Briefly, dried root powder (50 mg) was 
homogenized in 1 mL of 65% (v/v) HNO3 in an ultrasonic 
bath for 30 s. Then, 0.5 mL of H2O2 was added, and the 
mixture was incubated for 1 h at 60 °C in a thermostatic 
bath (Pequerul et al. 1993). After diluting the samples with 
ultrapure water, inductively coupled plasma mass spectrom-
etry (ICP-MS) (Perkin Elmer Elan DRC) was used to esti-
mate Cd, Cu, Ca, Fe, K, Mg, Mn, P, S, and Zn content.

Enzymatic and non‑enzymatic antioxidants

Protein extracts were prepared from 0.1 g of fresh tissue 
homogenized in 1 mL of 50 mM phosphate buffer (pH 
7.4) containing 1 mM EDTA and 0.5% (v/v) Triton X-100, 
at 4 °C. The homogenates obtained were centrifuged at 
13,000 g for 30 min at 4 °C, and the supernatants were used 
for the assays. Protein content was estimated according to 
Bradford (1976).

CAT activity was assayed as described by Aebi (1984) 
by monitoring the decomposition of H2O2 at 240 nm; CAT 
content was calculated using k = 4.7 × 10–7  M−1  s−1 and 
expressed in pmol mg−1 protein. The activity of guaiacol 
peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase 
(APX) was measured as described previously (Nakano and 
Asada 1981). One unit of GPOX was defined as the amount 
of tetraguaiacol produced (mmol) per min, and one unit of 
APOX was defined as mmol of oxidized ascorbate per min.

Ascorbate (ASC) and dehydroascorbate (DHA) were 
determined as described by Law et al. (1983). Extracts were 
obtained by homogenizing 0.1 g of root tissue in 1 mL of 
0.1 N HCl. After centrifugation (13,000 g, 30 min, at 4 °C), 
the supernatants were used for the assays. A standard curve 
of commercial ASC was used for calibration. To deter-
mine GSH, 20-μL samples were derivatized with 180 μL of 
1.3 mM o-phthaldialdehyde (OPA) in borate buffer (0.4 M, 
pH 9.7) at room temperature (Robyt and White 1990), and 
the fluorescence was measured at 455 nm (λ excitation, 
340 nm). A standard curve for the determination of GSH 
was prepared and measured.

Histochemical detection of ROS accumulation

Superoxide anion production was detected using the 
nitroblue tetrazolium (NBT) assay. Roots were immersed in 

10 mM Tris–HCl buffer (pH 7.0) containing 1 mM NBT and 
incubated under light for 30 min. Pale yellow NBT reacts 
with O2

−, forming dark blue insoluble formazan deposits. 
For H2O2 detection, roots were incubated for 45 min with 
1 mg mL−1 of 3,3′-diaminobenzidine-HCl (DAB). H2O2 
presence was visualized as reddish-brown-stained regions 
due to DAB polymerization.

Quantitative dot blot analysis of carbonylated 
proteins

Protein extracts were prepared by homogenizing 0.1 g of 
root tissue in 0.5 mL of loading buffer (60 mM Tris–HCl 
(pH 6.8), 5% (v/v) β-mercaptoethanol). After centrifugation 
at 26,000 g for 15 min at 4 ºC and protein derivatization with 
2,4-dinitrophenylhydrazine (2,4-DNPH) dot blot analysis 
was performed as described by Weher and Levine (2012). 
Membranes were photographed and then analyzed using 
Gel-Pro software, and the amount of oxidized proteins was 
expressed as arbitrary units (assuming control value equal to 
100 units), based on the absolute integrated optical density 
of each dot.

