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Abstract
The presence of curves that deviate markedly from the core of a set of curves can
greatly affect inference and forecasting in a functional regression model. Thus
their detection is key to increase the accuracy of the required estimates. This
work introduces the concepts of high leverage in general functional regression
models with independent and spatially correlated errors. The projection matrix,
also known as Hat matrix, plays a crucial role in classical model diagnosis, since
it provides a measure of leverage. We propose a generalisation of the projec-
tion matrix in both the functional and the spatial functional frameworks under
two settings, when the response variable is a scalar, and when it is a function
itself, the so-called total model. Commonly used influence measures are also
proposed as functions of the generalised functional leverages and residuals. An
application of the proposed procedures for investigating the effect of outliers on
the relationship between transformation of the banking industry and the size of
cooperative banks in Italy over a period of 14 years is presented.
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1 INTRODUCTION

In recent years, with the progress of high-performance technologies, there has been a considerable need for statistical
models describing the evolution of phenomena in time and in space-time able to understand the simultaneous behaviour
of several variables. In a plethora of cases, the raw observations can be viewed as a (continuous) curve, and thus be
treated as functional data. References 1-3, as key standard references in this field, propose a large number of statistical
models that require the specification of the dependence structure amongst variables. This dependence can be considered
purely functional or either spatial-functional, depending on the aim of the analysis and on the application itself. Two
such examples are the following. Assume we want to model the influence of climate on biodiversity, as in Reference 4,
or to predict temperature and precipitation under climate change scenarios, as in Reference 5. These two examples show
the need for tools able of handle the complexity in the relation amongst functional variables, the former by taking into
account the underlying spatial dependence, and the latter without considering such dependence.

In both cases, the functional regression model6 and its generalisation for spatially dependent functional data7 serve
this purpose. However, functional regression models come into trouble when there are curves that largely deviate from
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original work is properly cited.
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the other ones. This happens when there are curves that are contaminated in some way (e.g., an error in the experimental
procedure), or they may represent a rare case.8

Although the literature on functional regression is extensively investigated (a good review can be found in Refer-
ence 9), very few recent contributions deal with the problem of outliers for robust functional regression. References 10-12
investigate the theoretical properties of robust estimators for the regression coefficients but differ in the estimation
process.

In particular, Reference 10 proposes a Bayesian method in the context of robust functional mixed models (R-FMM) to
perform robust functional regression. Reference 11 develops a robust version of the splines-based estimation method in
Reference 13. Finally, Reference 12 presents a robust procedure by using outlier-resistant loss functions in the functional
linear regression problem, and computes these robust estimates by using an iteratively reweighted penalised least-squares
algorithm. Few other works deal with the problem of influential observations in estimation and prediction of the func-
tional linear model with scalar response; see, for example, References 14-16. References 14 and 15 propose a functional
version of the Cook’s distance in the case where the predictors are real or functional and the responses are functional.
Reference 16 introduces a set of statistics that seem to be useful in detecting which observations have strong influence
and a smoothed bootstrap-based method to estimate the quantiles of the influence measures.

These methods do not deal with the problem of leverage detection when the curves are spatially correlated. We
indeed focus our attention on the detection of spatially referenced leverage curves as potential outliers by generalising
the criterion used in the general regression model17 for both pointwise and total functional regression models.

In functional data analysis, we can observe two different types of outliers: shape and magnitude outliers. Shape outliers
may be defined as those curves that exhibit a different shape from the rest of the sample.18 Shape outliers are often
masked, and thus they are difficult to be detected. On the other hand, magnitude curves are such that show a much
larger magnitude than the rest of the curves, and are easier to identify.19 According to our procedure, high leverage curves
are potential outliers that may influence the estimation of the functional regression coefficients, and may also cause
the standard errors of the regression coefficients be much smaller than they should be if these curves were excluded. A
potential outlier could be a magnitude or shape outlier since both can produce more variability in the model estimation
with a consequent minor standard error in the estimation of the coefficients. This definition implies that one should be
able to order functional observations according to some measure of their high influence.

