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Emilio Péreza,∗, Javier Pérezb, Jorge Segarra-Tamarita, Hector Beltrana

aDepartment of Industrial Systems Engineering and Design, Universitat Jaume I, Castelló de la Plana, Spain.
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Abstract

This work proposes an intra-day forecasting model, which does not require to be trained or fed with real-time data measurements, for
global horizontal irradiance (GHI) at a given location. The proposed model uses a series of time-dependant irradiance estimates near
the target location as the main input. These estimates are derived from satellite images and are combined with other secondary inputs
in an advanced neural network, which features convolutional and dense layers and is trained using a deep learning approach. For the
various input combinations, the performance of the model is validated with a quantitative analysis on the forecast accuracy using
different error metrics. Accuracies are compared with a commercial solution for irradiance forecasting made by the European Centre
for Medium-Range Weather Forecasts (ECMWF) and publications with similar approaches and forecasting horizons, showing state-
of-the-art performance even without irradiance measurements.
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1. Introduction

Information on solar irradiance has been a major interest
for meteorologists for centuries. In many recently published
studies (Yang et al., 2018), irradiance forecasting achieves pre-
cise and accurate results owing to a variety of developing tech-
nologies. In fact, photovoltaic (PV) is a crucial, fast growing
technology that has established itself as a pivotal player interna-
tionally by continuously increasing its share in the global power
generation industry. The continuous growth of this industry in
the last 10-12 years, with more than 100 GW of newly grid-
connected capacity in 2018, has led to a total current capac-
ity above 500 GW worldwide (Jaeger-Waldau, 2018). There-
fore, such a significant number of current and expected PV de-
ployments implies elevated levels of PV penetration in multiple
electric power systems. This casuistic menaces the grid stabil-
ity (Katiraei & Aguero, 2011) due to the inherently intermittent
nature of PV production, caused by passing clouds. This pre-
vents PV power plants from achieving accurate predictions for
future productions, making it difficult for grid operators and
PV owners to manage the system and deal their production in
the electricity market. Such limitations have been traditionally
dealt by integrating the production of multiple PV plants that
are geographically dispersed (Marcos et al., 2012), and more re-
cently, by introducing different types of energy storage systems
(mainly batteries) next to the PV plant (Hanna et al., 2014).
However, batteries still represent a significant cost factor for
PV plants and suffer from accelerated ageing if the operational
conditions are not well controlled (Jossen et al., 2004).
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In this context, the possibility to forecast the irradiance and,
hence, the PV production, becomes a fundamental factor. Ir-
radiance forecasting increases PV reliability (dispatchability)
(Tuohy et al., 2015). In addition, when batteries are introduced
in the PV plant, it allows minimizing the battery size required to
operate such a hybrid power plant reliably in the electricity mar-
ket (Brenna et al., 2016). Finally, the irradiance forecast allows
optimizing the plant operation, profiting information regarding
future production, and thus minimizing the battery ageing.

Several types of solar forecasting techniques exist. Based
on the approach used, they can be broadly categorized into two
main groups (Ren et al., 2015): physical approaches, which use
knowledge based on atmospheric science, and data-driven ap-
proaches, which use historical data as the main input for pre-
diction.

In order to choose a correct approach it is essential to con-
sider the target forecasting horizon and the time-step, or granu-
larity, which depend on the projected use of the forecast (Voyant
et al., 2017). This study focuses on intra-day forecasts (with a
horizon up to 6 h ahead). For such a forecasting horizon, the
prevailing techniques use satellite data, sometimes combined
with real-time measurements (Blaga et al., 2019) and ensemble
methods, which use multiple predictors to obtain an aggregated
improved decision, with regard to that provided by the base pre-
dictors (Ren et al., 2015). For shorter forecasting horizons, time
series and sky images are used (Zhao et al., 2019), whereas for
longer forecasting horizons, numerical weather predictions are
preferred (ECMWF, 2016).

Different reviews in the literature refer to approaches based
on machine learning methods (Voyant et al., 2017) such as ar-
tificial neural networks (ANNs) (Qazi et al., 2015). Both re-
views conclude these methods offer accurate prediction results,
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although comparisons are always difficult to perform because
of the varying locations and conditions for the different fore-
casts. While performing the literature review on recent solar
forecasting studies, such comparability issues, along with some
reproducibility issues, are very common. To avoid this, we will
try to follow the ROPES guidelines for the solar forecasting
proposed in (Yang, 2019).