Proteasome activities

Proteasome activity in root tissue was determined as 
described by Kim et al. (2003). Protein extracts were pre-
pared in 135 mM Tris–acetate buffer (pH 7.5) containing 
12.5 mM KCl, 80 µM EGTA, 6.25 mM 2-mercaptoethanol, 
and 0.17% (w/v) octyl-β-D-glucopyranoside. After homog-
enizing 100 mg of root tissue (Ap or Rt) in 0.5 mL buffer, 
the extracts were centrifuged at 6,400 g for 30 min at 4 °C, 
and the supernatants were further used to determine chy-
motrypsin-like (Q), trypsin-like (T), and peptidyl glutamyl 
peptide hydrolase (PGPH) activities (Matayoshi et al. 2020). 
Due to the extraction buffer interference with the Bradford 
assay, the protein content was determined using the Lowry 
method (1951).

Plant hormone analysis

Hormone extraction and analysis were conducted as 
described in Durgbanshi et  al. (2005), with few modi-
fications (Matayoshi et al. 2020). In brief, for gibberel-
lins (GAs), abscisic acid (ABA), jasmonic acid (JA), JA-
isoleucine conjugate (JA-Ile), indole-3-acetic acid (IAA), 
and salicylic acid (SA) extraction, 0.1 g of ground frozen 
root tissue was extracted in 2 mL of ultrapure water, after 
spiking with 25 μL of a solution containing 1 mg L−1 of 
[2H]-GA7, [2H6]-ABA, DHJA, and [13C6]-SA, and 0.1 mg 
L−1 of [2H2]-IAA in a ball mill (MillMix20, Domel, 
Železniki, Slovenija). After centrifugation at 4,700 g for 
10 min (4 °C), the supernatants were recovered, and the pH 
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was adjusted to 3 with 30% acetic acid. All extracts were 
partitioned twice against 2 mL of diethyl ether, and then the 
organic layer was recovered and evaporated under vacuum 
in a centrifuge concentrator (Speed Vac, Jouan, Saint Her-
blain Cedex, France). Once dried, the residue was resus-
pended in 500 μL of a 10:90 methanol:water solution by 
gentle sonication. The resulting solution was filtered through 
0.22-μm polytetrafluoroethylene membrane syringe filters 
(Albet S.A., Barcelona, Spain) and directly injected into an 
ultra-performance liquid chromatography system (Acquity 
SDS, Waters Corp., Milford, MA, USA, or Waters Alli-
ance 2695, Waters Corp.). Chromatographic separations 
were performed on a C18 reversed-phase column (Gravity, 
50 × 2.1 mm 1.8-μm particle size, Macherey–Nagel GmbH, 
Germany) using a methanol:water (both supplemented with 
0.1% acetic acid) gradient at a flow rate of 300 μL min−1. 
Compounds were quantified using a triple quadrupole mass 
spectrometer (Micromass, Manchester, UK) connected 
online to the output of the column through an orthogonal 
Z-spray electrospray ion source. The spectrometer was oper-
ated in negative ionization electrospray mode, and plant 
hormones were detected according to their specific tran-
sitions using a multi-residue mass spectrometric method. 
Metabolites were monitored at m/z: SA2 137 > 93, 13C6-SA 
143 > 99, IAA 174 > 130, IAA-d2 176 > 132, JA 209 > 59, 
DHJA 211 > 59, ABA-d6 269 > 159, ABA 263 > 153, JA-
Ile 322 > 130, GA3 345 > 143, GA4 331 > 213, GA7-d2 
331 > 225, GA7 329 > 223, GA20 331 > 287. All data were 
acquired and processed using MassLynx v4.1 software. Rel-
ative quantification was achieved by comparing the areas of 
the different samples.

Statistical analysis

Each box contained 30 seeds from which 0.1 g of tissue 
was collected and considered a biological replicate. Tables 
and figures show means ± SEM of three or five independent 
experiments, with three biological replicates per treatment. 
Differences among treatments were analyzed by one-way 
ANOVA, taking p < 0.05 as significant, followed by Tukey’s 
multiple comparison test.

