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Abstract
Every element in the boundary of the group of invertibles of a Banach algebra is a topolog-
ical zero divisor. We extend this result to the scope of topological rings. In particular, we
define a new class of semi-normed rings, called almost absolutely semi-normed rings, which
strictly includes the class of absolutely semi-valued rings, and prove that every element in
the boundary of the group of invertibles of a complete almost absolutely semi-normed ring
is a topological zero divisor. To achieve all these, we have to previously entail an exhaustive
study of topological divisors of zero in topological rings. In addition, it is also well known
that the group of invertibles is open and the inversion map is continuous and C-differentiable
in a Banach algebra. We also extend these results to the setting of complete normed rings.
Finally, this study allows us to generalize the point, continuous and residual spectra to the
scope of Banach algebras.
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1 Introduction

In this manuscript we generalize the point, continuous and residual spectra of an operator to
algebras. We will also analyse the topological properties of the group of invertibles [1–3] and
the topological divisors of zero [4–6] in general topological rings. We also refer the reader
to [7–9] for further information about extending the classical Operator Spectral Theory to
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the scope of Banach algebras through the Gelfand Theory and the Continuous Functional
Calculus. See also the excellent books and monographs [8,10–16].

The paper is organized as follows: Sect. 2 gathers all the necessary background we will
need. Section 3 is divided into three subsections: in the first one, Sect. 3.1, we introduce
the novel concept of completely uniform algebra and we prove that C(K ), the algebra of
continuous functions on a compact space K , is completely uniform. We also characterize the
topological divisors of zero of completely uniform algebras. Section 3.2 dealswith the spectra
of Banach algebras and we extend the notions of point, continuous and residual spectra to
the scope of Banach algebras. Furthermore, we prove that the spectral decomposition in
the algebra of bounded operators also holds for general Banach algebras. As an illustrative
example, we characterize these spectra forC(K ). We also compute the approximated spectra
of completely uniformalgebras. Finally, in Sect. 3.3we accomplish the global differentiability
of the inversion map in topological rings. We introduce two concepts: absolutely invertibles
and absolutely semi-normed rings. We prove that the boundary of the group of invertibles
in complete absolutely normed rings is contained in the set of bilateral topological divisors
of zero. We also illustrate nontrivial examples of absolutely normed rings which are not
absolutely valued. These newconcepts are also interpreted in the algebra of boundedoperators
and C(K ).

2 Preliminaries

Throughout the sequel, all the rings will be considered associative and unitary. All algebras
will be considered over the reals except for ∗-algebras and uniform algebras, which will be
considered over the complex numbers. Whenever we talk about the spectrum of an element
of an algebra, such algebra will also be considered over the complex field. In this section we
compile some definitions and results that will be needed throughout this manuscript.

2.1 Topological background

If X is a topological space and A is a subset of X , then int(A), cl(A), bd(A) stand for the
interior, the closure and the boundary of A, respectively. If x ∈ X , then byNx (X) we intend
to denote the filter of neighborhoods of x . If there is no confusion with X , then wewill simply
denote it by Nx .

The classical characterization of module topology [17, Theorem 3.6] will be very much
employed throughout this manuscript. We refer the reader to [17,18] for a wider perspective
on topological rings andmodules. In [19, Theorem (1)], it was proved that, for any topological
moduleM ,

⋂
N0(M) := ⋂

V∈N0(M) V is a closed submodule ofM whose inherited topology
is the trivial topology.

A ∗-ring is a ring R endowed with an additive, anti-multiplicative, involution ∗ : R → R.
It easily follows that 0∗ = 0 and 1∗ = 1, in fact,

(
u−1

)∗ = (u∗)−1 for every u ∈ U(R), where
U(R) denotes the set of invertibles of R. If C ⊂ R, we will denote C∗ := {r∗ : r ∈ C}. A
∗-algebra is an algebra which is a ∗-ring whose involution is conjugate linear. A topological
∗-ring is a topological ring which is endowed with a continuous involution.
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2.2 Semi-norms and absolute semi-values

A semi-normed group is a pair (G, ‖ · ‖) where (G,+) is an additive group and ‖ · ‖ : G →
[0,∞) is a function satisfying the following properties:

• Identity preserving: ‖0‖ = 0.
• Symmetricity: ‖ − g‖ = ‖g‖ for any g ∈ G.
• Triangular inequality: ‖ f + g‖ ≤ ‖ f ‖ + ‖g‖ for any f , g ∈ G.

If, in addition, ‖g‖ = 0 implies g = 0, then the semi-norm is called a norm. If ‖ f +g− f ‖ =
‖g‖ for all f , g ∈ G, the semi-norm is called conjugation-invariant. Notable subsets of
semi-normed groups are the closed unit ball BG := {g ∈ G : ‖g‖ ≤ 1}, the open unit ball
UG := {g ∈ G : ‖g‖ < 1} and the unit sphere SG := {g ∈ G : ‖g‖ = 1}.

An absolute semi-value (value) on a ring R is a group semi-norm (norm) | · | on the
additive group of R which is also multiplicative, that is, |rs| = |r ||s| for all r , s ∈ R. Either
|1| = 1 or |1| = 0. If |1| = 1, then

∣
∣r−1

∣
∣ = |r |−1 for all r ∈ U(R), where U(R) denotes the

multiplicative group of invertibles of R. If |1| = 0, then | · | = 0.
A semi-norm (norm) on a ring R is a group semi-norm (norm) ‖ · ‖ on the additive group

of R which is also submultiplicative, that is, ‖rs‖ ≤ ‖r‖‖s‖ for all r , s ∈ R. It satisfies
that either ‖1‖ = 0 or ‖1‖ ≥ 1. If ‖1‖ = 1, then we call it a unital ring semi-norm. In

every semi-normed ring R, ‖a‖ ∥
∥b−1

∥
∥−1 ≤ ‖ab‖ ≤ ‖a‖‖b‖ for all a ∈ R and b ∈ U(R).

Absolutely semi-values are examples of ring semi-norms.