In this article, we focus on the following contribution. We first generalise the notion of leverage values for the Hat
matrix in the more classical regression model to the context of pointwise and total functional regression models. Then
we extend the leverage concept to the case of spatially correlated curves. In particular, we define the projection matrix for
both models in the functional framework by considering a criteria to search for observations that typically show a high
leverage when the functional observations are spatially correlated curve20,21 and extend the proposed leverage detection
criterion to this case.

The article is organised as follows. Section 2 proposes leverage detection for the case of functional total regression
models for independent and spatially correlated errors. Section 3 shows an intensive simulation study, and a real data
analysis comes in Section 4. The article ends with some conclusions and a discussion in Section 5.

2 LEVERAGE IN LINEAR REGRESSION MODELS

The aim of this section is to introduce a criteria for leverage detection in functional total regression models for independent
and spatially correlated errors. As well-known in the literature,22 the least-squares projection matrix, also called the Hat
matrix, plays a key role for leverage detection. Before presenting our proposal, we review the basics of leverage detection
in the regression model.

2.1 Classical multiple regression model

In matrix notation, the classical multiple regression model is written as

Y = X𝜷 + 𝝐, (1)

with Y ∼ NMV(X𝜷,𝚺 = 𝜎2I) a multivariate Gaussian random variable, and 𝝐 a residual Gaussian variable. In this context,
the Hat matrix is defined as follows

H = X(XTX)−1XT . (2)
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Many authors suggest as a rule of thumb that a point with hii > 2h (h is the average of the hii values) is a high leverage
point23,24 (for more details see the supplementary material).

Under heteroscedasticity 𝚺 ≠ 𝜎2I is not diagonal, and the Hat matrix is defined as

H = X(XT𝚺−1X)−1XT𝚺−1. (3)

H in (3) is not symmetric but the other properties still hold. When Y ∼ NMV(X𝜷,𝚺) and𝚺 is not diagonal (correlated data)
using (3) is not appropriate. Several authors have proposed alternatives for identifying leverages under this scenario. Let
P = 𝚺−1X(XT𝚺−1X)−1XT𝚺−1. According to Reference 25, the ith observation is a high leverage if h∗

ii =
hii∑n
i=1hii

>
2
n

, where

hii =
pii
𝜎ii , with pii and 𝜎ii the main diagonal elements of matrices P and 𝚺−1, respectively.

2.2 Functional regression models with scalar response with independent and spatially
correlated errors

The set (X(t),Y )D = {(Xs(t),Ys), s ∈ D ⊂ Rd, t ∈ [a, b] ⊂ R} is called a bivariate spatial functional-scalar stochastic pro-
cess or a bivariate functional-scalar random field, if for each s ∈ D, (Xs(t),Ys) is a paired of functional and scalar
variables. A subset of this process is defined by n paired functional and scalar variables ((Xs1(t),Ys1 ),… , (Xsn (t),Ysn ))
with (s1,… , sn) a n-tuple of sites in D. Assume we have a realisation of a bivariate functional-scalar random field
(X(t),Y )D = {(Xsi (t),Ysi ), i = 1,… ,n}. A functional linear model with scalar response is given by the expression

Ysi = 𝛼 + ∫T
Xsi (t)𝛽(t)dt + 𝜖si , i = 1,… ,n, (4)

with 𝛼 an overall intercept parameter, and 𝜖si observations of an error or residual term. It is usually assumed that the
sampling trajectories Xsi(t) and 𝛽(t) are square integrable functions in a Hilbert space and they are generated by basis
functions 𝝍(t) = (𝜓1(t),… , 𝜓k(t))T , and 𝜽(t) = (𝜃1(t),… , 𝜃k(t))T , respectively.1 Thus, we can write the model as follows

Ysi = 𝛼 + ∫T
XT

si
𝝍(t)𝜽T(t)bdt + 𝜖si . (5)

In matrix notation (for more details see the supplementary material), the model is equivalent to

Y = Zb + 𝝐, (6)

with Y ∼ NMV(Zb, 𝜎2I) a multivariate Gaussian random variable and Z is related to the representation in terms of basis
functions of the functional data. In this case the Hat matrix is defined as follows

H = Z(ZTZ)−1ZT . (7)

Then, following the criterion by Reference 24, the ith observation (Xsi (t),Ysi ) is a leverage if hii, the ith element in the
principal diagonal of the Hat matrix, exceeds 2h.

