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Abstract

This paper proposes a new method for systems identification from relay feedback test. As a difference with most of the existing
methods, which are based on the describing function technique, our proposal considers a more precise approach that allows
to improve the estimation results. Furthermore, the method has also the advantage of being easy to implement, which makes
it to stand out among other methods that require introducing additional elements on the loop or extend the experiment
duration. The validity of the proposed method has been proved using a batch of models that represent the most common
dynamic behaviors of actual industrial processes. The study reveals that with the new proposal, using data from a simple
relay experiment, the error in the estimation for some kind of systems can be considerably reduced with respect to previous
approaches.

Key words: system identification, relay experiment

1 Introduction

Nowadays, Proportional-Integral-Derivative (PID) con-
trollers drive the majority of control loops in industry.
One of the most accepted approaches for tuning the PID
is the one based on relay feedback experiments, since it
is a very simple and effective way to obtain crucial in-
formation about the dynamic behavior of the system.
Very popular methods, such as Ziegler-Nichols and oth-
ers use the results provided by this kind of test, [1], [2].
Furthermore, many auto-tuning methods also consider
variations of relay based experiments in the identifica-
tion phase of the algorithms, [3], [4], [5], [6], [7], [8].

One of the firsts mentions to relay feedback experiment
was done in [9], which has been further developed in [10]
and significant efforts have been done to improve the
initial idea [11], [12]. These works and most of the suc-
cessive publications use the Describing Function (DF)
method as the analysis tool, [13]. Some other investiga-
tions improve the initial idea trying to satisfy the fil-
tering hypothesis required by DF method introducing
modifications in the relay experiment, i.e., using a pre-

? This paper was not presented at any IFAC meeting. Cor-
responding author O. Miguel-Escrig Tel. +34964728774. e-
mail: omiguel@uji.es

Email addresses: omiguel@uji.es (Oscar Miguel-Escrig),
romeroj@uji.es (Julio-Ariel Romero-Pérez).

load relay [14] or a saturation non-linearity [15], intro-
ducing more levels in the output of the relay [16], adding
a mapping function to the relay output [17], proposing
new multi-relays schemes [7], or changing the relay by
a symmetric-send-on-delta (SSOD) non-linearity which
allows to obtain a more sinusoidal-like signal [18].

Additionally, other lines of research have been developed
to increase the estimation precision. Some interesting
studies are focused on using more accurate methods, but
also more time consuming. Some of these methods use
the Fourier transform method [19], specifically the Fast
Fourier Transform (FFT) algorithm, others use the A-
locus for the parameter estimation of low order systems
[20] or consider more harmonics on the response of the
process [21]. Other authors propose to take into account
the shape of the oscillation signal to obtain additional
data [22], [23]. Another alternative, gathered in [24], pro-
pose to introduce modifications on the traditional relay
experiment by considering a parasitic relay or a cascade
relay, which certainly enhance the identification of the
process but adds complexity to the loop structure. All
these proposals, however, require to extend the experi-
mental time, to introduce further elements on the loop
or to include sophisticate calculation which could be pit-
falls from the practical application point of view.

In this paper, a new method to identify points of the
frequency response of the system from relay feedback
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test is presented. The proposal relies on the proper se-
lection of the samples to get more accurate frequency
response points while avoiding to overcharge the compu-
tation cost. This choice of samples leads to an improve-
ment on the estimation of the frequency response with
few points of the temporal response. The proper samples
for the estimation are selected as fractions of the oscil-
lation period and do not depend on the shape of the os-
cillations. Those fractions are always the same, so once
the period is known, the samples used for the identifica-
tion procedure can be easily selected. Unlike others pro-
posals such as those presented in [14] and [15], where a
conventional relay experiment is followed by a modified
relay experiment in order to reduce the estimation er-
ror due to the Describing Function approximation, the
new method does not need to extend the duration of the
experiments to improve the estimation results. Further-
more, it is also demonstrated that a considerable im-
provement can be obtained with respect to the results
of the conventional relay method proposed in [10].

The paper is organized as follows. Section 2 presents the
basis for the new identification method. Section 3 devel-
ops on the ideas from the previous section and presents
the guidelines to perform the identification. Section 4
compares the proposed method with the conventional
relay experiment identification method and with other
improved methods based on it. To perform the compari-
son a batch of systems are identified with all these meth-
ods, showing that the proposed method increases the
accuracy of the estimation in the majority of processes.
Section 5 tackles the identification of multiple points of
the frequency response. Section 6 addresses the issues
that appear because of the sampling and the measure-
ment noise on the relay experiment, extending the ap-
plicability of the proposed method to noisy signals. The
identification method allows a least squares formulation,
which has been treated in section 7. Finally, the conclu-
sions about this work are given in section 8.

2 Problem statement

The block diagram of a relay feedback system is shown
in Figure 1. The aim of the relay based identification
techniques is to extract relevant information about the
unknown model G(s) of the actual plant from its tempo-
ral response under the oscillatory behavior induced by
the relay. In order to obtain oscillations around the op-
eration point, in most cases the output levels of the relay
are shifted, producing the generic waveform oscillation
presented in Figure 2, where the error (e) and the relay
output signals (u) are represented. Because of its rele-
vance for tuning PID controllers, one of the most valu-
able information of G(s) is the so called ultimate point,
i.e. the point where the phase of G(s) is −π radians.
Most of the relay identification techniques assume that
the oscillations induced by the relay take place in the ul-
timate point. This assumption, however, is not strictly

G(s)
+ −

yref e u y

Fig. 1. Relay feedback system.
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Fig. 2. General oscillation waveform for a system with relay.

true, and consequently it introduces errors in these esti-
mation techniques.

