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Abstract. Let A and G be finite groups and assume that A acts on G by automor-
phisms with (|A|, |G|) = 1. Let CG(A) be the fixed point subgroup and fix a prime
number p. We prove that if G possesses an A-invariant p-complement that is normalized
by CG(A), then G is p-solvable. We also extend Frobenius criterion for p-nilpotency, in
the coprime action setting, for the primes 2 and 3.

1. Introduction

Let A and G be finite groups with (|A|, |G|) = 1 such that A acts by automorphisms on
G. Let denote by C := CG(A) the fixed point subgroup. In the coprime action scenario,
quite a few research works seem to confirm that A-invariant subgroups of G that are
normalized by C may take on the role of normal subgroups (see for instance [1], [2]). An
elementary first property revealing this fact is that G has exactly one A-invariant Sylow
p-subgroup for certain prime p if and only if it is normalized by C. Our purpose is to
generalize the celebrated Frobenius criterion for p-nilpotency, which claims that a group
is p-nilpotent, that is, has a normal Hall p′-subgroup, if and only if every local subgroup
(the normalizer of a non-trivial p-subgroup) of G is p-nilpotent. Thus, we are looking for
a “local” A-version that ensures the existence of A-invariant p-complement normalized by
C.

The existence of normal p-complement obviously implies p-solvability, and our first
result, Theorem A, goes in this direction. Its proof is based on the Classification of
Finite Simple Groups, more precisely, on Guralnick’s classification of prime power index
subgroups of simple groups [5]. We remark that the existence of A-invariant p-complement
normalized by C in a group G easily leads to the p-nilpotency of C, however, only imposing
this latter hypothesis does not imply the p-solvability of G. We will provide examples
throughout the proofs.
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Theorem A. Let A and G be finite groups with (|A|, |G|) = 1 and assume that A acts on
G by automorphisms. Let p be a fixed prime. If G has an A-invariant p-complement nor-
malized by CG(A), then G is p-solvable. As a consequence, such A-invariant p-complement
is unique.

We utilize Theorem A to obtain our next contribution, which partially extends the
p-nilpotency criterion of Frobenius.

Theorem B. Let A and G be finite groups with (|A|, |G|) = 1 and assume that A acts on
G by automorphisms. Let C := CG(A) and p a prime. Assume that for every A-invariant
p-subgroup 1 6= P of G, the group NG(P ) has an A-invariant p-complement normalized by
C ∩NG(P ). If G is p-solvable, or if p = 2 or 3, then G has an A-invariant p-complement
normalized by C.

Precisely, Theorem A is used to reduce the proof of Theorem B to the non-abelian
simple case, and then a detailed analysis on coprime action on these groups is required.
The fact that all except one family of simple groups (Suzuki simple groups), acted on by a
coprime automorphism group, satisfy that the fixed point subgroup C has order divisible
by 6 allows to reduce our study to a few families of simple groups of Lie type whose fixed
point subgroup C has a specific structure. Then, the subgroup structure of those families
of simple groups is needed. For primes distinct from 2 and 3, however, Theorem B is false
in general and we will provide examples of it.

We also want to note that a complete although weaker extension of the p-nilpotency
theorem of Frobenius has appeared in [10]. It concerns, however, with the existence
of normal p-complement instead of p-complement normalized by C. Theorem B of [10]
establishes that, in the coprime action context, a group G is p-nilpotent when NG(P ) is
p-nilpotent for every non-trivial invariant p-subgroup P of G.

A priori, the existence of A-invariant p-complement is not inherited by A-invariant sub-
groups, but Theorem A implies that this is true when such a p-complement is normalized
by C. As a consequence, the reciprocal of Theorem B holds for every finite group, and we
will give a proof (Corollary 3.3). All groups are supposed to be finite and the notation is
standard as in [9].