Results and discussion

Cadmium accumulation reduced maize root growth 
and modified root nutrient composition

The presence of Cd in the hydroponic solution signifi-
cantly reduced maize root growth by about 70% in length 
and 45% in biomass (Table 1, Supplemental Fig. 1), in line 
with previous reports (Xu et al. 2014; Anjum et al. 2016b; 
Li et al. 2020a), and Cd accumulation in maize root was 

dose-dependent (Table 2). However, a similar degree of 
growth impairment was observed at both Cd concentrations 
tested. Laboratory soil-less systems abolish the complex 
physicochemical interactions that take place under natural 
field conditions and may alter nutrient and pollutant bio-
availability. Among the soil properties that govern Cd dif-
fusion flux towards the root surface, soil pH, clay content, 
metal oxides, cation exchange capacity, organic matter con-
tent, and Ca2+ concentration have been reported, and also 
total Cd content impacts on Cd uptake (Liu et al. 2015a; Lin 
et al. 2016; Yi et al. 2020).

Plants have not developed a specialized uptake system for 
cadmium because this element has no biological function. 
Nevertheless, this metal can be easily taken up by plant roots 
through membrane transporters of essential nutrients (Ster-
ckeman and Thomine 2020). Current evidence indicates that 
Cd root symplastic influx in maize is controlled by high- and 
low-affinity transport systems (Redjala et al. 2009, 2010). 
Furthermore, cadmium can be strongly adsorbed on the 
maize cell wall, resulting in a large amount of Cd2+ retained 
in the root apoplast (Redjala et al. 2009).

As Table 2 shows, Cd accumulation in emerging maize 
roots resulted in significant decreases in Ca, Fe, Mg, and Mn 
contents. A reduction of 48% and 68% in Ca level was deter-
mined for 50 and 100 µM Cd, respectively. For both Cd con-
centrations assayed, the reduction in Mg level was close to 
60%, and similar decreases of about 38% were detected for 
Fe and Mn. Moreover, Zn was significantly incremented by 
16% over the control exposed to 50 µM Cd, and Cu content 
doubled that of the control in the seedling roots subjected 
to 100 µM Cd.

Change in nutrient absorption/distribution patterns is 
one of the most recognized cadmium harmful effects and 
has been mainly attributed to competition with divalent 
cation transporters (Huang et al. 2020). Ca and Mg (typi-
cally the most abundant divalent cations in plants) reduc-
tions could have affected normal growth and development. 

Table 1   Effect of Cd on root length and biomass. Maize seed-
lings were grown in a hydroponic system containing diluted (1/10) 
Hoagland’s nutrient solution without (control, C) or with 50 and 
100 µM of CdCl2, and root length, fresh weight (FW), and dry weight 
(DW) were determined 72 h later

Data are expressed in mg/10 seedlings; means ± SEM of five inde-
pendent experiments, with three biological replicates per treatment, 
are shown. Different letters within rows indicate significant differ-
ences (p < 0.05), according to the Tukey’s multiple range test

Control µM CdCl2

50 100

Length (cm) 8.0 ± 1.2a 2.7 ± 0.3b 2.4 ± 0.7b

FW 558 ± 79a 269 ± 65b 337 ± 52b

DW 38 ± 12a 17 ± 6b 17 ± 6b
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In this sense, it has been pointed out that growth restriction 
under Cd stress would be a nutrient deficiency symptom and 
the result of homeostatic balance loss between these cations 
(Tang and Luan 2017; Thor 2019; Kleczkowski and Igam-
berdiev 2021). Similarly, Cd reduces Fe and Mn contents in 

maize root. According to several reports, Cd shares simi-
lar plant entry routes with these relevant nutrients, so that 
the decreases found can be the outcome of Cd competition 
with Fe and Mn transporters (Thomine et al. 2000; Wu et al. 
2016; Chen et al. 2017b; Chang et al. 2020). Furthermore, it 
has been demonstrated that the external addition of Ca, Mg, 
Fe, or Mn to the nutrient solution restricts Cd uptake and 
translocation, resulting in alleviation of Cd stress (Paľove-
Balang et al. 2006; Sterckeman et al. 2011; Liu et al. 2013; 
Kudo et al. 2015; Rahman et al. 2016; Huang et al. 2017; 
Chen et al. 2017a; Hussain et al. 2020).