When curves are spatially correlated, which means that the errors are spatially correlated, Y ∼ NMV(Zb,𝚺)with𝚺 the
spatial covariance matrix. Defining P = 𝚺−1Z(ZT𝚺−1Z)−1ZT𝚺−1, the ith observation is a high leverage if h∗

ii =
hii∑n
i=1hii

>
2
n

,

where hii =
pii
𝜎ii , with pii and 𝜎ii the main diagonal elements of matrices P and 𝚺−1, respectively.

2.3 Functional regression models with functional response with independent
and spatially correlated errors

We now consider the case of a more complex model which is known as the total model. It is specified by a dependent
georeferenced functional variable and an independent functional variable. We focus on two different situations, when
the errors are independent and when they are spatially correlated.

Let (X(t),Y (𝜏))D = {(Xs(t),Ys(𝜏), s ∈ D ⊂ Rd, t ∈ [a, b] ⊂ R, 𝜏 ∈ [c, d] ⊂ R} be a bivariate spatial functional
stochastic process or a bivariate functional random field. For each s ∈ D, (Xs(t),Ys(𝜏)) is a paired of functional variables.
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Again, a subset of this process is defined by n paired functional variables ((Xs1(t),Ys1 (𝜏)),… , (Xsn(t),Ysn (𝜏))) with
(s1,… , sn) a n-tuple of sites in D. Assume we have a realisation of a bivariate functional random field (X(t),Y (𝜏))D =
{(Xsi(t),Ysi (𝜏)), i = 1,… ,n}.

Then a functional linear model is given by the expression (see Reference 1)

Ysi (𝜏) = 𝛼(𝜏) + ∫T
Xsi (t)𝛽(t, 𝜏)dt + 𝜖si (𝜏), i = 1,… ,n, (8)

with 𝛼(𝜏) an overall intercept parameter. It is usually assumed that the sampling trajectories Ysi (𝜏), Xsi(t) and 𝛽(t, 𝜏) are
square integrable functions in a Hilbert space and they are generated by function basis 𝝓(𝜏) = (𝜙1(𝜏),… , 𝜙k(𝜏))T and
𝝍(t) = (𝜓1(t),… , 𝜓k(t))T , respectively.1 Thus, we can write the model as follows

YT
si
𝝓(𝜏) = aT𝝓(𝜏) +

(
∫T

XT
si
𝝍(t)𝝍T(t)Bdt

)
𝝓(𝜏) + eT

si
𝝓(𝜏). (9)

In matrix notation (for more details see the supplementary material), the model is equivalent to

Y = Z + E, (10)

with Y ∼ NMV(Z, 𝜎2I) a multivariate Gaussian random variable and Z is related to representation in basis functions. In
this case the Hat matrix is defined as follows

H = Z(ZTZ)−1ZT . (11)

Following the criterion by Reference 24, the ith curve (Xsi (t),Ysi(𝜏)) is a leverage if hii, the ith element in the principal
diagonal of the Hat matrix, exceeds 2h.

When curves are spatially correlated, which means that the error term is spatially correlated, Y ∼ NMV(Z,𝚺) with 𝚺
the spatial covariance matrix. Again, as in Section 2.2, defining P = 𝚺−1Z(ZT𝚺−1Z)−1ZT𝚺−1, the ith observation is a high
leverage if h∗

ii =
hii∑n
i=1hii

>
2
n

, where hii =
pii
𝜎ii , with pii and 𝜎ii the main diagonal elements of matrices P and 𝚺−1, respectively.

The hii measures the distance of the ith curve to the centre of the functional space. Indeed, large hii elements reveal
observations that are potentially influential. The spatial correlation structure we consider is enclosed in the matrix 𝚺
which can encode different types of spatial correlation structures such as Exponential or Gaussian models.