Many works that implement ANNs, such as (Mazorra Aguiar
et al., 2015), use ground measurements and satellite data for
forecasting, achieving relative root-mean-square error (rRMSE)
values from 15.3 % to 36.2 %, depending on the horizon and
variability of the location. In (Blaga et al., 2019), the perfor-
mance of different forecasting methods is classified by its fore-
casting horizon and the climatology of the location. For temper-
ate climate and intra-day forecasts, the rRMSE of the methods
varies from 20 % to 40 %, with machine learning and cloud
motion methods having the best performance. Machine learn-
ing methods can also be found in (Lauret et al., 2015) with er-
rors between 20 % and 25 % for 1 h ahead forecasts. Moreover,
cloud motion approaches achieve errors for 1 h ahead forecasts
of approximately 28 % in (Dong et al., 2014) and 10 % in
(Alonso-Montesinos & Batlles, 2015) (dividing by the differ-
ence between the maximum and the minimum measured irradi-
ance instead of the mean). Authors in (Gutierrez-Corea et al.,
2016) also propose an ANN approach that uses nine input se-
quences of 10 values from 10 different locations for forecasting.
The results using this method show errors between 22.6 % and
32.1 % for 1-h and 6-h forecasting horizons.

Note that almost all of these works share two common fea-
tures: they use satellite images as a direct input to their forecast
models as well as real-time irradiance measurements. The for-
mer can pose a problem because it burdens the forecast model
not only by determining how the meteorological conditions will
evolve in time but also with how to compute the irradiance from
satellite images. The latter implies the use of information that
in many occasions is not reliable, or not even available. Small
installations with budget constraints, remote locations, and fa-
cilities with difficulties for appropriate maintenance of data ac-
quisition systems are some case examples.

Some other works in the literature have attempted to solve
these limitations. For instance, (Larson & Coimbra, 2018) uses
satellite images and a support vector regression (SVR) to fore-
cast irradiance without the use of real-time measurements. How-
ever, actual measurements are still needed to fit the SVR model.
Authors in (Lago et al., 2018) go one step beyond to address
both these limitations by developing a deep neural network (DNN)
whose inputs are: the numerical weather prediction (NWP) for
the location, the clear sky irradiance, and a satellite derived
GHI for the target location, which is based on the same em-
pirically adjusted algorithm later described in this work. Their
model can be trained with actual data from a few locations and
deployed in places where no telemetry is available. Although
these two works attempt to get around the use of measured ir-
radiance, their models still need to be trained with measured
data.

In order to overcome these drawbacks, the DNN developed
in this work forecasts intra-day irradiance using a deep learn-

ing structure, which does not require real-time data measure-
ments. Furthermore, the proposed model uses an estimation of
the past GHI, which is not only in the target location but also
in its vicinity, as the main input. These data matrices, which
are obtained from a physics-based empirically adjusted online
algorithm based on satellite data, are fed into several consecu-
tive convolutional layers to detect features and perform a type
of deep-learning-based cloud motion detection. This informa-
tion is then combined with other secondary inputs and fed into
the DNN dense layers to obtain the final irradiance forecast.
Therefore, even in the absence of measured irradiance data, the
proposed DNN can obtain the irradiance forecasts with state-
of-the-art performance.

In the next section, the input datasets used for the proposed
deep learning approach as well as the structure of the DNN it-
self are introduced. Section 4 summarizes the forecasting re-
sults for the different situations and available datasets analysed.
Finally, the conclusions and findings are drawn.

2. Model inputs

Solar irradiance in a given location at a given time depends
on a number of factors that can be split into two groups, those
that are independent from the atmosphere state and those that
are not. The first group, which includes the hour angle in the
local solar time, current declination of the Sun, and local lati-
tude, are usually taken into account with a single parameter, the
solar zenith angle (θs), which precisely determines the solar ir-
radiance in a horizontal plane on the top-of-atmosphere (TOA),
ITOA.

Regarding the parameters that depend on the atmospheric
state, they can be further split into two different types, those that
determine the irradiance in a clear-sky case (Ics) and those that
quantify the depletion of Ics due to clouds (Wald et al., 2015).

Ics depends, mainly, on elements in the atmosphere such as
aerosols, water vapour, and ozone content (Wald et al., 2015)
and can be calculated using several models, such as the Bird
model (Bird et al., 1986).

In actual conditions, Ics is a challenging value to estimate
and even more difficult to forecast. Furthermore, the reduction
of Ics due to clouds, which changes more rapidly, makes the
estimation and forecasting of GHI on the surface a harder task.

Therefore, instead of trying to separately forecast all these
factors, the main idea for our irradiance forecasting model in-
cludes inferring changes associated to the movement of the clouds
by using a series of consecutive datasets of the available esti-
mated irradiance centered in a target location. Fig. 1 shows the
hourly datasets of the estimated irradiances in a given region.
Analysing the change between the first two images, it can be
deduced by the irradiance values that there is a cloud around
the upper-left corner of the image advancing towards the centre
and, therefore, the third image seems logical. This is the type
of information we expect our DNN to infer.