A complex interaction between Cd and Zn has previously 
been documented, proposing that Zn uptake/translocation 
would increase in the presence of Cd (Nan et al. 2002). 
Moreover, it was demonstrated that the induction of several 
genes belonging to the ZIP family–a group of proteins that 
mediate Zn and Cd transport–depends on the Zn:Cd ratio 
in the growing medium (Barabasz et al. 2016; Palusińska 
et al. 2020).

Cu increase and Mn decrease could account for cell redox 
homeostasis disruption under Cd stress. Cu is a redox-active 
metal and Mn, in addition to having free radical scaveng-
ing capacity (Coassin et al. 1992), acts as a cofactor of an 
important enzymatic antioxidant, superoxide dismutase 
(Mn-SOD); Ca is also a signaling messenger intimately 
interconnected with ROS (Mazars et al. 2010; Steinhorst 
and Kudla 2013). Thus, the nutrient imbalance could be part 
of the indirect mechanisms by which Cd induces oxidative 
stress in maize roots.

Cadmium differentially affected peroxidase 
activities along the root and disrupted ascorbate 
homeostasis

In maize seminal root, CAT and APX activities were 
mostly localized in the root tip (Ap), while GPX activity 
was predominantly detected in the remaining tissue (Rt) 
(Fig. 1). Among peroxidases, CAT catalyzes the dismuta-
tion of H2O2 in the absence of electron donors. Its activity 
is largely found in subcellular compartments with H2O2 
generation, such as peroxisomes, and also in mitochondria, 
chloroplasts, and the cytosol (Sharma and Ahmad 2014). 
CAT activity significantly increased in the Ap under 
100 µM Cd2+ (130% over the control); however, in the Rt, 
CAT activity significantly increased by 67% under 50 µM 
Cd2+ and significantly decreased by 42% under 100 µM 
Cd2+ compared to the control. An increase in CAT activ-
ity may be interpreted as a cell-protective strategy against 
the detrimental effect of H2O2. On the contrary, a decrease 
in CAT activity deprives cells of their normal antioxidant 
capacity and results in oxidative stress. Catalase inactiva-
tion by metals has been associated with the oxidation of 
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Fig. 1   Effect of Cd on peroxidase activities. Maize seedlings were 
subjected to hydroponic culture without (control, C) or with 50 
and 100  μM of CdCl2 for 72  h. Determinations were performed on 
extracts obtained from the root apex (Ap) and the remaining root 
tissue (Rt). Data are representative of five independent experiments 
with three replicates. At least three technical replicates of each pro-
tein extract were used for these determinations. Bars represent 
means ± SEM of five independent experiments, with three biological 
replicates per treatment. Different letters indicate significant differ-
ences (p < 0.05), according to the Tukey’s multiple range test
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the protein structure (Pena et al. 2011) and the suppression 
of CAT gene expression (Ye et al. 2014).

To counteract excessive H2O2 formation in plant tis-
sues, non-specific peroxidases acting on one- or two-elec-
tron donors (including phenolic compounds such as guai-
acol) are usually induced. In plants, GPX activity is mainly 
located in vacuoles and cell walls but not in organelles 
(Asada 1992). Under both concentrations, Cd significantly 
increased GPX activity by about 70% in the Ap, while in 
the Rt, significant increases of 47% and 72% in the con-
trol with 50 and 100 µM Cd2+ respectively, were recorded 
(Fig. 1). GPX activity rise during Cd stress would be 
involved not only in the control of H2O2 levels but also in 
the modulation of plant growth and development through 
the control of hormonal and cell wall metabolism (Jouili 
et al. 2011).

Ascorbate peroxidase reduces H2O2 to H2O using ascor-
bate as the specific electron donor. Different APX isoforms 
are located in chloroplasts, cytosol, mitochondria, and 
peroxisomes, as well as in the apoplastic space (Gill and 
Tuteja 2010; Hasanuzzaman et al. 2019). In maize root 
apex, APX activity was not affected by Cd treatment, in line 
with previous observations in barley root tips (Bocova et al. 
2012); however, the activity of this enzyme was particularly 
impaired in the Rt, dropping by almost half under both Cd 
concentrations (Fig. 1). Because of a higher APX affinity 
for H2O2 than CAT and GPX, it has been suggested that this 
enzyme has a more crucial role in the scavenging of ROS 
during abiotic stress (Sofo et al. 2015; Anjum et al. 2016a).