The procedures for identifying leverages given above depend on the matrix 𝚺 which is unknown in practice. Then
a feasible generalised least squares estimator26 can be used replacing Σ by Σ̂. An illustration of this methodology in the
context of experimental design for spatially correlated functional data is shown in Reference 27.

According to this rule, leverages only take into account the extremeness of the curves in terms of shape and magnitude,
but we note that a high leverage curve may or may not be an influential one. A curve that has high leverage is different from
a curve that has high influence on the regression analysis. In particular, a leverage curve identifies a potential curve that
has high leverage and thus strong influence on the regression analysis. Finally, curves which are isolated in the functional
space will have high leverage, that is, they will have a large h∗

ii. Thus these can be thought of as magnitude outliers in
the functional space. Therefore, the smaller the leverage is, the better the prediction will be. All the same results can be
obtained for the functional regression concurrent model. For simplicity, it is not included in this section because it is a
particular case of the total model in Equation (8), when t = 𝜏.

3 SIMULATION STUDY

In this section, we study the performance of the proposed method to detect high leverages in functional regression models.
We simulate two different cases, one related to i.i.d. errors and one related to spatially correlated errors. Our main aim
is to show how the elements hii of the matrices H in Equations (7) and (11) and the corresponding h∗

ii identify leverages
in functional regression models both with scalar (FRMSR) and functional response (FRMFR). The models with spatial
dependence have been analysed when the error structure is assumed known a priori (scenario A) and when an estimation
procedure is defined for the error structure (scenario B).

Assume the models given in (4) and in (8). We have generated n = 100 curves for a given set of parameters and
variables, considering both i.i.d. and spatially correlated errors, and have added four curves distant from the rest of
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observations in terms of magnitude or shape. For each model, we have simulated data according to the following scheme
in R.28

We set basis functions, scalar and functional parameters, functional covariates, response values, errors of the model as
follows:

• Basis functions: For both models, Xsi(t), 𝛽(t) 𝛽(t, 𝜏), Ysi (𝜏), 𝛼(𝜏) and 𝜖si (𝜏) are expanded in terms of the same B-spline
basis functions 𝝓(t) = (𝜙1(t),… , 𝜙k(t))T , with k = 7, and 𝜏and t ∈ [0, 1].

• Scalar and functional parameters: In the FRMSR model, we consider the scalar and the functional parameters
𝛼 = 𝛽0 = 10, 𝛽(t) =

∑k
j=1bj𝜙j(t) = 𝝓T(t)b, with b = (30, 26, 28, 30, 28, 26, 30)T . In the FRMFR, we set 𝛼(𝜏) = 𝛽0(𝜏) =

(28.96, 22.65, 23.72, 25.72, 29.08, 22.01, 28.98)T , and

𝛽(t, 𝜏) =
k∑

j=1

k∑
h=1
𝜙h(𝜏)bj,h𝜙j(t) = 𝝓T(t)B𝝓T(𝜏),

where B ∼ NMV
(
𝝁k×1, Ik×k

)
is a matrix of B-spline basis generated with 𝝁k×1 = (10, 11, 12,… , 16)T .

• Functional covariates: For both models, this covariate is defined as Xsi (t) =
∑k

j=1Xsij𝜙j(t), with 𝜙j(t) defined as
above. The coefficients Xsijwith i = 1,… ,n and j = 1,… , k are generated from X ∼ NMV

(
𝝁k×1, Ik×k

)
, where 𝝁k×1 =

(10, 11, 12,… , 16)T . To add some extreme functions (high leverage curves) and mix them with the rest of curves, the
curves Xs1(t) and Xs100(t) are replaced by Xl

s1
(t) and Xl

s100
(t), where Xl

s1
(t) =

∑k
j=1Xl

s1j𝜙j(t), and Xl
s100

(t) =
∑k

j=1Xl
s100j
𝜙j(t),

with Xl
s1j = Xs1j + a1, and Xl

s100j = Xs100j − a1, and a1 ∼ N(2.8, 1), a Gaussian random variable. In addition, the curves
Xs2 (t) and Xs99(t)are replaced by:

– Xl
s2
(t) =

∑k
j=1Xl

s2j𝜙j(t), with Xl
s2j = (10, 7.5, 14.9, 9.9, 18.8, 10.4, 16.9)T .