The goal of this paper is to improve the estimation of
the actual point where such oscillations occur using the
data collected from a simple relay experiment, without
introducing new elements on the loop neither increasing
the experiment duration, since it could be important
backwards for its practical application, as for example
its use in systems identification phase of auto-tuning
algorithms for PID. With this in mind, let us to express
the error signal depicted in Figure 2 by its Fourier series
expansion, which result in equation (1), (see Appendix
A), where δo is the offset of the relay output, δ the relay
height, ρ is a fraction of the oscillation period where a
commutation on the relay is produced, n the harmonics
and ωo = 2π/To is the angular frequency of oscillation,
with To being the oscillation period.

The first two terms on the right hand side of previous
equation represent the magnitude of a bias as result of
asymmetric oscillations. In order to induce symmetric
oscillations, that is, oscillation with ρ = 0.5, it is neces-
sary that:

yref (t)− (δ(2ρ− 1) + δo)G(0) = 0,

which can be achieved by setting the offset of the relay
δo as follows:

δo =
yref (t)

G(0)
.

This requires to know the system gainG(0), which can be
obtained by a simple step response experiment around
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e(t) = yref (t)−(δ(2ρ−1)+δo)G(0)− 4δ

π

∞∑
n

1

n
sin(nπρ)

(
<{G(jnωo)} cos(nπρ−nωot)+={G(jnωo)} sin(nπρ−nωot)

)
(1)

the operation point or with the output of a biased relay
as shown in [25]:

G(0) = −

2π∫
0

e(t)dωt

2π∫
0

u(t)dωt

.

For symmetric oscillations around yref , the bias term in
equation (1) disappears and considering ρ = 0.5 in that
equation and applying trigonometric algebra, the error
signal can be rewritten as:

e(τTo) = −4δ

π

∞∑
n=1,3,5,...

1

n

(
<{G(jnωo)} sin (2πnτ)

+={G(jnωo)} cos (2πnτ)
)
,

(2)

where τ ∈ [0, 1] is a dimensionless parameter defined for
convenience which indicates a temporal fraction of the
oscillation period. It should be noted that even values of
n make the operator sin(nπρ) = 0, therefore, only odd
values of n appear in the previous equation.

From the point of view of system identification, equation
(2) can be interpreted as a simple linear equation where
the real and imaginary parts of each point of the open-
loop transfer function are unknown. This equation is
the cornerstone of the results presented in the rest of
the article. In the next sections a detailed study about
the use of this equation for the estimation of frequency
response points of G(s) is presented.

3 Main result

As can be seen, for each harmonic considered in equation
(2), a new point in the frequency response of the open-
loop transfer function appears, adding its corresponding
real and imaginary parts as unknowns. Hence, to iden-
tify h points of the open-loop transfer function, h num-
ber of harmonics must be taken into account (until the
harmonic n = 2h − 1) and k equations (k = 2h) must
be considered in order to be able to resolve the system
of equations, which can be expressed in matrix form as:

Ek×1 = −4δ

π
Ak×2hB2h×2hS2h×1, (3)

where each element is defined in equations (4) and (5).

Then, the points of the open-loop transfer function,
whose real and imaginary parts are contained in the
vector S, can be calculated as follows:

S = − π

4δ
(AB)−1E. (6)

The calculation of S from time response samples in E
is strongly affected by the matrix AB. Fortunately, this
matrix only depends on the number of harmonics and
on τi, that is, the values of time in which the samples of
e(τiTo) are taken and not on the value of e(τiTo) itself.
Therefore, AB can be pre-calculated to guarantee the
estimation of S to be as good as possible no matter the
system to identify. Consequently, the main issue is to
choose τi in order to obtain a proper value of AB.

The choice of τi is important because some values can
lead the matrix AB in equation (6) to be singular, for
example choosing τ1 = 0 and τ2 = 0.5 makes the system
of equations unsolvable. Furthermore, the choice of τi is
critical in terms of the accuracy of the solution because
if they are not properly chosen, little variations on the
measured data produce considerable errors in the solu-
tion. These issues are gathered numerically in the con-
dition number of AB. Thus, to avoid these problems, τi
have to be chosen so that the matrix AB has a proper
condition number.

Lemma 1 For any nonsingular matrix, the condition
number is defined as:

κ(·) = ‖·‖
∥∥·−1

∥∥ ,
where the operator ‖·‖ denotes the matrix norm. Then,
the condition number of the product of square matrices
is related to the condition number of each matrix by:

κ(AB) ≤ κ(A)κ(B).

Theorem 1 Let matrices A and B be given by equation
(3). If the sample time fractions τk are chosen such that
the difference between them is:

|τi − τj | =
1

4h
,
2

4h
, · · · , 2h− 1

4h
,
2h+ 1

4h
, · · · , 4h− 1

4h
,

∀i, j i 6= j,
(7)

where h is the number of harmonics considered, then,

κ2(AB) ≤ n, (8)
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E =


e(τ1To)

e(τ2To)

...

e(τkTo)

 , A =


sin (2πτ1) sin (6πτ1) ... sin (2nπτ1) cos (2πτ1) cos (6πτ1) ... cos (2nπτ1)

sin (2πτ2) sin (6πτ2) ... sin (2nπτ2) cos (2πτ2) cos (6πτ2) ... cos (2nπτ2)

... ... ... ... ... ...

sin (2πτk) sin (6πτk) ... sin (2nπτk) cos (2πτk) cos (6πτk) ... cos (2nπτk)

 , (4)

B = diag

(
1,

1

3
, ...,

1

n
, 1,

1

3
, ...,

1

n
,

)
and S =



<{G(jωo)}
...

<{G(jnωo)}
={G(jωo)}

...

={G(jnωo)}


. (5)

where κ2(AB) is the euclidean condition number of AB
and n is the last odd harmonic considered (n = 2h− 1).
See proof in Appendix B, Proof (1).