2. Preliminaries

In this section we collect the main results that we need in the proofs. The first theorem,
which has been pointed out in the introduction, relays on the Classification of the Finite
Simple Groups and is essential in our approach on the p-complements in non-abelian
simple groups for proving Theorem A.

Theorem 2.1. [5, Theorem 1] Let G be a non-abelian simple group with H < G and
|G : H| = pa, p prime. One of the following holds.

(a) G = An, and H ∼= An−1, with n = pa.
(b) G = PSL(n, q) and H is the stabilizer of a line or hyperplane. Then |G : H| =

(qn − 1)/(q − 1) = pa.
(c) G = PSL(2, 11) and H ∼= A5.
(d) G = M23 and H ∼= M22 or G = M11 and H ∼= M10.
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(e) G = PSU(4, 2) ∼= PSp(4, 3) and H is a subgroup of index 27.

Notice that the corresponding subgroups in the above theorem are not necessarily p-
complements of G. In order to get more information on case (b), we will make use of the
renowned Zsigmondy’s property.

Lemma 2.2. [13] Let q be a natural number greater than 1. Then for every natural
number m there exists a (Zsigmondy) prime r such that r | qm− 1 but r - qi− 1 for every
1 ≤ i ≤ m− 1 except for the following cases:

(1) m = 6 and q = 2;
(2) m = 2 and q = 2k − 1 for some natural number k.

As a consequence of Lemma 2.2, it is not difficult to prove (for instance, by using the
solved Catalan’s conjecture [12]) the following properties.

Lemma 2.3. [5, (3.3)] Suppose that q = rb, with r prime and b ≥ 1 and that (qn −
1)/(q − 1) = pa, with p prime. Then

(1) n is prime;
(2) r ≡ 1 (mod n) or n = r = 2;
(3) If n = 2 then either q is a Mersenne prime and p = 2; a = 1 and p is a Fermat

prime; or a = 2, p = 3 and q = 8.

With regard to coprime action, we recall the following. Suppose that a group A acts
coprimely on a group G. Then, for every prime p, there always exists an A-invariant
Sylow p-subgroup in G and any two of them are conjugate by some element lying in C.
Furthermore, if P is an A-invariant Sylow subgroup of G, then P ∩C is a Sylow subgroup
of C. The same properties hold for A-invariant p-complements when G is p-solvable. We
refer to [11, Chapter 8] or [9, Chapter 3] for a detailed presentation and basic properties
of coprime action. We only state here two known results.

Lemma 2.4. [11, 8.2.2] Let A be a group that acts on a group G. Let N be an A-
invariant normal subgroup of G. Suppose that the action of A on N is coprime. Then
CG/N(A) = CG(A)N/N .

The proof of the following result, which concerns with action on direct products, how-
ever, does not require the coprimeness hypothesis.

Lemma 2.5. [11, 8.1.6] Suppose that a finite group A acts on a finite group G which
allows a direct decomposition G = H1 × · · · × Hn, that is A-invariant under A, that
is, Ha

i ∈ {H1, ..., Hn} for all a ∈ A and all i ∈ {1, ..., n}. Assume further that A acts
transitively on {H1, ..., Hn}. Let H ∈ {H1, ..., Hn}, let B = NA(H), and let S be a
transversal for the cosets of B in A. Then

(a) CG(A) = {Πs∈Se
s|e ∈ CH(B)};

(b) CG(A) ∼= CH(B).

For proving Theorem B, we make use of the structure of the Sylow normalizers in
certain families of simple groups of Lie type, so we have summarized them for the reader’s
convenience.

Lemma 2.6. Let G = PSL(2, q), where q is a power of prime r and d = (2, q + 1). Let p
be a prime divisor of |G| and P a Sylow p-subgroup of G.
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(1) If p = r, then NG(P ) = P o C q−1
d

.