– Xl
s99
(t) =

∑k
j=1Xl

s99j𝜙j(t), with Xl
s99j = (10, 12.7, 11, 11.4, 17.7, 12.7, 15.1)T .

These curves are obtained by simulating a set of sinusoidal curves with a different shape from the rest of date.
• Response values: We use model (4) for the FRMSR, and model (8) for FRMFR to generate the values of the response Ysi

and Ysi (𝜏) for i = 1,… ,n, considering independence and spatial dependence structures.
• Errors of the model: 𝝐D = (𝜖s1 ,… , 𝜖sn )

T ∼ NMV(0,𝚺) for the FRMSR and 𝝐D(𝜏) = (𝜖s1(𝜏),… , 𝜖sn(𝜏)) ∼ NMV(0,𝚺)for the
FRMFR are considered, under two cases:

– Case 1, 𝚺 = 𝜎2
𝜖 In×n when the errors are independent.

– Case 2, 𝚺 = (𝜎qr)n×n when the errors are spatially correlated.

In the second case, 𝜎qr = 𝜎2
𝜖 exp(−h

𝜙
), with h = ||sq − sr||, and sq = (xq, yq) and sr = (xr, yr), q, r = 1,… ,n, the coor-

dinates of the points over a regular grid for which we observe our functional sample. We take 𝜎𝜖 = 10 and 𝜙 = 8, which
corresponds approximately to the 75% of the maximum distance in the grid, and therefore this value is indicative of a
strong spatial dependence.

Throughout the simulation study, we have assumed known the type of basis functions (a B-spline basis) and we have
chosen the optimal number of such basis functions (k = 7) by using a cross validation criteria.1 In practice, this is an
additional step of the statistical analysis.

In Case 1 with independent errors, for the simulated data, the parameters 𝛽0 and 𝛽(t) for the model FRMSR are
estimated by

𝛽(t) =
k∑

j=1
b̂j𝜙j(t) = 𝝓T(t)b̂, (12)

for t ∈ [0, 1], and with b̂ obtained by using some regularisation method.1 For the simulated data, the parameters 𝛽0(𝜏)
and 𝛽(t, 𝜏) for the model FRMFS are estimated by

𝛽(t, 𝜏) =
k∑

j=1

k∑
h=1
𝜙h(𝜏)b̂j,h𝜙j(t) = 𝝓T(t)B̂𝝓T(𝜏), (13)

for t ∈ [0, 1], 𝜏 ∈ [0, 1] and with B̂ obtained by using some regularisation method.1
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The hat matrix H was constructed as in (7) and (11) where 𝚺 = I, respectively, for the model FRMSR and FRMFR.
For the high leverage detection, the rule we have used is hii > 2h.

Under Case 2, 𝚺 was used to describe the spatial variability. However, 𝚺 is unknown in practice so two scenarios
have been considered. In scenario A, the error structure is assumed known a priori, the analysis is performed under the
hypothesis 𝚺 = 𝜎2

𝜖 exp(−h
𝜙
). In scenario B, 𝚺 is unknown and the variogram is used to obtain an approximation of the

estimation of the spatial structure.29 The procedure that we consider to estimate Σ comes from using the model FRMFR
for the estimate of the error without spatial dependence. Then the functional residuals of this model are used to estimate
the matrix �̂� by using the trace-variogram function.30

Let (𝜖si(𝜏), 𝜖sj(𝜏)) be the random errors of the model in sites si, sj ∈ D, with D the spatial domain. The trace-variogram
function between these random functions is defined as

𝛾si,sj (h) =
1
2
E

[
∫T

(𝜖si (𝜏) − 𝜖sj(𝜏))
2dt

]
. (14)

Given the residuals es1(t), es2 (t),… , esn (t) of the model assuming independent errors, we use the method of moments to
estimate 𝛾si,sj(h) in 14 given by