Theorem 1 allows to select the times for sampling the
response of relay feedback experiment in order to obtain
reasonable condition numbers for matrix AB. Consider-
ing the simplest case, when h = 1, the possible values of
τ obtained from equation (7) are:

|τ1 − τ2| =
1

4
,
3

4
.

This means that any pair of samples with these differ-
ences in time will make κ2(A) = 1. Moreover, according
to equation (8), for this particular case κ2(AB) = 1.

According to equation (7), as more harmonics are con-
sidered, the restrictions between τk increase. Then, the
task of obtaining τk, even if it is straightforward, be-
comes more tedious. For example, considering 2 harmon-
ics, the restrictions between τk are:

|τi − τj | =
1

8
,
2

8
,
3

8
,
5

8
,
6

8
,
7

8
,

i = 1, 2, 3, 4; j = 1, 2, 3, 4; i 6= j

Some examples of combinations of τk in this case are the
following:

1: τ1 = 0, τ2 = 0.125, τ3 = 0.25, τ4 = 0.375,

2: τ1 = 0.625, τ2 = 0.75, τ3 = 0.875, τ4 = 1,

3: τ1 = 0.125, τ2 = 0.375, τ3 = 0.75, τ4 = 1,

...

It is worth noticing that the solutions of equation (7) re-
sult in a finite number of combinations of |τm− τn|, cov-
ering the maximum and minimum possible differences

between τm and τn. However, taking into account that
τi ∈ [0, 1], there are infinite combinations of τi that ful-
fill the restrictions imposed by equation (7). In order
to facilitate the selection of τi, the following corollary
states a simple and useful criterion based on the number
of harmonics considered for the estimation.

Corollary 1 For h number of harmonics, the set of sam-
ple time fractions τk defined by:

τk =
(k − 1)

4h
, k = 1, 2, ..., 2h, (9)

fulfills that κ2(AB) ≤ n, where n is the last odd harmonic
considered. See proof in Appendix B, Proof (2).

Remark 1 This corollary offers a very interesting result
because for any number of harmonics h, the set of τk pro-
vided by equation (9) lies on the first semi-period of the
limit cycle oscillations induced by the relay. Similarly,
this result can be extended to the second semi-period, con-
sidering the same values of τ plus To/2, therefore, two
identifications per period are possible. This is an advan-
tage of the proposed method to be applied in auto-tuning
algorithms, where the experiments must be short enough
to obtain a suitable controller as fast as possible, without
perturbing the processes for a long time.

From now on, the sample time fractions τk will be ob-
tained according to equation (9), which has been used
to obtain the values of τk for some given number of har-
monics, gathered in Table 1. However, it has to be kept in
mind that equation (9) offers a particular solution that
is extended for any number of harmonics, but there are
other possible combinations of τk.

Considering the results exposed in the previous corol-
lary, let us introduce the following example to show the
application of the identification procedure.

Example 1 Consider a given process to identify, which
will be modeled by the transfer function G. For simplicity
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τk
h

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20

1 0
1

4

2 0
1

8

2

8

3

8

3 0
1

12

2

12

3

12

4

12

5

12

4 0
1

16

2

16

3

16

4

16

5

16

6

16

7

16

5 0
1

20

2

20

3

20

4

20

5

20

6

20

7

20

8

20

9

20

6 0
1

24

2

24

3

24

4

24

5

24

6

24

7

24

8

24

9

24

10

24

11

24

7 0
1

28

2

28

3

28

4

28

5

28

6

28

7

28

8

28

9

28

10

28

11

28

12

28

13

28

8 0
1

32

2

32

3

32

4

32

5

32

6

32

7

32

8

32

9

32

10

32

11

32

12

32

13

32

14

32

15

32

9 0
1

36

2

36

3

36

4

36

5

36

6

36

7

36

8

36

9

36

10

36

11

36

12

36

13

36

14

36

15

36

16

36

17

36

10 0
1

40

2

40

3

40

4

40

5

40

6

40

7

40

8

40

9

40

10

40

11

40

12

40

13

40

14

40

15

40

16

40

17

40

18

40

19

40
Table 1
Summary of τk values as a function of the number of harmonics considered.

in the calculus, we will perform the identification consid-
ering two harmonics (h = 2).

Then, using equation (9) the time fractions τk are ob-
tained:

τ1 = 0, τ2 =
1

8
, τ3 =

2

8
, τ4 =

3

8
.

With these parameters, equation (3) results in equation
(10), and then, the real and imaginary parts correspond-
ing to the frequencies ωo and 3ωo resulting from this sys-
tem of linear equations are obtained as in equation (11),
in which the error signal at the specified time fractions
must be introduced to obtain the solution.

Note that the expressions presented in this system of
equations are valid for any process to identify introduc-
ing the corresponding values for the error signal, i.e. no
additional information about the process is required to
perform the identification besides the error signal value
at the required period fractions. To exemplify this let us
consider two systems whose transfer functions are:

G1(s) =
e−s

s
, G2(s) =

e−s

s+ 1
.

Figure 3 depicts the oscillation waveform for both sys-
tems and the samples to perform the identification ac-
cording to corollary 1. Note that, regardless of the oscil-
lation waveform, the samples are taken on specific frac-
tions of the oscillation period (τk). This avoids searching
the maximum amplitude of the signal among the sam-
ples, which is needed to perform the conventional relay
identification.

Figure 4 presents the identified points obtained with both
the conventional and the proposed methods. The actual
placement of the oscillation points have been represented
in green, the points identified with the conventional
method and with the proposed method are represented
in red and blue respectively. It can be seen how the new
approach identifies better the oscillation points than the
conventional method. This fact is shown numerically in
Table 2 where the relative error of the estimation is pre-
sented. In both cases, the proposed method is more accu-
rate than the conventional relay identification, reaching
an improvement of 18.18% and 16.77%. Besides, even if
the accuracy with the proposed method is already higher
than with the conventional one, more harmonics could be
taken into account increasing even more the estimation
accuracy of the oscillation point.