2.1. Past solar irradiance estimation
From the previous discussion, it becomes clear that the main

input for the irradiance forecast is the estimated irradiance in
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Figure 1: Hourly evolution of irradiance centred in the target location.

the surroundings of the target location. There are multiple ways
to obtain such an estimation (Zhang et al., 2017); some of them
are even based on ANNs (Quesada-Ruiz et al., 2015). However,
because of the convenience in obtaining results for an arbitrarily
large region with a good time granularity in real time, this work
uses datasets obtained by the Surface Insolation under Clear and
Cloudy Skies (SICCS) algorithm (Greuell et al., 2013). This is
a physics-based empirically adjusted algorithm developed for
estimating the surface solar irradiance from satellite data. The
most important inputs are a cloud mask product and the cloud
properties dataset derived from Meteosat/Spinning Enhanced
Visible and Infrared Imager (SEVIRI) observations. These ob-
servations are given with a temporal resolution of 15 min and
a nadir spatial resolution of 3 × 3 km2. Using these irradiance
datasets as inputs helps to avoid dealing with multiple satellite
channels to estimate the properties of different cloud layers and,
therefore, the convolutional layers of the DNN can focus on the
cloud motion detection.

These estimates are available for all the spatial domain of
Meteosat Second Generation (longitude [-50, 50], latitude [-80,
80]), which covers Europe and Africa as well as small parts of
Asia and America. However, the forecast model proposed in
this work can also be used outside this domain using previously
implemented SICCS algorithm with images from other satel-
lites.

Archives of GHI estimates are available at http://msgcpp.
knmi.nl, which contain the last three years of data. However,
note that these GHI matrices are not available instantly as there
is a 20-min delay until the current information is downloadable.

2.2. TOA/Clear-sky solar irradiance forecast

Although the main input for the forecasting DNN is the de-
scribed series of irradiance estimates, some other information
sources are also used.

The ITOA forecast, as previously discussed, can be precisely
computed when the exact location and time are known, as in
this case. This information can help in prediction by providing
the shape of the maximum irradiance potentially available.

However, if an estimation of the future Ics could be fed into
the DNN instead of the ITOA, it would only need to forecast the
cloud-related phenomena. In general, Ics will not be exactly
known in advance, but there are available forecasts on many of
the factors such as aerosols and ozone that affect it. In particu-
lar, the Copernicus European Union Programme provides, in its
Atmosphere Monitoring Service (CAMS), forecasts of some of

these parameters such as the different types of aerosol concen-
trations, ozone, and other greenhouse gases (ECMWF, 2016).
Therefore, some of them could be used as inputs to help the
DNN with the forecast. However, all those forecasts are still
not used as inputs in this work. Instead, ITOA will be substituted
with an estimation of Ics obtained from the Copernicus service.
Although this approach would not be possible in real-time ap-
plications, it provides preliminary results that allow us to quan-
tify the maximum improvement achievable with that informa-
tion and, therefore, decide whether they are worth including in
the network structure.

2.3. Measured irradiance feedback

Although one of the main advantages of the proposed model
is the ability to provide a forecast without the need of irradi-
ance measurements, it is convenient to quantify to what extent
the forecasting errors can be reduced if the actual on-site mea-
surements of irradiance, obtained in the target location using a
pyranometer, were available.

First, it is interesting to analyse the effect of having a good
amount of actual irradiance data from the system to train the
DNN. These data should cover all the possible system condi-
tions. Therefore, they should span for more than a year to split
them to be used as training, validation, and test data.

However, the existence of the pyranometer data for the train-
ing stage does not necessarily imply that those measurements
will be continuously available during the normal operation of
the system. Depending on the nature of the PV system mak-
ing use of the prediction, in some cases there will be no need
for such an equipment (as in domestic installations). Subse-
quently, training and validation data can be acquired with a
portable pyranometer during a limited time span. In other cases,
the forecast service may not be implemented at the system lo-
cation, and the irradiance feedback would require bidirectional
communication, making the entire system more expensive. Fur-
thermore, pyranometers require a calibration and maintenance
service to provide reliable data that is not always carried out.

Therefore, three studies on the forecast performance are in-
troduced in the results section. These include when the irradi-
ance feedback is not available, when it is only available while
training, and when it is also available in real time.

3. Model selection and evaluation

As will be discussed later, there are a number of choices
that have to be made when defining the architecture of a DNN
(regarding the number and type of layers, activation functions,
etc...). This is the so-called NN model selection. Typically, this
selection is carried out by calculating the performance achieved
by some error metric, when considering the different model al-
ternatives. To do so, the two and a half years of available data
are split into two different datasets. The first one covers two
years of data (2015 and 2016) which are randomly shuffled and
used to select the best model architecture. The second dataset,
corresponding to the first half of 2017, is used in order to obtain
the performance results presented in this work.
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The model selection dataset is also split into three different
subsets:

• The training data: correspond to irradiance values (either
real measurements or estimations) registered at the target
location during, at least, a whole year. At each iteration
of the training, data chunks are shuffled and reintroduced
in batches of 80 samples, so that the DNN does not overfit
to the original data sequence. Furthermore, to avoid an
undesired bias of data and to speed up the training, nights
are “shortened” to a few hours. This data split contains
50% of the model selection data.