�̂� si,sj
(h) = 1

2|N(h)|
∑

si,sj∈N(h)
∫T

(esi (𝜏) − esj(𝜏))
2dt, (15)

where N(h) = {(si, sj) ∶ ||si − sj|| = h}, and |N(h)| is the number of distinct elements in N(h). Once we have estimated the
trace-semivariogram for a list of M values hm, we fit a parametric model31 (spherical, Gaussian, exponential, or Matérn,
for instance) to the points (hm, �̂�(hm)), m = 1,… ,M, as if they were obtained in the classic one-dimensional geostatistical
setting. Given �̂� si,sj

(h) we estimate the elements of the covariance matrix by �̂�i,j = �̂�2 − �̂� si,sj
(h), with �̂�2 also obtained from

the estimation of the trace-variogram function (the tracevariogram function value when h → ∞).
Thus 𝚺 ≠ I and the matrix P was constructed under both models FRMSR and FRMFR. The rule we defined for the

high leverage detection curve is h∗
ii =

hii∑n
i=1hii

>
2
n

, where hii =
pii
𝜎ii , with pii and 𝜎ii the main diagonal elements of matrices

P and 𝚺−1, respectively.

3.1 Simulation results

Table 1 shows a summary of results for both models FRMSR and FRMFR with i.i.d. errors and spatially correlated
errors. We repeated the procedure p = 200 times and obtained the mean values of average residual, number of lever-
age curves (NLC), and the percentage of times in which all the four outliers are identified (POI, percentage outlier
identified).

In both cases and scenarios, the hii and h∗
ii values correspond to the contaminated pairs (Xsi(t), Ysi ) (Xsi (t), Ysi (𝜏)) for

i = 1, 2, 99,100. All the others hii values are clearly below the threshold or just slightly higher.
Table 2 shows the estimated coefficients b̂

1
j for Case 1, and b̂

a
j , b̂

b
j for Case 2 for scenarios A and B. The results show

good performances. We repeated the estimation procedure p = 200 times, and obtained the average values as

b̂
l
j =

1
p

p∑
r=1

b̂
l
r,j, (16)

with j = 0,… , k and l = 1, a, b. We note that these estimated means are in all cases very close to the bj values which is an
indication that 𝛽(t) and 𝛽c(t) (scenarios A and B) are unbiased estimators of the functional parameter 𝛽(t).

In both cases, we use the role hii > 2h, where h = (
∑n

i=1hii)
n

. In Case 1, we now that (
∑n

i=1hii)
n

= k+1
n

= tr(H)
n

for the properties
of H matrix. Thus the role depends on k (the dimension of basis function) and for k tending to infinity, there are no
high leverage curves because the threshold grows up to infinity. The values of hii are all positive and satisfy the property∑

hi,i = rank(H) < ∞ for the each value of k. In Case 2, the relation (
∑n

i=1hii)
n

= k+1
n

= tr(H)
n

is not true. We thus define
hii∑n
i=1hii

>
2
n

that is independent from k and dependent on n.
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T A B L E 1 Performances of each model FRMSR and FRMFR on 200 simulations for two scenarios in the
two cases

Model Case Scenario AResiduals NLC POI

FRMSR 1 𝚺 = 𝜎2
𝜖 In×n 2.88 × 10−13 5 97%

(A)

𝚺 ∼ �̂� 0.2 6 92.5%

(B)

2 𝚺 = 𝜎2
𝜖 exp( −h

𝜙
) 0.08 6 83.5%

(A)

𝚺 ∼ �̂� 0.1 6 81%

(B)

FRMFR 1 𝚺 = 𝜎2
𝜖 In×n 15 5 94%

(A)

𝚺 ∼ �̂� 2 6 74.6%

(B)

2 𝚺 = 𝜎2
𝜖 exp( −h

𝜙
) 20 6 73.6%

(A)

𝚺 ∼ �̂� 3.66 6 72.1%

(B)

Note: Mean of average residuals (AResiduals), Average of number high leverage curves (NLC), and average of percentage of
times in which all the added outliers are identified (POI) are shown.