(2) If 2 6= p | q+1
d

, then NG(P ) = C q+1
d

o C2;

(3) If 2 6= p | q−1
d

, then NG(P ) = C q−1
d

o C2;

(4) Assume r 6= p = 2.
(4.1) If q ≡ ±1 (mod 8), then NG(P ) = P ;
(4.2) If q ≡ ±3 (mod 8), then NG(P ) = (C2 × C2) o C3.

Proof. This follows from [8, Chapter II, Theorem 8.27]. �

Lemma 2.7. Let p be a prime divisor of the order of G = Sz(q), where q = 22n+1 and
n ≥ 1, and let P be a Sylow p-subgroup of G.

(1) If p = 2, then NG(P ) = P o Cq−1;
(2) If p|(q − 1), then NG(P ) = D2(q−1);
(3) If p|(q ±

√
2q + 1), then NG(P ) = Cq±

√
2q+1 o C4.

Proof. This follows from [7, Chapter XI, Theorem 3.10]. �

Lemma 2.8. Let p be a prime divisor of the order of G = PSU(3, q), where q = 2r and
r ≥ 2, and let P be a Sylow p-subgroup of G and d = (3, q + 1).

(1) If p = 2, then NG(P ) = P o C q2−1
d

;

(2) If p|(q + 1), then NG(P ) = (C q+1
d
× Cq+1) o S3;

(3) If p|(q − 1), then NG(P ) = C q+1
d
×D2(q−1);

(4) If p|(q2 − q + 1) and p 6= 3, then NG(P ) = (C(q2−q+1)/d) o C3.

Proof. This follows from [6]. �

We end this section by listing the groups of Lie type that are non-simple. This can be
found in [3] for instance.

Remark 2.9. The finite groups of Lie type that are non-simple are the following:

(i) four solvable groups: A1(2) ∼= PSL(2, 2) ∼= S3; A1(3) ∼= PSL(2, 3) ∼= A4; 2A2(2) ∼=
PSU(3, 2), which is a Frobenius group with complement Q8; and 2B2(2) ∼= Sz(2),
the Frobenius group of order 20;

(ii) four non-solvable groups: B2(2) ∼= S6; G2(2), of order 12096 and whose derived
subgroup is isomorphic to PSU(3, 3); 2G2(3), whose derived subgroup is isomorphic
to PSL(2, 23); and 2F4(2), whose derived subgroup is the Tits (simple) group.

3. Main results

For proving Theorem A, we induct on the order of G, and we reduce it to show that a
non-abelian simple group acted on coprimely by a group A cannot possess any A-invariant
p-complement normalized by CG(A) for any prime p dividing |G|. We state and prove
this result separately.

Theorem 3.1. Let G be a non-abelian simple finite group and suppose that a group A
acts coprimely on G. Let p be a fixed prime. If G has an A-invariant p-complement
normalized by CG(A), then G is a p′-group.
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Proof. Let p be a prime dividing |G| and suppose that G has an A-invariant p-complement
normalized by CG(A). The theorem will be proved if we achieve a contradiction. Since
such p-complement has index a power of p, in particular, G should be isomorphic to one
of the groups appearing in Lemma 2.1 (and p should be the corresponding prime in each
case). However, it is well-known that all groups appearing in that list except those of case
(b), that is, when G is isomorphic to An with n ≥ 5, PSL(2, 11), PSU(4, 2) or the sporadic
simple groups M11 and M23, do not admit non-trivial coprime automorphisms. In fact,
from [3, Table 5] the only non-abelian simple groups which admit a non-trivial coprime
action are simple groups of Lie type defined over some finite field (indeed, it turns out
that A/CA(G) is a group of automorphisms of the underlying field). This forces A to act
trivially on any of them, but certainly G cannot have normal p-complement, against the
hypotheses. Therefore, we will assume that G ∼= PSL(n, q), for some integer n and some
prime power q, say q = rd, with r prime. Furthermore, Lemma 2.1(b) establishes

qn − 1

(q − 1)
= pa for some a ≥ 1.