• The validation data: correspond to irradiance values reg-
istered during a different (and shorter) time period from
the training one. These data are evaluated periodically
during the training as a sustained increase of the error
is an indication of overfitting of the DNN. Therefore, an
early stopping strategy is implemented when this occurs,
which allows obtaining a general solution to the prob-
lem. As for the training data, nights are shortened for
this dataset. This data split contains 25% of the model
selection data.

• The test data: correspond to irradiance values registered
during a different time period from that of training and
validation data. These data are used to evaluate and com-
pare the performance of the different DNN topologies
once their training is completed. Note that all the data
with solar zenith angles exceeding 80º ( θs > 80º) are re-
moved from this dataset. This is because time periods
just after the sunrise and before the sunset present low
precision pyranometer readings due to the inherent low
irradiance levels. This encompasses the nights because
forecast is trivial during that part of the day for all the
topologies. The performance of the different model ar-
chitectures are compared using this dataset, which con-
tains the remaining 25% of the model selection data.

Furthermore, it is convenient to avoid reporting as results of the
forecasting model those obtained for the test data with the best
possible structure, as these results have, to some extent, embed-
ded information from the data during the model selection. In
this work, data corresponding to the first half of 2017 are used
to evaluate the models and calculate the final results.

GHI measurements from a pyranometer were collected for
two and a half years at a PV plant located in the southern part
of France, with latitude 43.4º and longitude 6.0º. Furthermore,
151×151 GHI matrices centred in this location were downloaded
and stored as daily files with 151×151×96 values. After down-
loading the data, 96 days presented missing values and were
deleted from the dataset.

At the studied location, summers are hot and relatively dry
whereas winters are mild and rainy. The annual global irradi-
ance for the site is approximately 1600 kWh/m2, whereas the
annual rainfall is approximately 700 mm.

As shown in (Mazorra Aguiar et al., 2015), Fig. 2 analyses
the climatology at the target location by representing the clear-
sky index, Kcs = I/Ics and the standard deviation of its variation

for each day. On the one hand, zones A, B, and C represent
how cloudy a day is, with zone A being the cloudiest and zone
C being a clear sky. On the other hand, zones I, II, and III show
the stability of the cloudiness throughout each day. Therefore,
days in zone III are the hardest to predict, and days in the zone
CI are the easiest, as they are clear sky days with low variability.

Figure 2: Clear-sky index (KCS ) distribution for the target site.

All the GHI measurements used in this work are available
at (Segarra-Tamarit et al., 2020) to facilitate the reproducibility
of this research. Furthermore, as the archive of GHI estimates
at http://msgcpp.knmi.nl only stores the last three years of
data, the matrices used in this work are also provided within
this repository.

3.1. Metrics used for performance evaluation
The performance of the proposed DNN models is tested

against real-time data measured using a pyranometer for two
reasons. First, during the model selection procedure, in order
to quantitatively determine the best possible structure. Second,
during the model evaluation, in order to report the final results.
Furthermore, in the model evaluation stage, this work explores
and quantifies how much a forecast improves when additional
datasets are added.

To carry out this evaluation, some of the most accepted stan-
dard evaluation metrics (Voyant et al., 2017) are used. These
include:

• Mean absolute error and relative mean absolute er-
ror:

MAE =
1
N

N∑
i=1

∣∣∣Îi − Ii

∣∣∣ (1)

rMAE =
MAE

Ī
, (2)

where Ii and Îi are the measured and estimated irradi-
ance values, respectively, N is the number of measure-
ments, and Ī is the mean value of the measurements for
the whole period.
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• Root-mean-square error and relative root-mean-square
error:

RMSE =

√√√
1
N

N∑
i=1

(
Îi − Ii

)2
(3)

rRMSE =
RMSE

Ī
(4)

• Forecast Skill:

S kill =

(
1 −

RMS Emodel

RMS Epers

)
· 100, (5)

where RMSEmodel and RMSEpers are the RMSE calcu-
lated according to (4) for the model considered and the
smart persistent model, respectively. This smart persis-
tent model used here as a reference, is a naive forecast
technique usually seen in the literature that consists of
determining the current clearness index, assuming it will
remain constant in the future:

Îpers,i+t = KC(i)ITOA,i+t , (6)

with
KC(i) =

Ii

ITOA,i
. (7)

Note from previous equations that the MAE weights lin-
early forecast errors whereas the RMSE is more sensitive to big
errors. This implies that the latter is more suitable for applica-
tions where small errors can be tolerable, but large ones cause
increased losses. Hence, the suitability of each evaluation met-
ric is heavily dependent on the application.

Relative values for both magnitudes are also calculated when
dividing by the mean value, because they are usually more in-
tuitive to understand and allow some comparison with other
works. However, it should be considered that different datasets
are in general difficult to compare, as the variability of the lo-
cations may differ considerably.

Forecast skill is introduced as a simple way of analysing
how a given model outperforms the smart persistent model, or
any other model used as a reference. Moreover, this metric al-
lows a fair comparison among point forecasts made at different
locations and horizons (Yang, 2019).