In both root portions, total ASC (ASC plus DHA) levels 
significantly augmented under Cd treatment due to a pro-
nounced rise in DHA content, resulting, at the same time, 
in the reduction of ASC/DHA ratio (Table 3). Moreover, the 
metal significantly increased GSH content in the Rt (two-
fold increase), but was significantly reduced in the Ap under 
100 µM Cd (20% of control value) (Table 3). Maintaining a 
high intracellular GSH level is vital to mitigate Cd-induced 
oxidative stress injuries in plants (Gallego et al. 2005; Most-
ofa et al. 2015). The decline in redox AsA/DHA and GSH/
GSSG ratios suggests that Cd altered the adequate function-
ing of the ASC-GSH cycle (Mostafa et al. 2019). The role of 
these compounds in the alleviation of Cd toxicity was previ-
ously demonstrated, through the exogenous application of 
ASC and GSH to maize (Li et al. 2017; Zhang et al. 2019). 
Although Cd is a non-redox metal, unable to participate in 
Fenton-type reactions, the redox imbalance induced by this 
metal resulted in O2

− and H2O2 accumulation, mainly in 
root apexes (Fig. 2). ROS accumulation triggered by Cd in 
maize root is in agreement with previous findings (Adhikari 
et al. 2018).

Cadmium‑induced accumulation of oxidatively 
damaged proteins was prevented by 20S 
proteasome increased activity

Protein carbonylation is considered a reliable parameter of 
oxidative stress (Shulaev and Oliver 2006). Additionally, 
the accumulation of oxidized proteins reflects the balance 

Table 2   Effect of Cd on root chemical composition. Maize seed-
lings were grown in a hydroponic system containing diluted (1/10) 
Hoagland’s nutrient solution without (control, C) or with 50 and 

100  µM of CdCl2. After 72  h of treatment, roots were harvested 
and used for analytical determinations. Element concentrations are 
expressed in mg kg−1 of dry weight

Data represent mean ± SEM of three independent experiments, with three biological replicates per treatment. Different letters within columns 
indicate significant differences (p < 0.05), according to the Tukey’s multiple range test

Cd Cu Ca Fe K Mg Mn P S Zn

C 18 ± 9c 30 ± 10b 2135 ± 326a 79 ± 09a 15,367 ± 1436a 1372 ± 460a 8 ± 1a 9871 ± 420a 1688 ± 398a 59 ± 1b

50 µM 1264 ± 47b 35 ± 4b 1103 ± 94b 49 ± 3b 19,474 ± 1611a 525 ± 9b 5 ± 1b 10,868 ± 165a 1723 ± 124ª 69 ± 4a

100 µM 1933 ± 158a 73 ± 9a 700 ± 49b 50 ± 2b 17,927 ± 178a 654 ± 12b 5 ± 1b 9299 ± 268a 1644 ± 196ª 55 ± 2b

Table 3   Effect of Cd on ascorbate (ASC), dehydroascorbate (DHA) 
and glutathione (GSH) content. Maize seedlings were grown in a 
hydroponic system containing diluted (1/10) Hoagland’s nutrient 

solution without (control, C) or with 50 and 100  µM of CdCl2 for 
72  h. ASC and DHA concentrations are expressed in nmol g−1 of 
fresh weight (FW); GSH concentration is expressed in µmol g−1 FW

Data represent means ± SEM of five independent experiments, with three biological replicates per treatment. Different letters within columns 
indicate significant differences (p < 0.05), according to the Tukey’s multiple range test

Ap Rt

ASC DHA ASC/DHA GSH ASC DHA ASC/DHA GSH

C 218 ± 10a 475 ± 31c 0.5 0.17 ± 0.01b 915 ± 50A 310 ± 60B 2.9 0.20 ± 0.02B

50 µM 248 ± 5a 2265 ± 81a 0.1 0.20 ± 0.01a 1090 ± 20A 590 ± 40B 1.8 0.42 ± 0.02A

100 µM 151 ± 5b 1600 ± 69b 0.1 0.14 ± 0.01c 1010 ± 60A 1030 ± 120A 1.0 0.46 ± 0.01A
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between their production and degradation, mainly by the 
20S proteasome activity. Under our experimental conditions, 
only 100 µM Cd significantly incremented protein carbonyl 
group content along the whole root (Fig. 3A).

