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S1. Potential-dependent drift velocity  

Assuming 𝜑 is the electrostatic potential of a sample of thickness 𝐿, where 𝜑(0) = 0 and 

𝜑(𝐿) = 𝑉, being 𝑉 the external applied voltage, then the drift velocity can be taken as 

𝑣𝑑 = 𝑘𝜑𝑝  (S1) 

where 𝑝 is a dimensionless constant and 𝑘 a constant whose units depend on 𝑝. 

Considering the current density 𝐽 independent of the position 𝑥 and 𝜑, it can be expressed as  

𝐽 = 𝑄 𝑁 𝑣𝑑 (S2) 

where 𝑄 and 𝑁 are the charge and concentration of the charge carrier, respectively. By 

substituting Equation (S1) in (S2) one obtains  

𝑁 =  
𝐽

𝑄𝑘
 𝜑−𝑝 (S3) 

Substituting Equation (S3) in the Poisson equation it results in  

𝑑2𝜑

𝑑𝑥2
=

𝐾

𝜑𝑝
  (S4) 

where 𝐾 = 𝐽(𝑘𝜖0𝜖𝑟)−1. Then, we multiply Equation (S4) by  2𝑑𝜑 = 2(𝑑𝜑/𝑑𝑥)𝑑𝑥 

2
𝑑𝜑

𝑑𝑥
(

𝑑2𝜑

𝑑𝑥2
𝑑𝑥) = 2

𝐾

𝜑𝑝
 𝑑𝜑 (S5) 

Subsequently, by integrating Equation (S5) we obtain 

(
𝑑𝜑

𝑑𝑥
)

2

− (
𝑑𝜑

𝑑𝑥
)

0

2

=
2𝐾

1 − 𝑝
 𝜑1−𝑝 (S6) 

Neglecting the second term of the left member and elevating at the power of ½ Equation 

(S6), we obtain 

𝑑𝜑

𝑑𝑥
= (

2𝐾

1 − 𝑝
)

1/2

 𝜑
1−𝑝

2  (S7) 

Equation (S7) can be reordered for integration between 0 and 𝑥, where 𝜑(0) = 0 and 

𝜑(𝑥) =  𝜑, respectively, then  

2
 𝜑

𝑝+1
2

(𝑝 + 1)
= (

2𝐾

1 − 𝑝
)

1/2

𝑥 (S8) 

Equation (S8) can be reordered and elevated at the power of 2(𝑝 + 1)−1 to obtain the 

generic electrostatic potential as  
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𝜑 = (𝑝 + 1)
2

𝑝+1 (
𝐽

2𝑘𝜖0𝜖𝑟(1 − 𝑝)
)

1
𝑝+1

 𝑥
2

𝑝+1 (S9) 

Equation (S8) can also be reordered, elevated at the power of 2 and evaluated at 𝑥 = 𝐿, 

where 𝜑(𝐿) = 𝑉 , to obtain the generic current density  

𝐽 = 𝜅
𝑉𝑝+1

𝐿2
 (S10) 

where the constant 𝜅 is 

𝜅 = 2𝑘𝜖0𝜖𝑟

(1 − 𝑝)

(𝑝 + 1)2
 (S11) 

In the ballistic regime, the Child-Langmuir law[1, 2] of space-charge-limited current 

(SCLC) uses 𝑘 = (2𝑄/𝑀)1/2 and 𝑝 = 1/2, then the electrostatic potential results  as 

𝜑 = (
3

2
)

4
3

(
𝐽

𝜖0𝜖𝑟

√
𝑀

2𝑄
)

2
3

 𝑥
4
3 (S12) 

and the current density is 

𝐽 =  
4𝜖0𝜖𝑟𝜇0

9𝐿2
√

2𝑄

𝑀
 𝑉3 2⁄  (S13) 

The ballistic current density as in Equation (S13) is illustrated in Figure S1 for typical 

ranges of sample thickness and applied external voltage.  
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Figure S1: Current density as a function of the external applied voltage for the ballistic Child-

Langmuir law[1, 2] of SCLC for a MAPbI3 sample with 𝜖𝑟=23[3] and Q and M being the electron 

charge and mass, respectively, in Equation (S13).  
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In the quasi-ballistic velocity-dependent dissipation (QvD)[4] regime of SCLC,  𝑘 =

(√2 + 𝛽 − √𝛽)√
𝑄

𝑀
 and 𝑝 = 1/2, then the electrostatic potential results  as 

𝜑 = (
3

2
)

4
3

(
𝐽

𝜖0𝜖𝑟

√
𝑀

𝑄
)