4 Relation with the conventional relay method

The conventional relay method uses basically the De-
scribing Function (DF) technique to estimate the ulti-
mate gain of the system, [10]. The DF technique as-
sumes that the high-order harmonics of the oscillation
have a negligible effect with regard to the fundamental
harmonic due to the low-pass band filtering properties
of the linear part of the system. The DF method estab-
lishes that limit cycle oscillations due to a non-linearity
on closed-loop systems exist if the open-loop transfer
function intersects the negative inverse of the DF of the
non-linearity. For the system in Figure 1 this condition
results in the following equation:

G(jωo) = − 1

N

5





e (0)

e
(
1
8To

)
e
(
2
8To

)
e
(
3
8To

)


= −4δ

π



0 0 1 1

0.7071 0.7071 0.7071 −0.7071

1 −1 0 0

0.7071 0.7071 −0.7071 0.7071





1 0 0 0

0 1/3 0 0

0 0 1 0

0 0 0 1/3





<{G(jωo)}

<{G(j3ωo)}

={G(jωo)}

={G(j3ωo)}


(10)



<{G(jωo)} = − π

4δ

(
0.3536 · e

(
1
8To

)
+ 0.5 · e

(
2
8To

)
+ 0.3536 · e

(
3
8To

) )
<{G(j3ωo)} = − π

4δ

(
1.0607 · e

(
1
8To

)
− 1.5 · e

(
2
8To

)
+ 1.0607 · e

(
3
8To

) )
={G(jωo)} = − π

4δ

(
0.5 · e (0) + 0.3536 · e

(
1
8To

)
− 0.3536 · e

(
3
8To

) )
={G(j3ωo)} = − π

4δ

(
1.5 · e (0)− 1.0607 · e

(
1
8To

)
+ 1.0607 · e

(
3
8To

) )
(11)

Classical method 2-harm Improvement

|G1(jωo)− Ĝ1(jωo)|/|G1(jωo)| · 100 23.4626 5.277 18.1826

|G2(jωo)− Ĝ2(jωo)|/|G2(jωo)| · 100 18.8288 2.0513 16.7775
Table 2
Relative errors of the estimated points for G1(jωo) and G2(jωo).

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

e(
t)

0 0.37 0.75 1.12 1.49 1.86 2.24 2.61 2.98
−0.4

−0.2

0

0.2

0.4

t[s]

e(
t)

Fig. 3. Oscillation produced by the relay experiment on G1(s)
(top) and G2(s) (bottom) and the samples taken for the
application of the proposed method in blue.

where ωo is the frequency of oscillation and N is the DF
of the relay. As the equation of the DF of the relay is
known (N = 4δ

πA ), the real and imaginary part of G(jωo)

can be calculated:

<{G(jωo)} = −πA

4δ
, ={G(jωo)} = 0 (12)

where A is the amplitude of the oscillation.

Equations in (12) are a particular solution of the system
in equation (6) by choosing only one harmonic. In order
to prove that, let us consider the filtering hypothesis of
the DF to be true, then the input to the relay will be a
sinusoidal signal:

e(t) = A sin(ωot)

To include the parameter τk, the transformation t =
τkTo is done, resulting in:

e(τkTo) = A sin(2πτk).

As only one point of the frequency response is deter-
mined with the DF method, we will consider h = 1.
Then, equation (3) results in equation (13).

In this case, the appropriated values of τk, according to
corollary 1, are τ1 = 0 and τ2 = 1/4. Substituting these
values in the previous expression we have:

[
0

A

]
= −4δ

π

[
0 1

1 0

][
<{G(jωo)}
={G(jωo)}

]
,

6



−0.8 −0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

<

=

−0.4 −0.2 0 0.2

−0.2

0

0.2

<

=

Fig. 4. Polar plots of systems G1(jω) (top) and G2(jω) (bot-
tom) with the oscillation points (green) and the estimated
oscillation points with the conventional method [10] (red)
and proposed method (blue).

and solving:

<{G(jωo)} = −πA

4δ
, ={G(jωo)} = 0.

Thus, the conventional approach of relay feedback iden-
tification, which was presented in [10], can be seen as a
particular solution of the proposed method that is valid
in those cases where the filtering hypothesis of the DF
is fulfilled.

4.1 Extensive comparison study

In order to verify the validity of the proposed method
to other systems than those considered in Example 1, it
has been applied for a batch of 133 models, whose trans-
fer functions are presented in equations (14), which de-
scribe the dynamic behavior of most of actual industrial
systems, namely, models with multiple poles, complex
and real poles, integrators, non-minimal phase and time
delays, are included. This test batch was firstly proposed

in [26], where more information about it can be found.

G(s) =
e−s

Ts+ 1
,

T = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500, 1000

(14a)

G(s) =
e−s

(1 + sT )2
,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,

1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

(14b)

G(s) =
e−s

(s+ 1)(Ts+ 1)2
,

T = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

(14c)

G(s) =
1

(s+ 1)n
,

n = 3, 4, 5, 6, 7, 8
(14d)

G(s) =
1

(s+ 1)(αs+ 1)(α2s+ 1)(α3s+ 1)
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
(14e)

G(s) =
1

s(1 + sT1)
e−sL1 , T1 + L1 = 1

L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1
(14f)

G(s) =
Te−sL1

(T1s+ 1)(Ts+ 1)
, T1 + L1 = 1, T = 1, 2, 5, 10

L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1
(14g)

G(s) =
1− αs

(s+ 1)3
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1
(14h)

G(s) =
1

(s+ 1)((sT )2 + 1.4sT + 1)
,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
(14i)

The estimated points of the frequency response have
been obtained with the proposed method considering
3 harmonics, for which the values of τk were obtained
with equation (9). The estimation results are compared
to the conventional relay approach (equations in (12))
as well as with two improved versions of the relay type
experiments, concretely the methods known as preload-
relay and saturation-relay, proposed in [14] and [15] re-
spectively. These methods attempt to reduce the effect
of neglecting the higher order harmonics by introducing
slight modifications to the original relay test and calcu-
lations. The preload-relay incorporates a gain in parallel
with the relay and the saturation-relay reduce the relay
gain from infinite to certain value, transforming the re-
lay into a saturation type non linearity.