A time-dependent analysis of three peptidase activi-
ties was assayed for the 50 µM Cd treatment. As shown in 
Fig. 3B and C, the metal incremented 20S peptide-hydro-
lyzing activities. At 72 h, all of them were significantly 
increased in the Ap, and also T and Q in the Rt. Thus, the 
absence of carbonylated protein accumulation in maize 
roots subjected to 50 µM treatment could be attributed to 
the increase in the activity of the 20S proteasome, similarly 
as previously described (Pena et al. 2007).

Cadmium altered hormonal root homeostasis

Cadmium significantly enhanced IAA and ABA levels in 
the entire root tissue, whereas SA content significantly 
increased only in the Rt portion (Table 4). IAA increments 
by Cd in rice roots were related to the overexpression of 
the biosynthetic genes OsASA2 and OsYUCCA1 (Ron-
zan et al. 2019). Furthermore, it has been described that 
Cd not only affects IAA content but also its distribution, 
metabolism, and transport (Chmielowska-Bak et al. 2014), 
suggesting an eventual switch to an alternative morpho-
genic root program to counteract metal stress (Hu et al. 
2013; Fattorini et al. 2017; Piacentini et al. 2020). Numer-
ous reports also indicate that the exogenous application of 

IAA, as well as the IAA precursor indole-3-butyric acid 
(IBA), reduced Cd toxicity in plants (Agami and Mohamed 
2013; Li et al. 2020b; Zhang et al. 2020; Zhou et al. 2020; 
Piacentini et al. 2020; Demecsová et al. 2020). However, 
further information is needed to know whether the endoge-
nous IAA levels reached in maize root during Cd stress can 
induce a similar effect compared to that observed when 
IAA is exogenously added.

In plants, ABA is recognized as a modulator of adap-
tive abiotic stress responses (Cutler et al. 2010) and a key 
player in alleviating heavy metal stress (Hu et al. 2020). 
Hsu and Kao (2003) reported a close relationship between 
endogenous ABA content and Cd tolerance in rice seed-
lings. It has also described that exogenous ABA application 
would partially relieve Cd toxic effects by increasing GSH 
and phytochelatin biosynthesis (Chen et al. 2016; Song et al. 
2016), as well as restrict Cd uptake and distribution (Han 
et al. 2016; Shen et al. 2017; Tang et al. 2020).

SA increase in the Rt may be involved as a mechanism to 
counteract oxidative stress induced by Cd. It has been well 
established that SA application improves plant acclimation 
to Cd excess by reducing the metal uptake and/or promoting 
plant antioxidant capacity (Popova et al. 2009; Hayat et al. 
2010; Agami and Mohamed 2013; Shakirova et al. 2016; 
Guo 2019). In accordance, an Arabidopsis SA-deficient 
mutant resulted in negative effects on Cd tolerance, mainly 
due to the lowered GSH status (Guo et al. 2016).

Cadmium at 100 µM significantly increased the root con-
centration of GA20 (Table 4), the precursor of the active 
form 13-hydroxylated GA3. Interestingly, the total root 
content of GA3 remained similar to the control at this Cd 
concentration but significantly decreased in the Ap and 
increased in the Rt at 50 µM Cd. On the other hand, the 
contents of non-13-hydroxylated GA7 and GA4 were sig-
nificantly reduced under Cd treatments. A similar drastic 
decrease in GA4 content was reported during copper stress 
(Matayoshi et al. 2020).

The mechanism by which metals affect GA4 homeostasis 
could involve interference with hormone biosynthesis but 
also with subsequent gibberellin transformations. Liu et al. 
(2015b) reported up-regulation of two genes encoding GA2-
oxidase, a major enzyme for deactivating bioactive gibberel-
lins, in response to Cd stress.