Finally, when different forecasts are compared, an impor-
tant parameter that needs to be considered is the data granular-
ity. The lower the time step, the higher the evaluation errors as
the forecast model should be able to reproduce fast phenomena.
In this work, a base time step of 15 min is used, matching the
frequency of the satellite data. However, as many results in the
literature are given for a 1-h granularity, a new forecast with
this time step is calculated from the 15-min as

Î1h, j =
1
4

(
Î4 j + Î4 j−1 + Î4 j−2 + Î4 j−3

)
. (8)

Then, the irradiance of every hour is calculated as the mean
of the last four values of irradiance for the 15-min time step
forecast. As we will see, errors with this granularity are lower

because the fastest phenomena, which are more difficult to pre-
dict, are filtered by the re-sampling process. However, results
could probably be improved by DNNs properly trained for this
granularity.

As similar conclusions can be extracted by comparing the
different error metrics, only rRMSE and Skill (being the most
used metrics in the literature) are listed in Tables 1 and 2 and
will be discussed in the results section. However, for the sake of
completeness and easier comparison with other works, the rest
of error metrics (MAE, rMAE and RMSE) are also included in
Tables 4 and 5 in Appendix A.

3.2. Network selection and best structure

For the selection of the best DNN model, various topologies
were initially considered and their results compared by means
of the test data. A grid search of potential DNNs covered dif-
ferent combinations of hyperparameters such as number of neu-
rons, layers, and activation functions. The training and evalua-
tion of the different topologies were executed using Python 3.6
and Tensorflow 1.14.

Therefore, for each possible topology, the training proce-
dure started with a random initialization of the DNN parame-
ters. Subsequently, the training data batches were fed to the
model to perform an end-to-end training, i.e. fitting the param-
eters for every layer simultaneously. An Adam optimizer was
used for the training to minimize the MSE, which mainly pe-
nalizes big errors, and L2 regularisation. The training stopped
once the performance of the DNN worsened several times on
the validation data.

Among the multiple alternatives analysed, Fig. 3 shows the
selected structure. It consists of five convolutional layers fol-
lowed by three dense layers. The convolutional layers are in-
troduced for extracting features from past estimated-irradiance
datasets, which are treated as a series of images that report a
value of irradiation for each time instant and for every pixel.
The dense layers are used to perform a more general analysis of
the inputs and infer the final irradiation forecast.

The main input to the DNN, which is the irradiance esti-
mates of the previous prediction time, is introduced to the ini-
tial convolutional layer as 10 image channels, corresponding
to 2h30m. Although 151×151 matrices where initially consid-
ered, empirical tests with sizes beyond 35×35 did not show sig-
nificant improvements, because of the inherent behaviour of the
meteorological phenomena. Therefore, this input consists of 10
35×35 matrices of irradiance estimates centred at the target lo-
cation.

The convolutional layers can be compared with the cloud
motion methods because they perform mathematical operations
exclusively affecting pixels surrounding the one being processed.
In this way, it is possible for the convolutional layer to detect
shapes or objects invariantly to their position. This enables the
DNN to extract features from the pattern of the clouds in the
different images and predict their movement or evolution. Out
of the five convolutional layers, each with a 5×5 kernel size,
the first four present a pooling layer whose strides and size are
2 in all dimensions. Besides, the convolutional layers present a
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Figure 3: Proposed deep-learning structure with convolutional layers for cloud motion detection and feed-forward layers to perform 15-min forecasts.

rectified linear unit (RELU) activation. The first layer extracts
30 features, the second layer extracts 40 features, and the other
layers extract 50 features each. As the data travels from one
layer to the next, its dimension is reduced by pooling layers
and more abstract information is obtained.

Subsequently, the output of the convolutional layers, to-
gether with the rest of the inputs provided to the DNN, i.e. the
TOA or clear-sky irradiation curve and the measured irradiance
data, are fed into the three consecutive dense layers. This dense
structure, with three fully connected layers of 300, 100, and 1
neurons and also presenting a RELU activation, is replicated
in parallel to provide irradiation forecasts from 15 min to 6 h
ahead, with a 15-min temporal resolution.

Finally, note that for the operational use of this model some
time-related parameters must be considered during the imple-
mentation (Yang et al. (2019)). The main issue to be consid-
ered is the delay in the last available GHI matrix, which forces
a minimum lead-time of 30 min. This implies that the first two
forecasts are useless as they are forecasting values already ex-
perienced. Moreover, note that all the forecasts for the next
6 h, with a 15-min time resolution, can be updated every 15
min. With these characteristics, the DNN forecasting model
can be productively applied at PV power plants integrating en-
ergy storage systems and participating in the intra-day electric-
ity markets.

4. Results and discussion

Once the best model structure has been determined using
the grid search process, new DNNs with this structure were
trained using the same data as for the model selection and tested
using the model evaluation data. Furthermore, although the
main focus is the GHI forecast without the use of actual data
measurements, the other possible cases are also considered here.
These involve scenarios in which more information is available
in order to quantify the impact on performance of introducing
different datasets. All the results are shown in Table 1.