We will prove that A acts trivially in this case too, and this will give rise again to a
contradiction. Recall that the order of the Singer cycle of PSL(n, q) is equal to

qn − 1

(n, q − 1)(q − 1)
=

pa

(n, q − 1)
.

This yields two possibilities: (n, q − 1) = pt with t > 1, or (n, q − 1) = 1. Suppose first
that (n, q − 1) = pt. Assume further that n = 2 and hence, p = 2. Then by Lemma
2.3(3), we have that q is a Mersenne prime, and consequently, the action of A on G is
trivial, as wanted. We may suppose then that n ≥ 3. By Lemma 2.2, there is a prime
dividing qn− 1 and not dividing q− 1. This prime must be p, contradicting the fact that
p divides q − 1. Hence, we may assume the second possibility, that is, (n, q − 1) = 1.
By applying Lemma 2.3(2), we have either r ≡ 1 (mod n) or n = r = 2. The first case
trivially implies that n | q− 1, contradicting our assumption. So n = r = 2, and again by
Lemma 2.3(3), we get either pa = 9 and q = 8, or p = 2d + 1 is a Fermat prime, which
forces d to be a power of 2. In the former case, G = PSL(2, 8), which does not admit
non-trivial coprime action, so we are finished. In the latter case, G = PSL(2, 2d) with
d a power of 2. But it is known that Out(G) ∼= Cd, and accordingly, G does not have
non-trivial coprime automorphisms either. This finishes the proof. �

We are ready to prove Theorem A.

Proof of Theorem A. We argue by induction on |G| and write C := CG(A). Let N be an
A-invariant normal subgroup of G. First, we prove that N and G/N satisfy the hypothesis
of the theorem. Indeed, if K is an A-invariant p-complement of G that is normalized by C,
then K∩N clearly is an A-invariant p-complement of N normalized by N∩C, and likewise,
KN/N is an A-invariant p-complement of G/N normalized by CN/N = CG/N(A) (this
equality is given in Lemma 2.4). Hence if N < G, then the inductive hypothesis implies
that N and G/N are p-solvable, and consequently, so is G.

Thus, we can assume that G does not have any proper and non-trivial A-invariant
normal subgroup, so we write G = H1 × . . . ×Hn, where Hi are isomorphic non-abelian
simple groups. Furthermore, we know that A acts transitively on {Hi}ni=1. Assume that
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n > 1, let B = NA(H) where H = H1, and let S = {1 = s1, s2, . . . , sn} be a transversal
for the cosets of B in A. Let us choose K an A-invariant p-complement of G normalized
by C given by the hypothesis. Observe that K = K ∩H1 × . . .×K ∩Hn, where K ∩Hi

is a p-complement of Hi for every i. Also, K ∩ H is B-invariant. By using Lemma 2.5,
we next prove that K ∩H is normalized by CH(B). Indeed, if e ∈ CH(B), then we write
c =

∏n
i=1 e

si ∈ CG(A), and since esi ∈ Hsi 6= H centralizes H for every i = 2, . . . , n, we
obtain

(K ∩H)e = (K ∩H)c = Kc ∩Hc = K ∩H
as wanted. Thus, by induction, H is p-solvable (indeed, the simplicity forces H to be a
p′-group), and we are finished. Therefore, G must be non-abelian simple. By Theorem
3.1, we conclude that G is a p′-group, so in particular, G is p-solvable. The uniqueness
of the statement is an immediate consequence of the p-solvability of G and Glauberman’s
Lemma [9, Lemma 3.24].

�

We can prove now Theorem B, which we state again as follows.

Theorem 3.2. Let A be a group that acts on a finite group G with (|A|, |G|) = 1. Let
C := CG(A) and p a prime. Assume that for every A-invariant p-subgroup 1 6= P of G,
the group NG(P ) has an A-invariant p-complement normalized by NC(P ).

(a) If G is p-solvable, then G has an A-invariant p-complement normalized by C.
(b) If p = 2 or 3, then G has an A-invariant p-complement normalized by C.