2.3 Divisors of zero

Let R be a ring and s ∈ R. We will denote by �d(s) the set of left divisors of s which is given
by:

�d(s) := {r ∈ R : there exists t ∈ R \ {0} with r t = s}.
Similarly, rd(s) stands for the set of right divisors of s. Recall that R is called an inte-
gral domain if �d(0) = rd(0) = {0}. Notice that �d(1) (rd(1)) is precisely the set of
elements admitting a right-(left-)inverse. Because of the associativity of R, it is clear that
U(R) = �d(1) ∩ rd(1). Observe also that �d(0) ∩ rd(1) = ∅ = rd(0) ∩ �d(1). In par-
ticular, (�d(0) ∪ rd(0)) ∩ U(R) = ∅. In general we have that �d(0) ∩ �d(1) �= ∅ and
rd(0) ∩ rd(1) �= ∅.

Example 1 Let X be an infinite dimensional vector space. Consider two nonzero vector sub-
spaces U , V of X such that X = U ⊕ V and dim(U ) = dim(X). Let T : U → X be an
isomorphism and let P : X → X the projection on U . Notice that T ◦ P is a right divisor of
zero of L(X) since (T ◦ P) ◦ (I − P) = 0. Also, T ◦ P is right-invertible in L(X), that is,
it is a right divisor of I since (T ◦ P) ◦ T−1 = I , where T−1 : X → U is the inverse map
of T . Hence, T ◦ P ∈ rd(0) ∩ rd(I ). ��

The following result [20, Theorem 57.4] characterizes the divisors of zero in the algebra
B(X) of continuous linear operators on a normed space X .

Theorem 1 Let X be a normed space. Then:

�d(0) = {T ∈ B(X) : ker(T ) �= {0}} and rd(0) =
{
T ∈ B(X) : T (X) � X

}
.
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It is clear that �d(r)∗ = rd(r∗) and rd(r)∗ = �d(r∗) in every ∗-ring. Notice that B(X) is
not in general a ∗-ring unless X is a Hilbert space. For linear operators T : X → X we can
state that �d(T )∗ ⊆ rd(T ∗) and rd(T )∗ ⊆ �d(T ∗). The equalities hold if X is reflexive.

Remark 1 It is well known [21, Lemma 3.1.16] that a continuous linear operator T : X → X
on a normed space X satisfies that ker(T ∗) = T (X)⊥. Therefore, T has dense range if and
only if ker(T ∗) = {0}, where T ∗ : X∗ → X∗ denotes the dual operator of T . In other words,
according to Example 1, T ∈ rd(0) if and only if T ∗ ∈ �d(0) even if X is not reflexive.

2.4 Topological divisors of zero

Let R be a topological ring. An element r ∈ R is said to be a topological left divisor of
0 provided that there exists a subset S ⊆ R such that 0 /∈ cl(S) and 0 ∈ cl(r S). The set
of topological left divisors of 0 is denoted by t�d(0). In a similar way, the topological right
divisors of 0 can be defined and they are denoted by trd(0). The following proposition, whose
proof we omit, highlights the basic properties of topological divisors of zero.

Proposition 1 Let R be a topological ring. Then:

1. rd(1) ∩ t�d(0) = ∅ = �d(1) ∩ trd(0). In particular, (t�d(0) ∪ trd(0)) ∩ U(R) = ∅.
2. If the ring topology of R is trivial, then t�d(0) = trd(0) = ∅.
3. If the ring topology of R is not trivial, then

⋂
N0(R) ⊆ t�d(0) ∩ trd(0).

4. If R is Hausdorff, then �d(0) ⊆ t�d(0) and rd(0) ⊆ trd(0).
5. If R is discrete, then �d(0) = t�d(0) and rd(0) = trd(0).

Let R be a semi-normed ring. Denote τR := sup{‖r‖ : r ∈ R}. For every 0 < ε < τR , we
define the left-ε-minimum norm of an element r ∈ R as ‖r‖�ε := inf {‖rs‖ : ‖s‖ ≥ ε} . The
right-ε-minimum norm is defined analogously. Notice that if 0 < δ < ε, then ‖r‖�δ ≤ ‖r‖�ε.
The following proposition is an easy characterization of topological left divisors of zero, the
details of whose proof we spare to the reader. Observe that a similar characterization can be
provided for topological right divisors of zero.

Proposition 2 Let R be a seminormed ring. The following conditions are equivalent for an
element r ∈ R:

1. r ∈ t�d(0).
2. ‖r‖�ε = 0 for some 0 < ε < τR.
3. There exists a sequence (sn)n∈NR such that infn∈N ‖sn‖ > 0 and (rsn)n∈N converges to

0.

In case R is a semi-normed algebra and r ∈ R, then τR = ∞ and

‖r‖�ε = inf {‖rs‖ : ‖s‖ = ε} = ε‖r‖�1.

Also, r ∈ t�d(0) if and only if ‖r‖�1 = 0, that is, if and only if there exists a sequence
(sn)n∈N ⊆ SR so that (rsn)n∈N converges to 0.

Note that if R is a semi-normed ring whose unit sphere is compact, then t�d(0) ⊆ �d(0).
As a consequence, if A is a finite dimensional normed algebra, then �d(0) = t�d(0).

The following theorem stated in [20, Section 57] characterizes the set of topological left
divisors of zero which are not left divisors of zero inB(X). In what follows, given T ∈ B(X),
the minimum-norm of T is defined as ‖T ‖min := inf{‖T (x)‖ : x ∈ SX }.
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Theorem 2 Let X be a normed space and T ∈ B(X). Then T ∈ t�d(0) in B(X) if and only
if ‖T ‖min = 0. On the other hand, if X is complete, then:

t�d(0) \ �d(0) = {T ∈ B(X) : ker(T ) = {0} and T (X) is not closed}.
Similar to the divisors of zero, it is clear that t�d(0)∗ = trd(0) and trd(0)∗ = t�d(0) in every
∗-ring. Aswe havementioned,B(X) is not in general a ∗-ring.We have that t�d(0)∗ ⊆ trd(0)
and trd(0)∗ ⊆ t�d(0) in B(X). The equalities hold if X is reflexive.

The following proposition, whose proof we omit, is a version of Remark 1 for topological
divisors of zero:

Proposition 3 Let X be a normed space and T ∈ B(X). Then T ∈ trd(0) if and only if
T ∗ ∈ t�d(0).