4.1. Top-of-atmosphere Copernicus and actual measured data

The inputs for the DNN of the first considered case include
a series of 10 estimated radiation datasets of size 35×35 (ap-
proximately 100 × 100 km2), TOA irradiance from Copernicus
(ITOA), and the last measurement of the irradiance in the loca-
tion. The DNN is trained with actual data as previously stated.
The results for this model are labelled in all tables and figures
as TOA & all real.

Fig. 4 shows some of the forecasts for the 1-h granular-
ity version of this model for a clear and cloudy day. Actual
measurements are represented using a solid line, whereas each
dashed line represents the forecast obtained at the time instant
indicated by the square markers. It can be seen that for sunny
days the model achieves a good forecast. For the cloudy day, it
is more challenging in the first few hours of the day (while the
satellite still does not provide irradiance estimations), but the
model improves afterwards.

Fig. 5 graphically compares how the rRMSE evolves as the
prediction horizon increases for this model versus the persistent
model. Note that both models perform similarly for the near
future, but predictions degrade much earlier for the persistent
model because of Kc changes.

4.2. Clear-sky model

The objective of the second analysis is to determine if the
forecasts can be significantly improved by adding an additional
input providing information about the characteristics of the at-
mosphere, regardless of the cloud cover. With this aim, a new
DNN is trained substituting the Copernicus TOA input with the
Copernicus clear-sky estimation. As previously discussed, it
is not realistic to assume this dataset will be available but fore-
casts for some of the variables that could generate it do exist and
could be used as inputs in future developments. This model is
labelled as Clear-sky & all real.

Fig. 5 shows the rRMSE of the clear-sky model used as a
forecast on its own, as well as the Clear-sky & all real along
with the previously discussed persistent and TOA & all real
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Table 1: Forecasting errors for the considered models with a 15-min granularity

15min 30min . . . 1h . . . 2h . . . 3h . . . 4h . . . 5h . . . 5h45min 6h

rR
M

SE
(%

)

Persistent 18.0 22.5 - 27.1 - 36.3 - 44.0 - 49.6 - 54.3 - 56.7 57.2

TOA & all real 15.6 18.2 - 21.2 - 26.0 - 29.0 - 32.0 - 35.0 - 36.6 37.7

Clear-sky & all real 15.5 18.2 - 21.3 - 25.1 - 28.7 - 31.6 - 34.4 - 35.9 35.9

TOA & real labels 17.7 19.4 - 22.4 - 26.4 - 29.9 - 33.1 - 35.6 - 37.1 37.5

TOA & all satellite 21.8 22.3 - 24.5 - 28.4 - 31.8 - 34.4 - 37.0 - 38.3 38.8

Sk
ill

(%
) TOA & all real 13.9 19.5 - 21.8 - 28.5 - 34.3 - 35.8 - 35.8 - 35.8 34.4

Clear-sky & all real 14.3 19.5 - 21.6 - 31.0 - 35.1 - 36.6 - 36.8 - 37.0 37.5

TOA & real labels 2.1 13.9 - 17.5 - 27.5 - 32.3 - 33.6 - 34.8 - 34.9 34.7

TOA & all satellite -20.9 1.3 - 9.8 - 22.0 - 27.9 - 30.9 - 32.2 - 32.9 32.5
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Figure 4: TOA & all real predictions with 1-h granularity for a cloudy and a
sunny day as compared with actual irradiance measurements.

models. Note how the rRMSE for the clear-sky estimation model
does not change as the horizon moves away because both real
data and the prediction remain the same. That is due to the fact
that this model does not use irradiance datasets as inputs and,
therefore, it does not benefit from being closer in time to the
instant it is trying to predict. Thereafter, this model offers poor
forecasting results by itself.

Regarding the last added model in Fig. 5, Clear-sky & all
real, notice how approximately during the first four hours the
clear-sky information does not improve the forecast. Nonethe-
less, from that horizon onwards, its rRMSE tends to be lower
than that of the TOA & all real model. This is probably be-
cause the evolution of past estimated irradiance datasets have
the clear sky index information embedded in it, and it changes
slowly. Then, as the prediction horizon moves away, this index
changes and the model benefits from having that information
available.
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Figure 5: Relative RMSE with increasing horizons, 15-min granularity.

4.3. Use of actual measurements

Next, we will try to quantify the effect that the use of mea-
sured irradiance has on the forecasting error metrics. Our aim
is to compare the TOA & all real model with two new models:

• TOA & real labels: In this case, the actual irradiance is
not continuously measured at the installation and there-
fore, it cannot be used as an input for the DNN. The struc-
ture of the DNN is exactly the same as used before, but
instead of the actual measurement, the past estimated ir-
radiance value is used. However, historical actual data
from the site are considered to be available for the train-
ing of the DNN.