The results are presented in Figures 5 and Figure 6,
in which the relative error of the estimation obtained
with each method and the improvements in terms of the
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[
A sin(2πτ1)

A sin(2πτ2)

]
= −4δ

π

[
sin(2πτ1) cos(2πτ1)

sin(2πτ2) cos(2πτ2)

][
1 0

0 1

][
<{G(jωo)}
={G(jωo)}

]
(13)

difference of relative errors are shown. It can be seen
that, as expected, for the most models the relative error
committed with the proposed method is lower than with
the relay methods. This result is more evident in the
case of the traditional relay, where reductions of about
20% in the relative error can observed in some cases. In
particular, those cases where the reduction of the relative
error is higher correspond to low order systems, i.e. the
cases where the filtering hypothesis of the DF is hardly
fulfilled.

In general, the modified relay methods improve the re-
sults obtained with the conventional relay, and its worth
noting that in some few cases, these methods provide
better estimations than the new proposal. This situa-
tion can be observed, for example, in models 43 to 47 for
the preload-relay and models 10 to 21 for the saturation-
relay. All these models present poor filtering properties
because they have an isolated low frequency pole placed
far from the other poles, which are placed at higher fre-
quencies. The filtering effect of the low frequency pole
does not attenuate sufficiently the higher order harmon-
ics contribution, degrading the identification accuracy.
Therefore, better results can be obtained by increasing
the number of harmonics taken into account in the pro-
posed method for these cases.

It is also important to highlight that the preload-relay
and the saturation-relay methods improve their estima-
tion results at expense of increasing the experiment du-
ration. In fact, both methods require a two phase exper-
iments. During the first stage a conventional relay ex-
periment is developed in order to obtain the gain that is
needed to modify the relay for the second phase. Once
the gain is obtained, the second stage take place with
the modified relay, at the end of which the point of fre-
quency response where the phase of the system is −π
is estimated. Conversely, the approach proposed in this
paper requires only a standard relay experiment and the
estimations can be improved by increasing the number
of harmonics considered in the calculations.

5 Simultaneous identification of multiple points
of the frequency response

Note that in Example 1 the proposed method was used
with 2 harmonics and consequently, the real and imag-
inary part of G(jωo) and G(j3ωo) were calculated, see
equation (11). In Figure 4, however, only the point cor-
responding to the fundamental harmonic (G(jωo)) was
represented. The truth is that the frequency response
at G(j3ωo) was calculated but with very low accuracy
due to the fact that the successive harmonics have a rel-
atively big impact on the calculation of the precedent

points, i.e. harmonics 5ωo, 7ωo,... have an important ef-
fect on the estimation of G(j3ωo). Therefore, in that
example the estimation of G(j3ωo) could have been im-
proved by considering more harmonics, which implies
obtaining the values of τk from equation (9) and solving
systems of equations resultant from equation (6).

Increasing the number of harmonics considered in the
calculus will improve the accuracy of the estimation of
points corresponding to the frequency response of pre-
ceding harmonics. However, the points corresponding to
the last harmonics considered in the calculus will have a
big relative error in the estimation for the same reason
that in the previous example. If an accurate estimation
of these points is required, then more harmonics need
to be considered. In order to illustrate the effect of high
order harmonics in the estimation of other points of the
frequency response of the system and in its quality, let
us introduce Example 2.

Example 2 Consider the system G2(s) from Example
1. As it has been said before, the estimation of G2(j3ωo)
using our method with 2 harmonics is not very precise,
then, in order to estimate this point with a higher accu-
racy let us use 3, 4 and 10 harmonics.

The values of τk for h = 3, 4, 10 can be obtained using
equation (9), or simply from Table 1. The sampling pat-
tern for identification depending on the number of har-
monics to be considered in the calculus are shown in Fig-
ure 7.

Using these samples and using equation (6), the real and
imaginary parts of G2(jωo) and G2(j3ωo) have been ob-
tained. The estimation of these points of the frequency
response for different number of harmonics considered in
the calculus can be seen in Figure 8. It can be observed
how by increasing the number of harmonics the estima-
tion of G2(jωo) and G2(j3ωo) becomes more and more
accurate. This can be easily observed in Table 3, where
numerical data are presented. The relative error is re-
duced for both G2(jωo) and G2(j3ωo) with the increase of
the number of harmonics, reaching relative errors lower
than 0.09% and 0.8% for the estimation of G2(jωo) and
G2(j3ωo) respectively.

Ultimately, it is important to note that the increment
in the number of harmonics also increases the compu-
tational demand of the algorithm and the data needed
for identification. This can be easily seen in the size of
the matrix AB which is 2h × 2h, where h is the num-
ber of harmonics considered. Therefore, the selection of
h should be a trade-off between the complexity of the
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Fig. 5. Relative error of the estimated oscillation points with the proposed method with 3 harmonics and the conventional
relay (top), preload-relay (middle) and saturation-relay (bottom) methods. Transfer functions of the models in the batch are
indicated on the top figure.

2-harm 3-harm 4-harm 10-harm

|G2(jωo)− Ĝ2(jωo)|/|G2(jωo)| · 100 2.0513 2.2305 0.5329 0.082

|G2(j3ωo)− Ĝ2(j3ωo)|/|G2(j3ωo)| · 100 32.9645 20.8298 5.2931 0.7782
Table 3
Relative errors of the estimated points for G2(jωo) and G2(j3ωo).

algorithm, the available data and the required identifi-
cation accuracy.