The presence of Cd exerted a dramatic effect on the active 
form JA-Ile, whose concentration was strongly diminished 
under the metal treatment. JA-Ile is considered the most 
metabolically active jasmonate (Fonseca et al. 2009), and, 
although the exogenous application of JA or methyl jas-
monate (MJ) has been shown to alleviate Cd-toxic effects in 
plants (Singh and Shah 2014; Siddiqi and Husen 2019; Lei 
et al. 2020), little attention has been given to Ile-JA regard-
ing cadmium stress. Kurotani et al. (2015) suggested that 
deactivation of JA-Ile results in enhanced salt tolerance in 

D
A

B
N

B
T

C       50     100
µM CdCl2

Fig. 2   In situ detection of superoxide anion and hydrogen peroxide in 
maize roots using nitroblue tetrazolium (NBT) and 3,3′-diaminoben-
zidine (DAB) staining method, respectively. Maize seedlings were 
subjected to hydroponic culture without (control, C) or with 50 and 
100 μM of CdCl2 for 72 h. The images shown are representative of 
five independent experiments
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rice. It would be of special interest to evaluate the turnover 
of JA-Ile in the context of Cd stress in future studies.

Conclusion

Maize seedlings exposed to Cd arrested root growth, and the 
entire primary root was found to be involved in redox and 
hormonal adjustments to trigger and/or to support defense 
mechanisms to cope with Cd stress. The integrated analysis 
of our experimental data shows that Cd addition decreases 
the root content of several essential nutrients, disrupts ASC 
homeostasis, and causes a strong decline in GA4 and JA-Ile 
levels, along with root growth inhibition. Faced with the 
incapacity of maintaining ASC homeostasis, CAT and GPX 
would be alternative enzymatic defense lines for seminal 
roots to remove ROS excess during Cd stress. Finally, the 
20S proteasome seems to be a relevant defense component 
to cope with the oxidative damage generated by cadmium 
during this early stage of plant development.

Taking into account that dealing with environmental 
stresses requires a metabolic reorganization that affects 
plant growth, the data reported in this study provide valuable 
advances in the biochemical adjustments that integrate the 

responses of the apex and the remaining maize embryonic 
roots to Cd stress.
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Fig. 3   Effect of Cd on oxidative-damaged proteins and proteasome 
proteolytic activities. Carbonyl group content (A) was determined in 
root protein extracts obtained from root tips (At) and the remaining 
root tissue (Rt) of maize seedlings subjected to hydroponic culture 
without (control) or with 50 and 100 µM of CdCl2 for 72 h. Proteins 
were derivatized with DNPH and an analysis was performed by dot 
blot. Membranes were photographed and analyzed using Gel-Pro 
software. Quantification of oxidized proteins was based on the abso-
lute integrated optical density (IOD) of each dot and expressed as 
percentage of the amount present in the control (assuming control 
equal to 100%). Bars represent mean ± SEM. Proteasome activities in 
the root tips (B) and the remaining root tissue (C) were determined 
in maize seedlings subjected to hydroponic culture without (control) 
or with 50 CdCl2 up to 72  h. Trypsin-like, chymotrypsin-like, and 
peptidyl-glutamyl-peptide hydrolase (PGPH) proteasome activities 
were measured at three times from the onset of Cd stress using three 
peptide substrates (Boc-LSYRAMC, AAF-AMC, and Clz-LLE-βNA, 
respectively) of the 20S proteasome in the absence or presence of the 
proteasome inhibitor MG132. Enzymatic activities were normalized 
for protein concentrations and expressed as percentage of the activ-
ity present in the control (assuming control equal to 100%). Data are 
representative of five independent experiments with three replicates. 
At least three technical replicates of each protein extract were used 
for each determination. Bars represent mean values ± SEM. Asterisks 
indicate significant differences compared to the control (*p < 0.05, 
**p < 0.01, and ***p < 0.001), according to the Tukey’s multiple 
range test
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