Proof. We proceed by induction on the order of G to prove both (a) and (b). Suppose
that N is a minimal A-invariant normal subgroup of G and we see that N satisfies the
hypothesis. Indeed, let 1 6= P be an A-invariant p-subgroup of N . Since NG(P ) has an
A-invariant p-complement normalized by C ∩NG(P ), it certainly follows that NN(P ) has
an A-invariant p-complement normalized by C ∩NN(P ). Therefore, if we assume N < G,
by induction N has an A-invariant p-complement normalized by C ∩ N , so by Theorem
A, N is p-solvable. By minimality, there exist two possibilities for N : it is a p-group or a
p′-group. If N is a p-group, then the theorem trivially follows, so we can assume that N
is a p′-group. We claim that G/N also satisfies the hypothesis of the theorem. Let H/N
be a non-trivial A-invariant p-subgroup of G/N . Then, we can write H = QN for some
A-invariant p-subgroup Q of H by using the Schur-Zassenhaus theorem [11, 6.2.1] and
Glauberman’s Lemma. By hypothesis, NG(Q) has an A-invariant p-complement, say K,
normalized by NC(Q), and then KN/N is an A-invariant p-complement of

NG(Q)N/N = NG/N(QN/N)

normalized by NC(Q)N/N . Now, by applying Lemma 2.4,

CG/N(A) ∩NG/N(QN/N) = CN/N ∩NG(Q)N/N = (CN ∩NG(Q)N)/N

and by applying [9, 3E.2, p. 106], we also have

CN ∩NG(Q)N = (C ∩NG(Q)N)N = (C ∩NG(Q))(C ∩N)N = NC(Q)N.

Therefore, we conclude that NG/N(QN/N) has an A-invariant p-complement normal-
ized by CG/N(A) ∩ NG/N(QN/N), so G/N satisfies the hypotheses of the theorem, as
claimed. Thus, by induction, G/N has an A-invariant p-complement K/N normalized
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by CG/N(A) = CN/N . Since N is a p′-group, we conclude that K is an A-invariant
p-complement of G normalized by C. Therefore, if G possesses an A-invariant normal
proper subgroup N 6= 1, then (a) and (b) are true. So we can assume that G has no
such subgroups, that is, G is the direct product of isomorphic simple groups. Now, if G
is p-solvable, then G is a p-group or a p′-group, and hence (a) is proved.

Thus, to prove (b) we can assume G = H1 × . . . × Hn, where Hi are isomorphic non-
abelian simple groups. Also, A acts transitively on the set {Hi}ni=1. Assume that n > 1,
let B = NA(H) where H = H1, and let S = {1 = s1, s2, . . . , sn} be a transversal of B in
A. Next we prove that H, which is acted on by B, satisfies the hypotheses of the theorem.
Without loss of generality we can assume Hsi = Hi for i = 1, . . . , n. Let 1 6= P1 be a
B-invariant p-subgroup of H and put P =

∏n
i=1 P

si
1 , which is an A-invariant p-subgroup

of G. We know that

NG(P ) = NG(
n∏

i=1

P si
1 ) =

n∏
i=1

NHi
(P si

1 ) =
n∏

i=1

NH(P1)
si

and by hypothesis, NG(P ) has an A-invariant p-complement, say K, that is normalized by
NC(P ). Also, K∩H is a B-invariant p-complement of NH(P1) (in fact, K =

∏n
i=1K∩Hi).

Now, let e ∈ CH(B) ∩NH(P1). By Lemma 2.5, we have c =
∏n

i=1 e
si ∈ CG(A) and we

easily see that c ∈ NG(P ) by using the above equalities on normalizers. Also,

(K ∩H)e = (K ∩H)c = Kc ∩Hc = K ∩H,

so this proves that NH(P1) has a B-invariant p-complement normalized by CH(B) ∩
NH(P1). This proves that H satisfies the hypothesis of the theorem. By induction, H
has a B-invariant p-complement normalized by CH(B), say T . Again by Lemma 2.5,
it is clear that

∏n
i=1 T

si is an A-invariant p-complement of G normalized by C, and the
theorem is proved.