6 Noise and sampling effects on the identifica-
tion

6.1 Measurement noise effect

By considering an ideal relay in the relay feedback ex-
periments scheme, Figure 1, it is clear that the presence
of noise in the loop will affect both the measurement of
the error signal and the relay output, which, in turn,
will affect the oscillation waveform because of the extra
switches produced near to the commutation point due
to the noise. A common choice to avoid this behavior is

to substitute the ideal relay for a relay with hysteresis
whose value is slightly greater than the noise amplitude.

The inclusion of a hysteresis band avoids effectively the
switches due to the noise but, in the conventional ap-
proach, the resulting describing function that models the
non-linearity changes as it is shown in [27], and thus the
inclusion of this hysteresis band has to be taken into ac-
count in the identification process. However, the inclu-
sion of hysteresis in the relay does not affect the pro-
posed method, which remains valid with the same equa-
tions. Note that in Appendix A the error signal equation
has been obtained starting by approximating the square
wave produced by the relay using a Fourier series with-
out assuming the kind of non-linearity that produces it.
Afterwards, this expression has been pushed and com-
puted through the loop until obtaining the error signal.
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Fig. 6. Improvement (difference) achieved with the proposed method with 3 harmonics compared with the conventional
relay (top), preload-relay (middle) and saturation-relay methods (bottom). Transfer functions of the models in the batch are
indicated on the top figure.

Then, this equation is valid, not only for the ideal re-
lay, but also for any non-linearity that produces a square
signal with symmetric output levels. Thus, as the relay
with hysteresis also produces a square wave in its out-
put, the equation of the error signal has the same struc-
ture as with the ideal relay. In this case, however, the
location of estimated points will correspond to the limit
cycles induced by this kind of relay. To illustrate that
the proposed method, remains valid even when a relay
with hysteresis is used, let us introduce the following ex-
ample:

Example 3 Consider the system G2 from Example 1.
In this case, consider two relays with hysteresis, which
have as output levels ±δ and the hysteresis commutation
thresholds are ±1/2δ and ±3/4δ respectively.

To perform the identification we will use 4 harmonics,
and as it has been done before, the values of τk are ob-
tained from equation (9) or Table 1 and the real and imag-
inary parts of the frequency response are obtained from
equation (6). The results are shown in Figure 9, where it
has been also represented the results when using the ideal
relay and considering the same number of harmonics in
the calculus. As expected, the fact of adding a hysteresis to

the relay makes the identified point to shift in frequency,
which corresponds to the limit cycle induced by the new
non-linearity considered in this case. Concretely, a lower
frequency oscillation is obtained as the hysteresis grows.
These new points, however, are accurately estimated by
the proposed method without introducing any change. The
relative errors in the estimation are presented in Table 4,
where it can be effectively seen the validity of the method
for the case of oscillations induced by a relay with hys-
teresis.

Even if the extra switches are avoided as a consequence
of using a relay with hysteresis, the error signal could
contain a non negligible noise level. A simple strategy,
which has been widely used in other relay based identi-
fication methods, is to reduce the SNR (Signal to Noise
Ratio) by increasing the relay output level δ. Its effec-
tiveness can be proven as follows.

Consider Ŝ to be the estimated solution obtained with
a sampled error vector with noise Ê, which relates with
the error signal E with a noise vector u: Ê = E − u.
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Ideal relay hist = 1/2δ hist = 3/4δ

|G2(jωo)− Ĝ2(jωo)|/|G2(jωo)| · 100 0.5329 0.7989 0.7184

|G2(j3ωo)− Ĝ2(j3ωo)|/|G2(j3ωo)| · 100 5.2931 6.8478 5.8732
Table 4
Relative errors of the estimated points for G2(jωo) and G2(j3ωo).
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Fig. 7. Oscillation waveform resulting from relay feedback
experiments for system G2 and samples taken depending on
the number of harmonics.
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Fig. 8. Polar plot of G2(jω) and G2(jωo) and G2(j3ωo) es-
timated with different number of harmonics.

Then the relative error on the solution defined by:∥∥∥S − Ŝ
∥∥∥

‖S‖

it is related with the noise source of uncertainty and is
bounded by:

1

κ(AB)

‖u‖
‖E‖

≤

∥∥∥S − Ŝ
∥∥∥

‖S‖
≤ κ(AB)

‖u‖
‖E‖

(15)

This expression is proven in Appendix B, Proof (3).

Let E be the vector of samples obtained with a relay
drive level δ, and E the vector of samples obtained with
mδ. Regarding to expression (2) it can be directly de-
duced that the samples are related by Eim = Ei since
the drive levels affect proportionally that expression,
and therefore, ‖E‖ = |m| ‖E‖. Thus, the relative error
caused by the noise, and affected by the change of the
relay drive level, is bounded by:

1

|m|κ(AB)

‖u‖
‖E‖

≤

∥∥∥S − Ŝ
∥∥∥

‖S‖
≤ κ(AB)

|m|
‖u‖
‖E‖

This expression shows how the uncertainty on the solu-
tion due to noise is bounded and stresses the importance
of the condition number of AB. In addition, the fact of
increasing the magnitude of the drive levels of the relay
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Fig. 9. Polar plot of G2(jω) and G2(jωo) and G2(j3ωo) identified using an ideal relay and two relays with hysteresis.

shows to be effective for reducing both the upper and
lower bounds of the uncertainty, being beneficial for the
identification accuracy.