• TOA & all satellite: This second case assumes there is
no availability of actual data, neither in real-time nor in
historical series. As in the previous case, actual data are
replaced by the estimated irradiance data. However, note
that the model is validated with actual data.
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Both analyses are useful to perform because if the deteri-
oration of the forecast is acceptable, the cost of implantation
of the forecasting model would be reduced. In the first case, a
portable pyranometer could be left on the target location giving
enough time to acquire the training data and subsequently be
used elsewhere, without the need of leaving a permanent one.
In the second case, no pyranometers would be required.

It can be concluded from Fig. 6 that, as expected, the rRMSE
is lower when actual data is available for training, and even
more if it can be measured during operation. However, some
other conclusions can also be made. First, the real-time irra-
diance feedback is slightly more important for the short-term
predictions than for longer term prognosis. Second, the fore-
cast achieved when no actual data are used, although worse,
still seems useful in many situations.
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Figure 6: Relative RMSE with increasing horizons, 15-min granularity.

Previous conclusions are confirmed by the forecast skill re-
sults shown in Fig. 7. For the very-short term, the skill of TOA
& all satellite and TOA & real labels is very low (even negative
for TOA & all satellite), making it clear that the knowledge of
recent measurements is more important than the satellite infor-
mation. However, all models outperform the persistent model
for horizons beyond 30 min. In fact, the higher the horizon, the
lower the impact in the forecast skill of actual measurements
and the higher the impact of using a clear-sky model. Finally,
it can be appreciated how, for horizons ranging from 5h30 on-
wards, the forecast skill starts to decrease, showing the well-
known limitation of satellite-based forecasts for longer hori-
zons.

4.4. One-hour granularity

Finally, results with the 1-h granularity model are listed in
Table 2 and shown in Fig. 8. As expected, errors for every
horizon and model are always lower than their 15-min coun-
terpart, because of the filtering effect that averaging the 15-min
predictions and measurements introduces.
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Figure 7: Forecast skill, 15-min granularity.

It is interesting to compare these results with the rRMSE
obtained in (Lago et al., 2018). This is the contribution from the
literature with the most similar approach to the one proposed
here because they also avoid the use of measured irradiance
for their forecasts. In that work, rRMSE is 25.07 % for the
1-hour horizon, 38.71 % for the 6-hour horizon and 31.31%
for the mean value of all the forecasted horizons. As shown in
Table 2, our TOA & all satellite model, which also avoids the
use of telemetry, outperforms the previous model with errors
of 19.9 % for the 1-h horizon, 36.8 % for the 6-h horizon, and
a mean value for all forecasted horizons of 29.3 %. Although
the numbers are never directly comparable because of the local
climatology, the obtained results with TOA & all satellite are in
the same range than those obtained in similar studies.

Table 2: Forecasting errors for the considered models with a 1-h granularity

1h 2h 3h 4h 5h 6h

rR
M

SE
(%

)

Persistent 20.1 31.5 40.2 47.0 52.6 56.3

TOA & all real 14.4 21.0 25.2 28.6 32.4 35.0

Clear-sky & all real 14.3 20.8 24.9 28.4 31.7 33.8

TOA & real labels 16.4 22.0 26.1 29.9 32.9 35.3

TOA & all satellite 19.9 24.2 28.7 31.8 34.6 36.8

Sk
ill

(%
) TOA & all real 29.1 33.9 38.1 39.9 39.1 38.5

Clear-sky & all real 29.8 34.5 38.8 40.2 40.4 40.6

TOA & real labels 19.3 30.9 35.8 37.1 38.1 38

TOA & all satellite 2.1 24.0 29.4 33.1 34.9 35.4

4.5. Comparison with the European Centre for Medium-Range
Weather Forecasts (ECMWF) prediction

Table 3 compares the performance of the ECMWF forecast
versus the proposed model with different inputs. Note that the
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Table 3: Mean forecasting error for 6 h in the forecasting horizon.

MAE rMAE RMSE rRMSE

ECMWF 67.6 17.4 97.2 24.9
TOA & all real 57.3 14.7 80.4 20.7

TOA & all satellite 63.7 16.4 89.6 23.0

proposed model outperforms the ECMWF model, even with-
out irradiance measurements. Taking the latter as the reference
model instead of the persistent, the forecast skill of our model
is 17.3 % and 7.8 % for TOA & all real and TOA & all satellite,
respectively.

5. Conclusion

This work introduces a DNN for the intra-day forecasting of
solar irradiance that could help to improve the controllability of
PV power plants with or without energy storage. The proposed
DNN combines different data sources as well as different ap-
proaches such as cloud motion and machine learning to forecast
the coming climatological conditions evolution. Furthermore, a
study of the accuracy of the model considering the availabil-
ity of the data sources has been conducted. Mainly, four case
studies have been considered. First, only satellite data are used;
second, actual data from the location are available only during
the training of the DNN, but not later; third, the possibility of
using actual data gathered in the target location as a feedback to
the forecasting system is considered; last, the weather informa-
tion for the future, in the form of a clear-sky irradiance forecast,
is used.