2
3

 𝑥
4
3 (S14) 

and the current density is 

𝐽 =  
4𝜖0𝜖𝑟(√2 + 𝛽 − √𝛽)

9𝐿2
√

𝑄

𝑀
 𝑉3 2⁄  (S15) 

S2. Field-dependent drift velocity  

Differently, the drift velocity can also be taken proportional to the absolute electric field 

|𝜉| = |𝑑𝜑/𝑑𝑥|, as 

𝑣𝑑 = 𝑐
𝑑𝜑

𝑑𝑥

𝑝

  (S16) 

where 𝑐  is a constant whose units depend on the dimensionless power 𝑝. Substituting Equation 

(S16) in (S2) one obtains the total charge carrier concentration as:  

𝑁 =  
𝐽

𝑄𝑘
 
𝑑𝜑

𝑑𝑥

−𝑝

 (S17) 

Subsequently, substituting Equation (S17) in the Poisson equation it results in  

𝑑2𝜑

𝑑𝑥2
=

𝐶

(
𝑑𝜑
𝑑𝑥

)
𝑝  

(S18) 

where 𝐶 = 𝐽(𝑐 𝜖0𝜖𝑟)−1. Then, we multiply Equation (S18) by  (
𝑑𝜑

𝑑𝑥
)

𝑝

𝑑𝑥 

(
𝑑𝜑

𝑑𝑥
)

𝑝 𝑑2𝜑

𝑑𝑥2
𝑑𝑥 = 𝐶 𝑑𝑥 (S19) 

Integrating Equation  (S19) we obtain, 

(
𝑑𝜑

𝑑𝑥
)

𝑝+1

− (
𝑑𝜑

𝑑𝑥
)

0

𝑝+1

= (𝑝 + 1 )𝐶𝑥 (S20) 

Neglecting the second term of the left member and elevating Equation (S20) at the power 

of (𝑝 + 1 )−1 we obtain 
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𝑑𝜑

𝑑𝑥
= ((𝑝 + 1 )𝐶𝑥)

1
𝑝+1 (S21) 

Equation (S21)  can be reordered for integration between 𝑥 = 0 and 𝑥, where 𝜑(0) = 0 

and 𝜑(𝑥) = 𝜑, respectively, then the electrostatic potential can be found as 

𝜑 =
(𝑝 + 1 )

𝑝+2
𝑝+1

(𝑝 + 2 )
(

𝐽

𝑐 𝜖0𝜖𝑟
)

1
𝑝+1

𝑥
𝑝+2
𝑝+1 (S22) 

Equation (S22) can be evaluated at 𝑥 = 𝐿, where 𝜑(𝐿) = 𝑉, then the general current 

density results as 

𝐽 = 𝜍
𝑉𝑝+1

𝐿𝑝+2
 (S23) 

where the constant 𝜍 is  

𝜍 = 𝑐𝜖0𝜖𝑟

(𝑝 + 2)𝑝+1

(𝑝 + 1)𝑝+2
 (S24) 

In the Mott-Gurney law[5] of SCLC, 𝑐 = 𝜇 and 𝑝 = 1, therefore, the electrostatic potential 

results as 

𝜑 =
2

3
√

2𝐽

𝜇 𝜖0𝜖𝑟
𝑥

3
2 (S25) 

and the current density is  

𝐽 =  
9𝜖0𝜖𝑟𝜇

8𝐿3
 𝑉2 (S26) 

The current as in Equation (S26)(S13) is illustrated in Figure S2 for typical values. 
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Figure S2: Current density as a function of the external applied voltage and mobility for the Mott-

Gurney law[5] of mobility regime of SCLC for a MAPbI3 sample with 𝜖𝑟=23[3] and L=1.0 mm in 

Equation (S26)(S13).  
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In the ballistic-like voltage-dependent mobility (BVM) regime, 𝑐 = 𝜇0(𝑉0/𝐿)1/2 and 𝑝 =

1/2, then the electrostatic potential results as 

𝜑 =
3

5
(

3

2
)

2
3

(
𝐽

𝜖0𝜖𝑟𝜇0
√

𝐿

𝑉0
)

2
3

𝑥
5
3 (S27) 

and, considering that √500/243 ≈ √2, the current density can be approximated to 

𝐽 =
𝜖0𝜖𝑟𝜇0

𝐿3 √2𝑉0𝑉3/2 

 

(S28) 

S2.1. The onset voltage 𝑽𝟎 of the BVM regime of SCLC 

In the SCLC formalism, the 𝑣𝑑 ∝ (𝑑𝜑/𝑑𝑥)1/2 can explain a 𝐽 ∝ 𝑉3/2, as above 

demonstrated. Typically, in the mobility regime the absolute value of the drift velocity is 

considered as  

𝑣𝑑 = 𝜇𝜉 (S29) 