In order to illustrate this idea let us introduce the fol-
lowing example:

Example 4 Consider the system G2 from Example 1.
For this case, consider additionally that we have a mea-
surement noise whose peak-to-peak amplitude is 0.1. As
commented before, the oscillations produced by the ideal
relay cannot be used for identification in this case because
its output is not a square signal. This fact can be seen
in Figure 10, where the error signal e(t) and the output
of the relay u(t) are shown for system G2 using an ideal
real in the loop. As can be seen, the noise causes a burst
of switches when error signal is close to zero. In order to
avoid this undesired behavior, a hysteresis band is added
to the relay. We set the upper and lower switch points to
0.05 and −0.05 respectively, this will avoid the appear-
ance of extra switches due to the noise. In addition, if we
increase δ the impact of the noise is decreased. This last
case has been illustrated in Figure 10, in which the above
mentioned hysteresis has been added and the output lev-
els of the relay are triplicated with regard to the original
experiment.

Once the bursts of switches due to the noise have been
avoided, a square wave signal is obtained at the output
of the non-linearity. Then we apply the proposed method
using 3 harmonics. The values of τk are obtained using
the equation (9) or simply from Table 1. Then, using
equation (6) the real and imaginary parts of G2(ωo) are
obtained. The results are represented in Figure 11, in
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Fig. 10. Effect on the output of the relay u(t) caused by the
noise in the error signal e(t) (top), and the adopted solution
(bottom).

which it can be seen that the proposed method offers an
estimation of the oscillation point which is more accurate
as the output of the relay δ increases.

In Table 5, the relative errors of the estimated points
are presented. The case from Example 2, where the ideal
relay was used, has been included in order to compare
the accuracy of both solutions. As it can be seen, the
relative error decreases as δ increases, confirming that
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Fig. 11. Polar plot of G2(jω) and G2(jωo) identified using a
relay with hysteresis and different values for δ.

Without Noise Noise
noise δ = 0.5 δ = 1.5

|G2(jωo)-Ĝ2(jωo)|
|G2(jωo)|

·100 2.2305 10.5290 3.5952

Table 5
Relative error of the estimated point of G2(jωo) using differ-
ent values of δ in noisy signals compared to the case without
noise.

the accuracy in noisy signals increases with δ. In fact,
for δ = 1.5 the accuracy is comparable to the ideal relay
case without noise.

6.2 Sampling period effect

The proposed identification method relies on the proper
selection of the samples to obtain a well-conditioned
matrix to estimate the frequency response points accu-
rately. However, the sampling period is commonly not
precise enough to obtain the exact measure at the sam-
ple time fractions τi needed to perform the calculus.
Strategies like interpolating the measured data can be
deployed to correct that measurement mismatch, which
could increase significantly the computation time needed
to perform the identification. In this subsection, the ef-
fects on the accuracy of the sampling are studied when
the proposed identification method is applied.

Considering that the effect of not choosing the exact
samples due to a mismatch between the oscillation and
sampling periods is reflected in a variation on AB and
E matrices, the relative error between the expected and
the obtained solution is bounded by:∥∥∥S − S̃

∥∥∥
‖S‖

≤ κ(AB)

1− κ(AB) ‖∆‖ / ‖AB‖

(
‖∆‖
‖AB‖

+
‖ζ‖
‖E‖

)
(16)

where ∆ and ζ are the additive error matrix and vector
respectively on AB and E such that ÃB = AB−∆ and
Ẽ = E − ζ. This expression has been obtained in Proof
(4) in Appendix B.

It can be observed that this expression is similar to the
bound on the relative error produced by the noise pre-
sented in equation (15), but in that expression no vari-
ation on AB has been considered, and the source of un-
certainty is different.

From equation (16) it can be seen that these uncertain-
ties raise the upper bound of the relative error of the
solution, which could induce to a high error. However,
in most applications the sampling frequency is typically
higher than system’s dynamics, and therefore, enough
samples to compute the identification method are avail-
able, which can lead to consider the small variations on
AB and E negligible.

Besides, it must be kept in mind that not only the sample
time fraction τi specified from Corollary 1 are valid, but
any combination of τi that fulfills Theorem 1 would be
appropriate for the identification, which provides mul-
tiple combinations of sample time fractions to estimate
the frequency response.

7 Least Squares approach

The initial problem presented in Equation (3) can be
formulated in a Least Squares (LS) fashion. This means
that in order to determine some points in the frequency
response of the system more equations can be consid-
ered. Equation (3) remains valid, here it has been pre-
sented with the dimension of each matrix in subindex:

Ek×1 = −4δ

π
Ak×2hB2h×2hS2h×1 (17)

k being the number of equations and h the number of
frequency response point to determine, which for LS
method k > 2h.

However, despite the possibility of deploying the pre-
sented equations in a LS fashion, it does not necessarily
imply an increase of precision on the obtained solution.
Equations can still be linearly dependent, for example,
despite having a system of linear equations (17) with
k � 2h. Therefore, the question of how to chose the sam-
ples to calculate the estimated points on the frequency
response remains.

Corollary 2 The results obtained from Theorem 1 and
its application derived in Corollary 1 can also be applied
to the linear problem presented in equation (17) adapting
the expressions for the LS formulation since matrix A
is rectangular. Therefore, κ(AB) ≤ n, where n is the
last harmonic considered, if the sample time fractions τk
fulfill:

|τi − τj | =
1

2k
,
2

2k
, · · · , k − 1

2k
,
k + 1

2k
, · · · , 2k − 1

2k
,

∀i, j i 6= j,
(18)
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where k is the number of equations. Similarly to Corollary
1, the sample time fractions τi can be chosen as:

τi =
(i− 1)

2k
, i = 1, 2, ..., k. (19)

to obtain a particular solution of the choices derived from
expression (18). See proof in Appendix B, Proof (5).

Note that the the sample time fractions selection pro-
posed in Corollary 2 are the same than the ones indicated
by Corollary 1 in the case that the number of equations
k is equal to twice the number of harmonics to calculate
h. For example, if the LS approach is taken considering
k = 20 equations, the sample time fractions obtained
with equation (19) would be the same that those pro-
posed in Table 1 for h = 10 harmonics.