2.5 Uniform algebras

If we deal with a Banach algebra (A, ‖ · ‖), its spectrum is given by:

MA := {φ : A → C : homomorphisms of algebras such that φ �= 0}
which is a subset of the unit sphere of A∗ and it is a compact space endowed with the w∗-
topology (see [12]). For any a ∈ A we define ‖a‖MA := supφ∈MA

|φ(a)| and it is clear that
‖a‖MA ≤ ‖a‖.We can also define the so-called minimum norm associated toMA as follows:

‖a‖MA min := inf
φ∈MA

|φ(a)|.

A Banach algebra A is called a uniform algebra if ‖ · ‖MA = ‖ · ‖. If A is commutative,
then this is equivalent to being isometrically isomorphic to a closed Banach subalgebra of a
C(K ) space which separates points of K and contains the constant function 1.

3 Main results

3.1 Completely uniform algebras

Given a Banach algebra A with spectrum MA, a ∈ A and φ ∈ MA, we define φ(a•) ∈ A∗ as
φ(a•)(b) = φ(ab) for all b ∈ A. It is clear that ‖φ(a•)‖ ≤ |φ(a)| and ‖φ(a•)‖ = |φ(a)|.
Definition 1 A uniform algebra A is called completely uniform if for every a ∈ A and
φ ∈ MA, there exists a sequence (bn)n∈N ⊆ SA such that ‖abn‖− |φ(abn)| → 0 as n → ∞.

Theorem 3 Let K beaHausdorff compact space. ThenC(K ) is a completely uniformalgebra.

Proof It is well-known that MC(K ) = {δx : x ∈ K }. Hence it only suffices to show that
for all f ∈ C(K ) and all x ∈ K there exists a sequence (gn)n∈N ∈ SC(K ) with ‖ f · gn‖ −
| f (x)gn(x)| → 0 as n → ∞. We will distinguish two cases:

1. f (x) = 0. In this case, f is not invertible and we find a sequence (gn)n∈N ⊆ SC(K ) such
that ‖ f · gn‖ → 0 as n → ∞, which implies that (‖ f · gn‖ − | f (x)gn(x)|)n∈N also
converges to 0.
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2. f (x) �= 0. If ‖ f ‖∞ = | f (x)|, then we simply take gn = 1 for all n ∈ N. Suppose now
that | f (x)| < ‖ f ‖∞. For n ∈ N sufficiently large we define the continuous function

hn : Fn → K

y �→ hn(y) :=
{
0 y ∈ | f |−1

([| f (x)| + 1
n , ‖ f ‖∞

])

1 y ∈ | f |−1([0, | f (x)|])
where Fn := | f |−1

([| f (x)| + 1
n , ‖ f ‖∞

]) ∪ f −1([0, | f (x)|]) is a union of nonempty
disjoint closed subsets of K . Let gn be a continuous extension of hn in such a way that
‖gn‖ = ‖hn‖ = 1. Since

| f (x)gn(x)| ≤ ‖ f · gn‖∞ ≤ | f (x)| + 1

n
= | f (x)gn(x)| + 1

n
,

it is easy to see that (‖ f · gn‖ − | f (x)gn(x)|)n∈N converges to 0.

��
Finally, we study the set of topological divisors of zero of (completely) uniform algebras:

Theorem 4 Let A be a uniform algebra. Then:

t�d(0) ⊆ {
a ∈ A : ‖a‖MA min = 0

}
.

In addition, if A is a completely uniform algebra, then:

t�d(0) = {
a ∈ A : ‖a‖MA min = 0

}
.

Proof Let a ∈ t�d(0). There exists a sequence (bn)n∈N ⊂ SA such that ‖abn‖ → 0 as
n → ∞. Since ‖bn‖MA = ‖bn‖ = 1 for every n ∈ N, we can choose φn ∈ MA in such
a way that |φn(bn)| → 1 as n → ∞. Observe that |φn(abn)| ≤ ‖abn‖ for every n ∈ N,
thus |φn(abn)| → 0 as n → ∞. Now |φn(abn)| = |φn(a)||φn(bn)| for every n ∈ N,
which neccesarily implies that |φn(a)| → 0 as n → ∞. As a consequence, ‖a‖MA min = 0.
Conversely, assume that A is completely uniform. Take a ∈ A such that ‖a‖MA min = 0.
There exists (φn)n∈N ⊂ MA such that φn(a) → 0 when n → ∞. By hypothesis, for every
n ∈ N we can find bn ∈ SA such that ‖abn‖ − |φn(abn)| < 1

n . Since |φn(bn)| ≤ 1 for every
n ∈ N, we conclude that ‖abn‖ → 0 as n → ∞. ��

3.2 Spectra of an algebra

Our purpose in this subsection is to extend the notions of the point, residual and continuous
spectra to the scope of algebras and prove that the spectral decomposition theorem also holds
for them.

The spectrum of an element a of an algebra A is defined as σ(a) := {λ ∈ C : a − λ1 /∈
U(A)}. It is well known that σ(a) = {φ(a) : φ ∈ MA}.

For a linear operator T : X → X on a normed space X , σ(T ) is a non-void compact
subset of C which can be decomposed into the point spectrum, the continuous spectrum and
the residual spectrum as σ(T ) = σp(T ) ∪ σc(T ) ∪ σr (T ).

According to Theorem 1, the point spectrum of a linear operator T : X → X on a normed
space X satisfies that σp(T ) := {λ ∈ C : ker(T − λI ) �= {0}} = {λ ∈ C : T − λI ∈ �d(0)}.
This motivates the following definition:

Definition 2 Given an element a of an algebra A, the point spectrum of a is defined as:

σp(a) := {λ ∈ C : a − λ1 ∈ �d(0)}.
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Since U(A) ∩ �d(0) = ∅, we conclude that σp(a) ⊆ σ(a). It is also clear that �d(0) =
{a ∈ A : 0 ∈ σp(a)}.