As shown in the results, the DNN is capable of providing
an accurate forecast of the solar irradiance, and it outperforms
the persistent algorithm in all cases. Moreover, the proposed
model outperforms the available NWP forecasts for the same

forecasting horizon and has a state-of-the-art performance even
when no actual data are available.

Regarding the data input, the system benefits from the use
of actual data in very short-term predictions as it helps to reduce
the error, whereas the weather information proves to be useful
in longer term predictions.

In future work, new data sources such as NWP forecasts
for different variables such as wind speed, wind direction, and
cloud cover as well as contamination forecasts or even multi-
ple satellite images will be considered to add this information
to the DNN. Furthermore, different structures that exploit the
temporal part of the problem, specially LSTM layers, will be
studied.
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A. Supplementary error metrics

As discussed in Section 3.1 supplementary error metrics
(MAE, rMAE and RMSE) are introduced here in Tables 4 and 5
for the sake of completeness and easier comparison with other
works.

Table 4: Forecasting errors for the considered models with a 1-h granularity

1h 2h 3h 4h 5h 6h

M
A

E
(W

/m
2 ) Persistent 44.6 79.0 105.9 124.7 138.4 147.6

TOA & all real 33.9 51.2 61.8 71.0 80.6 89.9

Clear-sky & all real 33.8 50.3 61.1 70.4 80.0 86.7

TOA & real labels 40.7 54.2 64.9 75.8 83.8 92.4

TOA & all satellite 55.6 64.3 74.3 79.9 86.5 91.7

rM
A

E
(%

)

Persistent 11.9 21.1 28.2 33.2 36.9 39.3

TOA & all real 9.1 13.8 16.6 19.1 21.7 24.3

Clear-sky & all real 9.1 13.5 16.5 19.0 21.6 23.4

TOA & real labels 11.0 14.6 17.5 20.4 22.6 24.9

TOA & all satellite 15.0 17.3 20.0 21.5 23.3 24.7

R
M

SE
(W

/m
2 ) Persistent 75.5 118.1 150.9 176.3 197.3 211.1

TOA & all real 53.5 78.1 93.4 106.0 120.1 129.9

Clear-sky & all real 53.0 77.3 92.4 105.4 117.6 125.4

TOA & real labels 60.9 81.6 96.9 110.9 122.1 130.9

TOA & all satellite 73.9 89.7 106.5 117.9 128.5 136.3
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Table 5: Forecasting errors for the considered models with a 15-min granularity

15min 30min . . . 1h . . . 2h . . . 3h . . . 4h . . . 5h . . . 5h45min 6h

M
A

E
(W

/m
2 ) Persistent 35.7 49.0 - 65.6 - 98.4 - 123.3 - 140.6 - 152.0 - 158.7 159.9

TOA & all real 33.9 42.6 - 52.6 - 67.9 - 77.3 - 86.5 - 96.5 - 103.2 108.0

Clear-sky & all real 34.7 42.4 - 53.5 - 65.2 - 77.0 - 86.9 - 96.3 - 101.6 101.4

TOA & real labels 45.1 49.3 - 58.1 - 70.5 - 81.1 - 92.2 - 99.3 - 106.7 108.7

TOA & all satellite 63.0 63.2 - 69.1 - 78.6 - 86.0 - 92.0 - 99.7 - 103.4 105.1

rM
A

E
(%

)

Persistent 8.9 12.3 - 16.4 - 24.7 - 30.9 - 35.2 - 38.1 - 39.8 40.1

TOA & all real 8.5 10.7 - 13.2 - 17.1 - 19.5 - 21.8 - 24.3 - 26.0 27.2

Clear-sky & all real 8.7 10.7 - 13.5 - 16.4 - 19.4 - 21.9 - 24.3 - 25.6 25.6

TOA & real labels 11.3 12.4 - 14.6 - 17.8 - 20.4 - 23.2 - 25.0 - 26.9 27.4

TOA & all satellite 15.9 15.9 - 17.4 - 19.8 - 21.6 - 23.2 - 25.1 - 26.1 26.5

R
M

SE
(W

/m
2 ) Persistent 71.8 89.8 - 107.9 - 144.8 - 175.4 - 197.9 - 216.4 - 226.1 227.9

TOA & all real 61.8 72.3 - 84.4 - 103.5 - 115.2 - 127.0 - 139.0 - 145.1 149.6

Clear-sky & all real 61.5 72.2 - 84.7 - 99.9 - 113.9 - 125.4 - 136.7 - 142.5 142.6

TOA & real labels 70.3 77.3 - 89.0 - 104.9 - 118.8 - 131.4 - 141.1 - 147.1 148.8

TOA & all satellite 86.8 88.6 - 97.4 - 112.9 - 126.4 - 136.8 - 146.8 - 151.8 154.0
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