The use of Equation (S29) leads to the Mott-Gurney law.[5] However, assuming a 

transition from Ohmic to the BVM regime around an onset voltage 𝑉0, the conjunction of both 

field-dependent ionization and accumulation of mobile ions towards the interface can be 

producing a voltage-dependent mobility as  

𝜇 = 𝜇0

𝐿𝑖

𝐿𝐷
 (S30) 

where 𝜇0 is an effective mobility independent of field and position, 𝐿𝑖 is Frenkel’s equation[6] 

for the distance between the ions and their local potential maxima upon application of an 

external field 

𝐿𝑖 = √
𝑄

𝜖0𝜖𝑟𝜉
 (S31) 

and 𝐿𝐷 is the Debye length for the accumulation of mobile ions towards the electrodes 

𝐿𝐷 = √
𝜖0𝜖𝑟𝑘𝐵𝑇

𝑄2𝑁𝑖
 (S32) 
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In Equation (S32), 𝑁𝑖 is the mobile ions concentration, 𝑘𝐵 is the Boltzmann constant and 𝑇 is 

the temperature. By substituting Equations (S31) and (S32) in (S30), and multiplying by 

(𝐿/𝐿)1/2 we obtain 

𝜇 = 𝜇0√
𝑉0

𝐿𝜉
 (S33) 

where the onset voltage comes after  

𝑉0 =
𝑄3𝑁𝑖𝐿

𝜖0
2𝜖𝑟

2𝑘𝐵𝑇
 (S34) 

The values for 𝑉0 are presented in Figure S3 for a MAPI sample at room temperature. 

Note that one may expect values in the range 1-10 V for a 1.0 mm thickness sample, meaning 

that the concentration of mobile ions towards the interface is around 1014 cm-3. 
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Figure S3: Onset voltage as a function of the distance between electrodes and the concentration 

of mobile ions towards the electrodes in the BVM regime of SCLC for a MAPbI3 sample with 

𝜖𝑟=23,[3] 𝑇 = 300 K and 𝑄 as the elementary charge in Equation (S34).  

The BVM drift velocity can then be rewritten by substituting (S33) in (S29)  as 

𝑣𝑑 = 𝜇0√
𝑉0

𝐿
𝜉 (S35) 

 

Alternatively, one can assume the BVM model as an approximation to a particular case 

of the Poole-Frenkel[6-8]  ionized-trap-mediated transport when the field 𝜉 and the charge carrier 

profile 𝑁 meet certain specific criteria. For a start, we consider the Poole-Frenkel current 

density 
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𝐽 = 𝜎𝑃𝐹 exp [
−𝑞𝜙

𝑘𝐵𝑇
] 𝜉 exp [√

𝜉

𝜉𝑃𝐹
] (S36) 

where 𝜎𝑃𝐹 is the Poole-Frenkel conductivity, 𝜙, the equilibrium potential barrier for the ionized 

traps and the Poole-Frenkel onset field is 

𝜉𝑃𝐹 =
𝜋𝜖0𝜖𝑟𝑘𝐵

2𝑇2

𝑄3
 (S37) 

The electric field must fulfil two conditions for the BVM model to coincide with Equation 

(S36): (i) the field should be high enough that 

√
𝜉

𝜉𝑃𝐹
≫ 1 (S38) 

in order to decrease the potential barrier in the Poole-Frenkel effect, but (ii) only in a narrow 

field range where the current is not critically exponential and the Equation  (S36) can be 

approximated to the McLaurin expression as 

𝐽 ≅ 𝜎1 exp [
−𝑞𝜙

𝑘𝐵𝑇
] 𝜉 (1 + √

𝜉

𝜉𝑃𝐹
) (S39) 

where the effective BVM conductivity is taken as  

𝜎0 = 𝜎𝑃𝐹 exp [
−𝑞𝜙

𝑘𝐵𝑇
] (S40) 

In addition, the charge carrier distribution should be approximately constant as 

𝑁 = 𝑁0√
𝐿

𝜉𝑃𝐹𝑉0
 (S41) 

where 𝑉0 and 𝐿 have the same meanings as in Equation (S34) and 𝑁0 is a threshold effective 

conductivity for the transition from ohmic to the BVM regime of SCLC. Subsequently, 

assuming (S38) and substituting Equation (S41) in (S2) and (S39), the drift velocity can be 

approximated to Equation (S35) where the effective threshold mobility is assumed as   

𝜇0 ≅
𝜎0

𝑁0𝑄
 (S42) 
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