According to Theorem 1, Remark 1 and the Open Mapping Theorem, the continuous
spectrum of a linear operator T : X → X on a Banach space X satisfies that

σc(T ) := {λ ∈ C : ker(T − λI ) = {0} and (T − λI )(X) � (T − λI )(X) = X}
= {λ ∈ C : ker(T − λI ) = {0}, T − λI /∈ U (B(X))&ker

(
(T − λI )∗

) = {0}}
= {

λ ∈ C : T − λI /∈ �d(0) ∪ U (B(X)) and (T − λI )∗ /∈ �d(0)
}
.

Accordingly, we define the continuous spectrum as follows:

Definition 3 Given an element a of a ∗-algebra A, the continuous spectrum of a is defined
as:

σc(a) := {λ ∈ C : a − λ1 /∈ �d(0) ∪ U(A) and (a − λ1)∗ /∈ �d(0)}.
Recall that in a ∗-ring R, an element r ∈ R satisfies that r∗ ∈ �d(0) if and only if

r ∈ rd(0). This fact implies that:

σc(a) = {λ ∈ C : a − λ1 /∈ �d(0) ∪ U(A) ∪ rd(0)}.
The last equality allows to extend the continuous spectrum to algebras not necessarily
endowed with an involution. Observe that by definition, σc(a) ⊆ σ(a).

According toTheorem1,Remark 1 and theOpenMappingTheorem, the residual spectrum
of a continuous linear operator T : X → X on a Banach space X satisfies that:

σr (T ) = {λ ∈ C : ker(T − λI ) = {0} and ker
(
(T − λI )∗

) �= {0}}
= {

λ ∈ C : T − λI /∈ �d(0) and (T − λI )∗ ∈ �d(0)
}
.

This fact motivates the following definition:

Definition 4 Given an element a of a ∗-algebra A, the residual spectrum of a is defined as

σr (a) := {λ ∈ C : a − λ1 /∈ �d(0) and (a − λ1)∗ ∈ �d(0)}.
By using again that in a ∗-ring R, an element r ∈ R satisfies that r∗ ∈ �d(0) if and only

if r ∈ rd(0), we conclude that

σr (a) = {λ ∈ C : a − λ1 ∈ rd(0) \ �d(0)}.
The last equality allowsus to extend the residual spectrum to algebras not necessarily endowed
with an involution. Since U(A) ∩ rd(0) = ∅, we have that σr (a) ⊆ σ(a).

We now show that the spectrum of an element in an algebra can be decomposed as the
disjoint union of the point spectrum, the continuous spectrum and the residual spectrum.

Theorem 5 Let A be an algebra. Then
{
σp(a), σc(a), σr (a)

}
is a partition of σ(a).

Proof We already know that σ(a) ⊇ σp(a) ∪ σc(a) ∪ σr (a). Let λ ∈ C. If a − λ1 ∈ �d(0),
then λ ∈ σp(a). Otherwise, we have two possibilities: if a−λ1 ∈ rd(0), then λ ∈ σr (a), and
if a −λ1 /∈ rd(0), then λ ∈ σc(a). Finally it is clear that σp(a), σc(a) and σr (a) are pairwise
disjoint. ��
Remark 2 We point out that the notion of left point spectrum πl(a) introduced in [8, Def.
Chapter I] corresponds to the definition of σp(a) we have generalized from the Banach
algebra of operators B(X) to the scope of algebras.
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In order to illustrate our results we provide an example of the spectral decomposition in
other algebras different from the operator algebras and we show such a decomposition for
C(K ). Recall that the algebraic support of a real or complex valued function f ∈ C(K )

is given by supp( f ) := {x ∈ K : f (x) �= 0} and the topological support is given by
supp( f ) := supp( f ).

Theorem 6 Let K is a Hausdorff compact space. If f ∈ C(K ) then σr ( f ) = ∅,

σp( f ) = {
f (x) : x ∈ K and int

(
f −1({ f (x)})) �= ∅

}
and

σc( f ) = {
f (x) : x ∈ K and int

(
f −1({ f (x)})) = ∅

}
.

Proof It is well-known that U(C(K )) = { f ∈ C(K ) : supp( f ) = K }, therefore σ( f ) =
{ f (x) : x ∈ K } for every f ∈ C(K ). Now, let x ∈ K with f (x) ∈ σp( f ). Then f − f (x)1 ∈
�d(0). We point out that �d(0) = rd(0) = { f ∈ C(K ) : supp( f ) � K } . Indeed, given
f ∈ C(K ) such that supp( f ) is not dense in K , by the Uryshon’s Lemma we can find
g ∈ C(K ) \ {0} such that g (supp( f )) = {0}. Conversely, if f ∈ �d(0) and supp( f ) = K ,
then there exists g ∈ C(K ) \ {0} such that f · g = 0, but then K = supp( f ) ⊆ g−1({0}) =
g−1({0}), which is a contradiction. Consequently, we have that supp( f − f (x)1)) � K .
Note that supp( f − f (x)1)) = K \ f −1({ f (x)}), and then K \ f −1({ f (x)}) is not dense in
K which is equivalent to the fact that int

(
f −1({ f (x)})) �= ∅. We obtain

σp( f ) := { f (x) : x ∈ K and f − f (x)1 ∈ �d(0)}
= { f (x) : x ∈ K and supp( f − f (x)1)) � K }
= {

f (x) : x ∈ K and K \ f −1({ f (x)}) is not dense in K
}

= {
f (x) : x ∈ K and int

(
f −1({ f (x)})) �= ∅

}
.

Note that if K is a Hausdorff compact space, then C(K ) is a ∗-algebra with the involution
given by the complex conjugation. It is also obvious that f ∈ C(K ) is a divisor of 0 if and
only if so is f . Therefore,

σc( f ) :=
{
f (x) : x ∈ K and f − f (x)1 /∈ �d(0) and f − f (x)1 /∈ �d(0)

}

= { f (x) : x ∈ K and f − f (x)1 /∈ �d(0)}
= {

f (x) : x ∈ K and int
(
f −1({ f (x)})) = ∅

}
.

Finally observe that the spectral decomposition theorem and the fact that σp( f )∪σc( f ) =
σ( f ) imply that σr ( f ) = ∅. ��

Notice that if K is finite, σc( f ) = ∅ and σ( f ) = σp( f ) for any f ∈ C(K ).