T A B L E 2 Theoretical coefficients bj, j = 0,… , k (used to define
the functional parameter 𝛽0 and 𝛽(t)) and their estimated values
b̂

l
j, j = 0,… , 7 for both cases, non-correlated data (l = 1) and spatially

correlated data scenario A (l = a) and scenario B (l = b)

bj b̂
1
j b̂

a
j b̂

b
j

10 10.0 10.2 10.1

30 24.5 29.5 29.5

26 34.2 26.1 26.1

28 21.9 27.9 27.9

30 33.6 30.2 30.2

28 25.4 27.8 27.0

26 25.2 26.0 26.0

30 32.5 30.3 30.3

Note: b̂
1
j , b̂

a
j and b̂

b
j correspond to the estimated mean values (based on 200

simulations) of b̂j values.

4 APPLICATION

In the last years, the relationship between the development of a country’s financial system with the country’s economic
development has been the object of a rich empirical and theoretical literature. In Italy, where deep regional economic
differences exist, several studies have investigated the local (regional) aspects of the relationship between finance and
growth. The present study aims at investigating the effect of outliers on the relationship between transformation of the
banking industry over the period 2000–2014 at a provincial scale and the size of cooperative banks on the territory.
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F I G U R E 1 Left: Curves of Xsi
(t) over t. Xsi

(t) represents a functional indicator of financial development (measured by the ratio of total
loans to non-financial firms over the total added value at time t). Right: Zsi

(𝜏) is the per cent of small banks belonging to the BCC in the time.
Both are observed on a monthly grid over 14 years

We thus considered data from ISTAT on the size classes of Italian firms. In particular, we analysed 112 Italian provinces
and three variables per province, Ysi , Xsi(t) and Zsi(𝜏), with i = 1,… , 112, where Ysi is the log of added-value per capita in
county si, Xsi (t) is a functional indicator of financial development (measured by the ratio of total loans to non-financial
firms over the total added-value at time t), and Zsi(𝜏) is the per cent of small banks belonging to the Banche di Credito
Cooperativo (credit cooperatives; henceforth BCC) at time 𝜏. The functional regression of Ysi on Xsi (t) helps to capture
how the added-value per capita is affected by changes in the structure of the banking system at a county level. In addition,
the functional regression of Xsi(t) on Zsi (𝜏)describes the positive impact of the presence of BCCs. Figure 1 shows both
Xsi(t) and Zsi(𝜏).

Leverage curves in both functional models detect particular anomalous behaviours. The Xsi(t) functions are spatially
correlated, as noted by the estimation of the variogram function in Figure 2. This means that the curves show a local cor-
relation and thus dependence structure which brings light to the fact that the distribution of the financial development
in Italy generally shows diverse characteristics at different spatial scales, and our model is able to take this into account.
We indeed allow for the interaction between one of the main variables of interest (financial structure indicators) and the
variables that reflect financial development. We note the following from our functional fitted models. First, the financial
structure activity and efficiency have an effect on the spatial economic growth, however the size and the number of finan-
cial structures does not. Second, the positive impact of higher BBC development relative to banking sector development
is reverted if the county financial structure is unbalanced. The robustness of the fitted models is checked by exploring the
existence of leverage curves, and we use our approach to detect tentative leverage curves that might affect the sensitivity
of our results.

Leverage curves correspond to those Xsi(t), i = 1,… , 112 in Figure 1 that markedly deviate from the others and have an
influential effect on the statistical model. Indeed, a curve may be judged influential, and thus a leverage curve, if important
features of the analysis are altered substantially changing the functional relationship. Although we have evidence of
existence of a spatial structure, we have also considered the case of independent observations for comparison purposes.

Figure 3 reports the functional estimation of 𝛽(t) for the 15 temporal instants (years) considered under the independent
and the spatially correlated cases for the scalar functional model of Ysi on Xsi(t).