So for the rest of the proof we may assume that G is non-abelian simple (of order
divisible by p). Furthermore, if the action of A were trivial, then Frobenius p-nilpotency
theorem would imply that G is p-nilpotent, which is impossible. Moreover, there is no
loss if we assume that A acts faithfully on G, otherwise we replace A by A/CA(G), that
is, we can assume that A ≤ Aut(G). As alternating groups and sporadic simple groups
do not admit non-trivial coprime action (see [3, Table 5] for instance), we assume that G
is a simple group of Lie type, say G(q), over a field of q elements, with q a prime power.
The structure of Aut(G) is described, for instance, in [4, Theorem 2.5.1], and it follows
that A is (conjugate to) some group of field automorphisms of G. Thus, by replacing A
by some conjugate, we get that A is cyclic, say of order r. In the general case, it is known
that the centralizer of a field automorphism of a group of Lie type G(q) is an intermediate
subgroup between G(q0), the group of Lie type of the same type as G but defined over a
field of q0 elements where qr0 = q, and its group of inner-diagonal automorphisms. From
now on we distinguish the two possibilities for p given in the statement, and we will seek
for a contradiction, which will prove the theorem.

Suppose first that p = 2. As we have said in the above paragraph, C contains a group of
Lie type G(q0), so by the list given in Remark 2.9, we know that 2 divides the order of the
fixed point subgroup for every simple group of Lie type. Moreover, since every 2-subgroup
of C is A-invariant, then the hypothesis and the Frobenius p-nilpotency theorem certainly
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imply that C is 2-nilpotent, so in particular, G(q0) must be 2-nilpotent too, and by taking
into account Remark 2.9, the only possibilities for G(q0) are: PSL(2, 2), PSU(3, 2) and
Sz(2). We analyze them separately.

Assume first thatG = PSL(2, 2r) and G(q0) ∼= PSL(2, 2). In this case, Aut(PSL(2, 2)) =
PSL(2, 2), so C ∼= PSL(2, 2). Then we take P to be an A-invariant Sylow 2-subgroup of G.
By Lemma 2.6(1), NG(P ) = PoC2r−1. Also, by hypothesis, NG(P ) has an A-invariant 2-
complement, say H, which is normalized by NC(P ). Since C2

∼= P ∩C ≤ NC(P ), then in
particular, [H,P ∩C] ⊆ H ∩P = 1, that is, P ∩C centralizes H. However, by considering
orders we observe that H is a Hall subgroup of G, and if we choose any A-invariant Sylow
subgroup of H, then by Lemma 2.6(3), we get that H cannot be centralized by P ∩ C.
This contradiction shows that this case is not possible.

Assume now that G = Sz(2r) and G(q0) ∼= Sz(2). Since the outer automorphism
group of the Suzuki simple group is cyclic, given by field automorphisms, we have that
Sz(2) has no non-inner inner-diagonal automorphism, and hence C ∼= Sz(2). Then we
choose P to be an A-invariant Sylow 2-subgroup of G. By Lemma 2.7(1), we know that
NG(P ) = P o C2r−1, has an A-invariant 2-complement, say H, normalized by NC(P ).
Arguing as in the above case, we obtain that C4

∼= P ∩ C centralizes H. Moreover,
by taking orders, H is a Hall subgroup of G, so we may choose an A-invariant Sylow
subgroup of G contained in H. By applying Lemma 2.7(2), such Sylow subgroup cannot
be centralized by P ∩ C. Therefore, this case is not possible either.