We finally study the approximated spectrum of elements in an algebra. The approximated
spectrum of a continuous linear operator T : X → X on a normed space X is defined as

σa(T ) := {λ ∈ C : ∃ (xn)n∈N ⊆ SX (T − λI )(xn) → 0} .

By taking into consideration Theorem 2, we have that

σa(T ) := {λ ∈ C : ∃ (xn)n∈N ⊆ SX (T − λI )(xn) → 0} (1)

= {λ ∈ C : ‖T − λI‖min = 0} (2)

= {λ ∈ C : T − λI ∈ t�d(0)} . (3)

This notion is extended to normed algebras in [8].
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Definition 5 Given an element a of a normed algebra A, the approximated spectrum of a is
defined as

σa(a) := {λ ∈ C : a − λ1 ∈ t�d(0)} = {λ ∈ C : ‖a − λ1‖�1 = 0}.
It is clear that σp(a) ⊆ σa(a). SinceU(A)∩ t�d(0) = ∅, we conclude that σa(a) ⊆ σ(a).

As a direct consequence of Theorem 4 we obtain the following reformulation of the
approximated spectrum in uniform algebras:

Theorem 7 If A is a uniform algebra, then σa(x) ⊆ {
λ ∈ C : ‖x − λ1‖MA min = 0

}
. If, in

addition, A is completely uniform, then σa(x) = {
λ ∈ C : ‖x − λ1‖MA min = 0

}
.

In the case of C(K ) the approximated spectrum states as follows:

Proposition 4 Let K be a Hausdorff compact space. If f ∈ C(K ), then σa( f ) = σ( f ).

Proof We first point out that t�d(0) = C(K ) \U(C(K )). Indeed, let f ∈ C(K ) \U(C(K )).
Since 0 is clearly a topological divisor of 0, wemay assume that f �= 0. For n ∈ N sufficiently
large we can consider the continuous function

hn : Fn → K

x �→ hn(x) :=
{
0 x ∈ | f |−1

([ 1
n , ‖ f ‖∞

])

1 x ∈ f −1({0})
where Fn := | f |−1

([ 1
n , ‖ f ‖∞

]) ∪ f −1({0}) is a union of nonempty disjoint closed sub-
sets of K . Since K is a normal topological space, Tietze’s Extension Theorem assures the
existence of gn ∈ C(K ) such that ‖gn‖∞ = ‖hn‖∞ = 1 and gn |F = hn . Finally, if
x ∈ | f |−1

([ 1
n , ‖ f ‖∞

])
, then |( f · gn)(x)| = 0 and if x ∈ K \ | f |−1

([ 1
n , ‖ f ‖∞

]) =
| f |−1

([
0, 1

n

))
, then |( f · gn)(x)| < 1

n . As a consequence, ‖ f · gn‖ ≤ 1
n . Consequently, we

obtain that

σa( f ) = { f (x) : x ∈ K and f − f (x)1 ∈ t�d(0)}
= { f (x) : x ∈ K and f − f (x)1 ∈ C(K ) \ U(C(K ))}
= { f (x) : x ∈ K } = σ( f ).

��
Notice that if K is finite, σc( f ) = ∅ and σ( f ) = σp( f ) = σa( f ) for any f ∈ C(K ).

3.3 Invertibility in topological rings

In a Hausdorff topological ring R if an element r ∈ R satisfies that
∑∞

n=0 r
n is convergent,

then 1 − r ∈ U(R) and (1 − r)−1 = ∑∞
n=0 r

n . Indeed, this can be seen by taking into
consideration that

(1 − r)
k∑

n=0

rn =
(

k∑

n=0

rn
)

(1 − r) = 1 − rk+1

for all k ∈ N. A topological ring R is called practical provided that 0 ∈ cl(U(R)). We refer
the reader to [19,22–25] for a wider perspective on practical rings. Every normed algebra
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is trivially a practical ring. Practical rings are crucial at this point because they allow us to
extend the concept of derivative from real or complex topological vector spaces to topological
modules over practical rings as follows:

Definition 6 A function f : M → N between topological (left) modules M and N over
a practical ring R is differentiable at m ∈ M in the direction of l ∈ M provided that the
function

U(R) → N
r �→ r−1( f (m + rl) − f (m))

has a unique limit at 0. The limit is usually denoted by Dl f (m) or ∂ f
∂l (m).

In [7, Theorem 1.1.23], it is shown that the inversion map on the group of invertibles of a
Banach algebra is C-differentiable. In the next theorem we generalize this result to complete
normed rings using a stronger derivative than the real or complex one. It is worth mentioning
that our proof uses a different technique from the one employed in [7, Theorem 1.1.23].

Theorem 8 Let R be a complete normed ring. Let r ∈ U(R). Every s ∈ UR
(
r , ‖r−1‖−1

)

satisfies that s ∈ U(R) and

s−1 = r−1
∞∑

n=0

(1 − sr−1)n and
∥
∥s−1

∥
∥ ≤

∥
∥r−1

∥
∥

1 − ‖r − s‖‖r−1‖ .

In addition,

‖r−1 − s−1‖ ≤ ‖r−1‖2
1 − ‖r−1‖‖s − r‖‖s − r‖

so U(R) is open and the inversion map on U(R) given by u �→ u−1 is continuous. Moreover,
if 0 ∈ cl(U(R)), then the inversion map is differentiable at every u ∈ Z(U(R)) in the direction
of any v ∈ R being its derivative equal to −u−1vu−1.

Proof First of all, since ‖r − s‖ < ‖r−1‖−1, then ‖1 − sr−1‖ ≤ ‖r − s‖‖r−1‖ < 1 and
hence

∑∞
n=0(1 − sr−1)n is absolutely convergent, so it is convergent. As a consequence,

sr−1 ∈ U(R) and so does s. It follows that (sr−1)−1 = ∑∞
n=0(1 − sr−1)n and thus s−1 =

r−1 ∑∞
n=0(1 − sr−1)n . Therefore

∥
∥s−1

∥
∥ ≤ ∥

∥r−1
∥
∥

∞∑

n=0

‖1 − sr−1‖n

≤ ∥
∥r−1

∥
∥

∞∑

n=0

(‖r − s‖‖r−1‖)n =
∥
∥r−1

∥
∥

1 − ‖r − s‖‖r−1‖ .