Figures 4 and 5 show the h∗
ii values, respectively, in the independent and the spatially correlated cases, with the cor-

responding upper limits to identify the leverage curves for the scalar functional model. We detect 15 leverages for the
spatially correlated case, and 14 for the independent case. Twelve curves are common leverages for both cases which corre-
spond to the following provinces Ancona, Bergamo, Firenze, Lodi, Milano, Monza-Brianza, Olbia-Tempio, Padova, Roma,
Siena, Sondrio, Verona. Then we have three different provinces (Lucca, Macerata and Pisa) that are considered leverages
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F I G U R E 2 Estimated variogram functions for Xsi
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F I G U R E 3 Estimated functional parameter 𝛽 for the Italian financial data under the independent observations case, and under the
spatially correlated situation for the scalar functional model

only under the spatially correlated case. These provinces are indeed close together and show correlation in space. The
model under the assumption of independence cannot detect them as leverages, but when we take into account the spa-
tial correlation these are highlighted as such outlying curves. These results show the good performance of our method
in detecting leverage curves. From an economical point of view, we can conclude that the selected leverage provinces
correspond to places on which the impact of the bank transformations has had a negative effect. According to several
conducted studies on this topic, there is a positive relationship to banks’ increased ability to geographically diversify their
risks (subsequent to de-regulation) and, as a consequence, their greater willingness to supply credit to innovative firms.32

According to this observation, the underlined three provinces present in this case an anomalous behaviour.
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F I G U R E 4 Leverages detection for the Italian financial data when the spatial correlation is not considered for the scalar functional
model

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Observation number

h i
i

hii

2 n

F I G U R E 5 Leverages detection for the Italian financial data when the spatial correlation is considered for the scalar functional model

As mentioned above, Italy’s small banks have faced a significant transformation of their competitive and regulatory
environment over time, in line with what has happened in other European countries. This transformation has led to
large-scale variability and this is reflected in what we have studied by the subsequent red total regression model with
spatially correlated errors.

We used a total model to fit a functional regression between Xsi (t) and Zsi (𝜏). Indeed, this functional regression
describes the positive impact of the presence of BCCs on financial development. Figure 6 shows the surface of the func-
tional coefficients that point to this influence of the presence of BBC banks in Italy on the financial development along
time. We note that this function is extremely variable. This is mainly due to the presence of curves describing major level
of lending that can be considered leverage curves (see Figure 7) and these correspond to the provinces of Alessandria,
Cagliari, Lecco, Livorno, Lodi, Lucca, Massa Carrara, Matera, Messina, Monza-Brianza, Pavia, Pescara, Piacenza, Pisa,
Reggio Calabria, Savona, Siracusa, Terni, Verbano-Cusano-Ossola.
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F I G U R E 7 Leverages for the functional total model, with spatial dependence

These selected countries show a behaviour which is far more oscillated than the rest of the counties in terms of size
and financial developments. It means that in high-income counties, financial structure in terms of size and activity are
associated with more economic development. These counties have more influence in the model estimation and this is
reflected in the oscillate behaviour of the surface 𝛽(t, 𝜏).

5 DISCUSSION

A usual way to have more accurate predictions in a functional regression context is by first detecting the presence of pos-
sible leverage curves, and then deciding if they come from typing errors or they carry outlying but important information
for the problem at hand. We consider the problem of leverage curve detection under the presence of spatially correlated
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errors. It is the case that a small subset of curves could have an influence on the model coefficients. In an extreme case,
the parameter estimates could depend on the influential subset of curves much more than on the majority of the curves. A
statistical model has to be a representative of all the sample curves and not only of just a few. Thus our aim is to find these
influential curves and assess their impact on the model by considering how they affect the general functional regression
model, in particular when the curves are spatially correlated.

We thus generalise the concept of projection matrix and some of the useful classical criteria for selecting high leverage
curves to the functional framework to detect leverages considering the more usual case of independent observations and,
additionally, considering the case where the curves are spatially correlated. Our proposed approach, to the best of our
knowledge, is the first to provide a measure of ‘leverages’ for curves in presence of spatially correlated errors in a general
functional regression framework. As it has been shown by simulations and a real data analysis, our approach is effective
in rightly leveraging curves, even in the presence of substantial masking.

An extension of the presented procedure to the geographically weighted regression model will be object of further
research.
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