Finally, assume that G = PSU(3, 2r) and G(q0) ∼= PSU(3, 2). As its group of auto-
morphisms is PGU(3, 2) = 32 : GL(2, 3) and this is not 2-nilpotent, it follows that the
unique possibility for C is PSU(3, 2). The arguments to discard this case are similar. It is
enough to take P a Sylow 2-subgroup of G, which in this case satisfies P ∩ C ∼= Q8, and
then apply Lemma 2.8(1),(2) and (3) to get a contradiction. This concludes the proof for
p = 2.

We prove now (b) for p = 3. As above, by using Remark 2.9 and the fact that the Suzuki
simple groups are the only simple groups whose order is coprime to 3, we have that |C| is
always divisible by 3 except for the case G = Sz(qr). In that case the theorem would be
trivially true. So we can suppose that 3 divides |C|. Reasoning as with p = 2, we have that
C is 3-nilpotent. Then, taking into account earlier comments and Remark 2.9, the only
possible case for G is PSL(2, 3r) and C is isomorphic to an intermediate subgroup between
PSL(2, 3) ∼= A4 and its group of (inner-diagonal) automorphisms, PGL(2, 3) ∼= S4. The
fact that S4 is not 3-nilpotent implies that C ∼= A4. In this case, we take P an A-
invariant Sylow 3-subgroup of G, which satisfies NG(P ) = P o C 3r−1

2
by Lemma 2.6(1).

Also, by hypothesis, NG(P ) has an A-invariant 3-complement, say H, which is normalized
by NC(P ). Since C3

∼= P ∩ C ≤ NC(P ), then [H,P ∩ C] ⊆ H ∩ P = 1, that is, P ∩ C
centralizesH. On the other hand, by computing orders it follows thatH is a Hall subgroup
of G, so by taking any A-invariant Sylow subgroup of H and applying Lemma 2.6(3), we
conclude that H cannot be centralized by P ∩ C. This contradiction finishes the proof
for p = 3. �

To end the proofs, as we mentioned in the introduction, we prove that the converse of
Theorem B is true for every group.
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Corollary 3.3. Let A be a group that acts on a group G with (|A|, |G|) = 1. Let C :=
CG(A) and p a prime. If G has an A-invariant p-complement normalized by C, then
for every A-invariant p-subgroup 1 6= P of G, the group NG(P ) has an A-invariant p-
complement normalized by NC(P ).

Proof. Let 1 6= P be an A-invariant p-subgroup of G. By Theorem A, we have that G is
p-solvable, so NG(P ) is p-solvable too. Then, it possesses an A-invariant p-complement,
say K. Now the p-solvability of G and basic coprime action properties imply that K lies
in some an A-invariant p-complement H of G, which is normalized by C by hypothesis
(in fact, H is unique). As K ≤ H ∩NG(P ), by order considerations, the equality holds.
Since C normalizes H, then NG(P ) ∩ C normalizes H ∩NG(P ) = K, as we wanted to
prove. �

We include some examples showing that Theorem B does not hold in general for primes
different from 2 and 3.

Examples. Let G = Sz(23) acted on by the automorphism α of order 3 of the un-
derlying field of 8 elements. Let A = 〈α〉 and take p = 7. Note that any non-trivial
(A-invariant) p-subgroup of G is a Sylow subgroup, so we can use Lemma 2.7(2) to see
that, for any such subgroup P , we have NG(P ) = D2p and it has an A-invariant p-
complement H (of order 2), which is trivially fixed by A because |A| is odd. It is trivially
normalized by NC(P ) = H. Thus, the hypothesis of Theorem B is satisfied with p = 7,
however, G has no (A-invariant) 7-complements. We may use Lemma 2.7(3) and similar
arguments to see that the same occurs in G for p = 5 and p = 13.

Another example is G = PSL(2, 25) with a field automorphism of order 5 inducing
a coprime automorphism of G. The same arguments, but using Lemma 2.6(2) and (3)
instead, show that Theorem B fails for p = 11 and p = 31.
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