Now

‖r−1 − s−1‖ = ‖r−1(s − r)s−1‖ ≤ ‖r−1‖‖s − r‖‖s−1‖
≤ ‖r−1‖‖s − r‖

∥
∥r−1

∥
∥

1 − ‖r − s‖‖r−1‖ = ‖r−1‖2
1 − ‖r−1‖‖s − r‖‖s − r‖.

This proves the continuity of the inversionmap at r . Finally, let us show the differentiablity of
the inversionmap.Letu, w ∈ U(R) andv ∈ R. If‖w‖ < ‖v‖−1‖u−1‖−1, then‖−wvu−1‖ =
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‖wvu−1‖ ≤ ‖w‖‖v‖‖u−1‖ < 1, therefore 1 + wvu−1 ∈ U(R) and
(
1 + wvu−1

)−1 =
∑∞

n=0

(−wvu−1
)n
. Hence

w−1 (
(u + wv)−1 − u−1) = w−1

(
u−1 (

1 + wvu−1)−1 − u−1
)

= w−1u−1
((
1 + wvu−1)−1 − 1

)
= w−1u−1

( ∞∑

n=0

(−wvu−1)n − 1

)

= w−1u−1
∞∑

n=1

(−wvu−1)n = w−1u−1(−wvu−1)

∞∑

n=0

(−wvu−1)n

= u−1w−1(−wvu−1)

∞∑

n=0

(−wvu−1)n = −u−1vu−1
∞∑

n=0

(−wvu−1)n

= −u−1vu−1 − u−1vu−1
∞∑

n=1

(−wvu−1)n .

Finally,
∥
∥
∥
∥
∥
−u−1vu−1

∞∑

n=1

(−wvu−1)n
∥
∥
∥
∥
∥

≤ ‖v‖‖u−1‖2
∞∑

n=1

(‖w‖‖v‖‖u−1‖)n

= ‖v‖‖u−1‖2 ‖w‖‖v‖‖u−1‖
1 − ‖w‖‖v‖‖u−1‖ → 0

as w → 0, which implies that limw→0 w−1
(
(u + wv)−1 − u−1

) = −u−1vu−1. ��
A simple version of Theorem 8 for topological rings follows.

Theorem 9 Let R be a Hausdorff topological ring. Let S be a subring of R such thatU(S) ⊆
Z(U(R)). If 0 ∈ cl(U(S)), U(R) is open and the inversion map on R is continuous, then the
inversion map on R is S-differentiable and its derivative at u ∈ U(R) in the direction of
v ∈ R is given by −u−1vu−1.

Proof Fix arbitrary elements u ∈ U(R) and v ∈ R. For every s ∈ U(S) sufficiently close to
0 we have that u + sv ∈ U(R) and

s−1 (
(u + sv)−1 − u−1) = s−1(u + sv)−1(−sv)u−1

= −(u + sv)−1vu−1 → −u−1vu−1

as s → 0. ��
In [9, Proposition 1.2.28] it was shown that every element in the boundary of the invertibles

in a Banach algebra is a topological zero divisor. As far as we know, Banach algebras are
the only topological rings known to satisfy such property. In this subsection, we will extend
this result to a new class of normed rings: complete almost absolutely normed rings. This is
a new concept in Ring Theory. However, in order to motivate this new notion, we need to
introduce another new concept: absolutely invertibles.

Definition 7 (Absolutely invertible) Let R be a semi-normed ring. We say that u ∈ U(R) is
absolutely invertible provided that

∥
∥u−1

∥
∥ = ‖u‖−1. The subset of absolutely invertibles of

R is denoted by U1(R).
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Observe that every absolutely semivalued ring R satisfies that U1(R) = U(R). The

following technical lemma relies in the inequality ‖a‖ ∥
∥b−1

∥
∥−1 ≤ ‖ab‖ ≤ ‖a‖‖b‖, that

holds for all a ∈ R and b ∈ U(R) in every seminormed ring R.

Lemma 1 Let R be a semi-normed ring. Let u, v ∈ R. Then:

1. If u ∈ U1(R), then −u, u−1 ∈ U1(R).
2. If v ∈ U1(R), then ‖uv‖ = ‖vu‖ = ‖u‖‖v‖.
3. If u, v ∈ U1(R), then uv ∈ U1(R).
4. ‖1‖ = 1 and only if 1 ∈ U1(R).
5. If U1(R) �= ∅, then ‖1‖ = 1.
6. If v ∈ U(R), ‖v‖ ≤ ‖u‖ and

∥
∥v−1

∥
∥ ≤ ‖u‖−1, then v ∈ U1(R), ‖u‖ = ‖v‖ and∥

∥v−1
∥
∥ = ‖u‖−1.

7. If R is a ∗-ring and the involution is an isometry, then U1(R)∗ = U1(R).

In particular, U1(R) is a subgroup of U(R) if R is unital.

Proof 1. Trivial.
2. Notice that ‖u‖‖v‖ = ‖u‖ ∥

∥v−1
∥
∥−1 ≤ ‖uv‖ ≤ ‖u‖‖v‖. Similarly, ‖vu‖ = ‖u‖‖v‖.

3.
∥
∥(uv)−1

∥
∥ = ∥

∥v−1u−1
∥
∥ = ∥

∥v−1
∥
∥

∥
∥u−1

∥
∥ = ‖v‖−1‖u‖−1 = (‖v‖‖u‖)−1 = ‖uv‖−1.

4. If ‖1‖ = 1, then it is trivial that 1 ∈ U1(R). Conversely, if 1 ∈ U1(R), then ‖1‖ = ‖1‖−1

so ‖1‖ = 1.
5. Fix an arbitrary v ∈ U1(R), so ‖1‖ = ∥

∥vv−1
∥
∥ = ‖v‖ ∥

∥v−1
∥
∥ = ‖v‖‖v‖−1 = 1.

6. On the one hand, ‖u‖−1 ≤ ‖v‖−1 ≤ ∥
∥v−1

∥
∥ ≤ ‖u‖−1. Thus, ‖v‖−1 = ∥

∥v−1
∥
∥, so

v ∈ U1(R). Then ‖v‖−1 = ∥
∥v−1

∥
∥ ≤ ‖u‖−1, meaning that ‖u‖ ≤ ‖v‖. Since ‖v‖ ≤ ‖u‖

by hypothesis, we conclude that ‖v‖ = ‖u‖. Finally, ∥∥v−1
∥
∥ = ‖v‖−1 = ‖u‖−1.

7. Fix any arbitrary r ∈ U1(R). Observe that (r∗)−1 = (
r−1

)∗
, so

∥
∥
∥
(
r∗)−1

∥
∥
∥ =

∥
∥
∥
(
r−1)∗∥∥

∥ = ∥
∥r−1

∥
∥ = ‖r‖−1 = ∥

∥r∗∥∥−1
,

hence r∗ ∈ U1(R).
��

In the next example we characterize the set of absolutely invertibles of the algebra of
bounded operators on a normed space, which corresponds to the surjective linear isometries.
We include its proof for the sake of completeness.

Example 2 Given a normed space X , the set of of absolutely invertibles inB(X) is given by:

U1(B(X)) = {λT : λ > 0, T : X → X is a surjective linear isometry} .

Proof Indeed, if T : X → X is a surjective linear isometry and λ > 0, then ‖λT ‖ = λ

and
∥
∥(λT )−1

∥
∥ = ∥

∥λ−1T−1
∥
∥ = λ−1

∥
∥T−1

∥
∥ = λ−1 = ‖λT ‖−1. As a consequence, λT ∈

U1(B(X)). Conversely, let S ∈ U1(B(X)). We will prove that T := S
‖S‖ is a surjective linear

isometry. Observe that T ∈ U1(B(X)). Indeed,

∥
∥T−1

∥
∥ =

∥
∥S−1

∥
∥

‖S‖−1 = 1 = ‖T ‖−1.

We point out that T (BX ) ⊆ BX and T−1(BX ) ⊆ BX because ‖T ‖ = 1 = ∥
∥T−1

∥
∥. This

shows that T (BX ) = BX . Since T is an isomorphism, it must occur that T (UX ) = UX and
T (SX ) = SX . As a consequence, T is an isometry. ��
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Theorem 10 Let H be a Hilbert space with dim(H) ≥ 2. Then U1(B(H)) is not a normal
subgroup of U(B(H)).

Proof Since dim(H) ≥ 2, we can find x, y ∈ SH orthogonal. Denote K := span{x, y}. Note
that H = K ⊕2 K⊥ so every element of H is uniquely of the form αx + β y + k⊥ for some
α, β ∈ K and k⊥ ∈ K⊥. Consider the following surjective linear isometry

S : H → H
αx + β y + k⊥ �→ S

(
αx + β y + k⊥) := βx + αy + k⊥.

Next, take the following isomorphism

T : H → H
αx + β y + k⊥ �→ T

(
αx + β y + k⊥) := 2αx + 3β y + k⊥.

Observe that the inverse of T is given by

T−1 : H → H
αx + β y + k⊥ �→ T−1

(
αx + β y + k⊥) := α

2 x + β
3 y + k⊥.

Suppose to the contrary thatU1(B(H)) is a normal subgroup ofU(B(H)). Then T−1 ◦ S ◦T
is a positive multiple of a surjective linear isometry in view of Example 2. So, there exists a
surjective linear isometry R : H → H and λ > 0 such that T−1 ◦ S ◦ T = λR. This means
that

∥
∥
(
T−1 ◦ S ◦ T

)
(z)

∥
∥ = λ‖R(z)‖ = λ‖z‖

for all z ∈ H . In particular, the quotient
∥
∥
(
T−1 ◦ S ◦ T

)
(z)

∥
∥2

‖z‖2
is constant (λ2) for all z ∈ H \ {0}. Next, for every α, β ∈ K not both zero,

∥
∥
(
T−1 ◦ S ◦ T

)
(αx + β y)

∥
∥2

‖αx + β y‖2 =
9|β|2
4 + 4|α|2

9

α2 + β2 (4)

and
∥
∥
(
T−1 ◦ S ◦ T

)
(βx + αy)

∥
∥2

‖βx + αy‖2 =
9|α|2
4 + 4|β|2

9

β2 + α2 . (5)

Since (4) and (5) must be equal, we obtain that

9|β|2
4

+ 4|α|2
9

= 9|α|2
4

+ 4|β|2
9

,

in other words,
(
9

4
− 4

9

)

|β|2 =
(
9

4
− 4

9

)

|α|2,

meaning that |β| = |α|, which does not necessarily have to occur. Thus, we have reached a
contradiction and T−1 ◦ S ◦ T is not a multiple of any surjective linear isometry on H . This
implies the result. ��
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It is not difficult to see that the absolutely invertibles in the algebra of continuous functions
C(K ) are exactly the invertibles.

Example 3 In every Hausdorff compact topological space X , U1(C(K )) = U(C(K )).

Definition 8 (Absolutely semi-normed ring) A semi-normed (normed) ring R is called:

• Absolutely semi-normed (normed) if U1(R) = U(R).
• Almost absolutely semi-normed (normed) if for every u ∈ U(R) there exists v ∈ U(R)

such that ‖v‖ ≤ ‖u‖ and
∥
∥v−1

∥
∥ ≤ ‖u‖−1.

Observe that absolutely semi-normed rings are almost absolutely semi-normed. Trivial
examples of absolutely semi-normed rings are the absolutely semi-valued rings and the
algebras of continuous functions in view of Example 3. On the other hand, almost absolutely
semi-normed rings contain absolutely invertibles in view of Lemma 1(6), so in particular
they must be unital (‖1‖ = 1) in virtue of Lemma 1(5).

Example 4 Consider the commutative ring Z4 := Z

4Z . We can define a ring norm on Z4 as
follows:

‖0‖ = 0, ‖1‖ = a, ‖2‖ = ‖ − 2‖ = b, ‖3‖ = ‖ − 1‖ = ‖1‖ = a.

Notice that it is just necessary and sufficient that a ≥ 1 and 0 < b ≤ 2a for ‖ · ‖ to be a
ring norm. Observe that Z4 becomes a discrete topological space endowed with the previous
norm and thus it is trivially a complete metric space. Finally,

• U(Z4) = {
1, 3

}
, t�d(0) = �d(0) = rd(0) = trd(0) = {

0, 2
}
, bd (U(Z4)) = ∅.

• If a = 1, then ‖1‖ = 1 = ∥
∥(1)−1

∥
∥−1

and ‖3‖ = 1 = ∥
∥(3)−1

∥
∥−1

, soU1(Z4) = {
1, 3

} =
U(Z4) and Z4 is absolutely normed.

• ∥
∥2 · 2∥∥ = ∥

∥4
∥
∥ = ∥

∥0
∥
∥ = 0 < b2 = ∥

∥2
∥
∥

∥
∥2

∥
∥, so Z4 is not absolutely valued.

Let us prove now that the closure of the invertibles in complete almost absolutely semi-
normed rings is contained in the set of bilateral topological divisors of zero. We first need
the following technical lemma.

Lemma 2 Let R be a complete normed ring. Let (un)n∈N ⊆ U(R) be convergent to some
r ∈ R. The following conditions are equivalent:

1. r /∈ U(R).
2. Every subsequence of (u−1

n )n∈N is unbounded.
3. (u−1

n )n∈N is unbounded.

Proof Suppose first that r /∈ U(R) and assume to the contrary that there exists a bounded
subsequence (u−1

nk )k∈N with bound M > 0. Notice then that

‖u−1
ni − u−1

n j
‖ = ‖u−1

ni (un j − uni )u
−1
n j

‖ ≤ ‖u−1
ni ‖‖un j − uni ‖‖u−1

n j
‖ ≤ 2M‖un j − uni ‖

for every i, j ∈ N. This implies that (u−1
nk )k∈N is a Cauchy sequence and thus convergent

to some s ∈ R. In this case, it is trivial that rs = sr = 1, reaching the contradiction that
r ∈ U(R). Finally, assume that (u−1

n )n∈N is unbounded and let us suppose to the contrary
that r ∈ U(R). The continuity of the inversion map (see Theorem 8) forces that (u−1

n )n∈N
converges to r−1. This contradicts the fact that (u−1

n )n∈N is unbounded. ��
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We now obtain the following theorem from Lemma 2, which extends [9, Proposition
1.2.28] to a larger class of normed rings than just the Banach algebras.

Theorem 11 If R is a complete almost absolutely normed ring, then bd(U(R)) ⊆ t�d(0) ∩
trd(0).

Proof Let (un)n∈N ⊆ U(R) be convergent to some r ∈ R \ U(R). According to Lemma 2,
there exists a subsequence

(
unk

)
k∈N such that

∥
∥u−1

nk

∥
∥ → ∞ as k → ∞. By hypothesis, for

every k ∈ N, there exists sk ∈ U(R) such that ‖sk‖ ≤ ∥
∥u−1

nk

∥
∥ and

∥
∥
∥s−1

k

∥
∥
∥ ≤ ∥

∥u−1
nk

∥
∥−1

. Thus,

1 ≤ ∥
∥u−1

nk

∥
∥ ‖sk‖−1 ≤

∥
∥
∥u−1

nk s
−1
k

∥
∥
∥ ≤ ∥

∥u−1
nk

∥
∥

∥
∥
∥s−1

k

∥
∥
∥ ≤ 1

for all k ∈ N. Finally,
∥
∥
∥r

(
u−1
nk s

−1
k

)∥
∥
∥ =

∥
∥
∥s−1

k + (
r − unk

)
u−1
nk s

−1
k

∥
∥
∥

≤
∥
∥
∥s−1

k

∥
∥
∥ + ∥

∥r − unk
∥
∥

∥
∥u−1

nk

∥
∥

∥
∥
∥s−1

k

∥
∥
∥

≤ ∥
∥u−1

nk

∥
∥−1 + ∥

∥r − unk
∥
∥ → 0

as k → ∞. This shows that r ∈ t�d(0) and hence bd(U(R)) ⊆ t�d(0). In a similar way it
can be shown that bd(U(R)) ⊆ trd(0). ��

Since absolutely valued rings are integral domains and also free of nonzero topological
divisors of zero, we trivially obtain the following corollary.

Corollary 1 Let R be a complete absolutely valued ring. Then bd(U(R)) is either empty or
{0}.

It is very easy to find examples of complete absolutely valued rings for which bd(U(R)) =
{0} (R or C) and for which bd(U(R)) = ∅ (Z). Example 4 shows the existence of complete
normed rings satisfying that bd(U(R)) is empty but containing topological divisors of zero,
which are not approximated by invertibles.

Wenowprovide a sufficient condition for a normed ring R to satisfy bd(U(R)) = t�d(0) =
trd(0).

Corollary 2 Let R be a complete almost absolutely normed ring. If U(R) is dense in R, then
bd(U(R)) = t�d(0) = trd(0).

Proof Since U(R) is open and dense, we have that {U(R), bd(U(R))} is a partition of R. On
the other hand, we know that t�d(0)∪ trd(0) ⊆ R \U(R) = bd(U(R)) ⊆ t�d(0)∩ trd(0). ��

Theorem 12 Let R be a complete normed ring. Then either cl(U1(R)) \ U(R) = ∅ or
cl(U1(R)) \ U(R) = {0}.

Proof Suppose that there exists a sequence (un)n∈N ⊆ U1(R) converging to some r ∈
R \ U(R) with ‖r‖ > 0. Since (‖un‖)n∈N converges to ‖r‖ and

∥
∥u−1

n

∥
∥ = ‖un‖−1 for all

n ∈ N, we deduce that
(∥
∥u−1

n

∥
∥
)
n∈N converges to ‖r‖−1 < ∞, which implies that

(∥
∥u−1

n

∥
∥
)
n∈N

is bounded. This contradicts Lemma 2. As a consequence, ‖r‖ = 0, so r = 0. ��
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