Due to Corollary 2 the problem expressed in a Least
Squares formulation allows to choose the samples so that
the system is well conditioned. The following example
shows the application of the LS approach and compares
it with the originally proposed method.

Example 5 Consider the process whose transfer func-
tion is defined by:

G(s) =
e−s

(0.5s+ 1)2

The identification problem has been tackled using the LS
formulation presented in equation (17) considering ten
equations (k = 10) to estimate the points of the frequency
response corresponding to ωo and 3ωo, that is h = 2. For
comparison purpose, the square matrix version of the es-
timation method, whose solution is given by equation (6),
has been also applied using the same number of equations
but assuming h = 5 in order to make the matrix A square.

According to Corollary 2, as both approaches consider
the same number of equations, the sample time fractions
would be the same, and can be read from Table 1 in the
row for h = 5. From the stable oscillation induced by the
relay that is presented in the left image of Figure 12, the
corresponding samples have been taken, which have been
highlighted in red. With those samples the identification
with both formulation has been computed obtaining the
points in the frequency response presented in the right
image of Figure 12. In blue the points identified with the
LS method are presented, in green the points obtained
considering A a square matrix and in red the exact points.

As it can be seen, both identifications are very accurate. In
the point associated with the fundamental (ωo) and third
(3ωo) harmonic the relative estimation errors are 0.082%
and 0.7932% respectively for both methods. The method
that considers matrix A square has an accuracy of 1.87%,
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Fig. 12. Stable oscillation induced by the relay and samples
taken to compute the identification (top), and frequency re-
sponse estimation with both formulations (bottom), in blue
with LS and in green being A square.

16.39% and 53.45% in the next three estimated points. As
expected, the relative error of higher harmonics is greater
than for the lower ones, however, it is remarkable that
both methods obtain the same accuracy for points G(jωo)
and G(j3ωo). This effect is explained in the lines below.

In fact, the frequency response points that are obtained
with both approaches for ωo and 3ωo are the same. This
is due to the construction of the matrix A and the sample
vector E in both formulations and the calculations per-
formed to obtain the real and imaginary parts of these
points. As explained before, the sample time fractions τi,
and therefore, the samples e(τiTo) are the same for both
approaches. Besides, to obtain the frequency response
points, the inversion of matrices is performed, obtain-
ing either B−1A−1 or B−1A†. These two matrices, con-
tain some identical row vectors, which are those rows
used to obtain the real or imaginary part of a given point
G(jnωo). As these rows multiply the same sample vector
E, the obtained result is the same.

Concretely in this example, for the LS formulation the
matrix B−1A† is of size 4× 10 and for the other formu-
lation 10 × 10. The first and the second rows of B−1A†

are the same that the first two rows of B−1A−1, which
compute the real parts of the first and second estimated
points. Similarly, the third and forth rows of B−1A† are
the same that the sixth and seventh of B−1A−1, this last
two rows are the ones that compute the imaginary parts
of these points. Therefore, the result on the estimation
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of G(jωo) and G(j3ωo) with both approaches is the same
when considering the same number of equations k.

Since the LS approach is equivalent to increase the num-
ber of harmonics considered in the square matrices ver-
sion, comparing it with the formulation with A square for
the same number of harmonics, i.e. k = 4 and h = 2,
the results obtained with LS will be better because of the
increased number of equations k � 4. This effect of the
increase of the accuracy when more harmonics are taken
into account was shown in Example 2.

The previous example shows that, the solution obtained
by the LS strategy (equation (17)) with k > 2h equa-
tions to estimate h points of the frequency response is
the same that the first h points estimated when consid-
ering k equations to estimate k/2 points using equation
(6). Additionally, the latter approach provide estimation
results for k/2− h further points.

As it has been commented on Section 6.1, the relative
uncertainty of the solution due to the presence of noise
in the sampled data can be bounded by equation (15),
which remains valid for the LS approach considering in
its demonstration the matrix A rectangular. This ex-
pression establishes the condition number, κ(AB), as a
key factor in limiting the uncertainty. The upper bound
of the condition number is determined by the matrix B,
which contains the fractions 1/n relative to each consid-
ered harmonic n, and since the condition number of A
is one, the condition number is bounded by κ(AB) ≤ n.
As for the LS square approach the number of harmonics
considered is lower than for the square matrix version,
the condition number of matrix AB is lower in LS than
in the square version. This difference in κ(AB) in each
approach modifies the upper bound of the uncertainty
of the solution due to the noise.

However, the arithmetic operations used to calculate the
points with both approaches are the same, which means
that if noise is present, it would affect in the same man-
ner regardless of the approach. Hence, even if the up-
per bound of LS is lower than for the square matrix
version, the LS approach does not really provide more
accuracy when noise is present on the samples. The in-
crease in the bound of the uncertainty due to noise pro-
duced by κ(AB) in the square matrix approach is due to
the fact that more points of the frequency response are
calculated, accumulating their uncertainty to the bound
through κ(AB). Then, the strategy provided in section
6.1, which consists in increasing the drive level of the
relay δ, is still recommendable for the LS approach to
reduce the upper bound of the error due to noise.

Similarly, with regard to selection of the sample time
fraction, the expression (16) provided in Section 6.2 re-
mains valid considering matrixA rectangular. If the sam-
pling frequency is assumed to be higher than system’s
dynamics, the errors produced in AB and E matrices

can be neglected. Conversely, it is worth remarking that
the sample time fractions proposed in equation (19) in
Corollary 2 are not the only ones that make κ(AB) min-
imum, which are a particular solution of equation (18).

Summarizing, the proper selection of the sample time
fractions has proved to produce the same results if the
same number of equations k are used regardless of the
followed approach, which can be either the described in
Section 3 or the LS approach described in this section.
Then, if a given number of points of the frequency re-
sponse are to be estimated, LS approach can be used
to reduce the sizes of matrices A and B with regard to
those of the square matrices approach that guarantee
the same accuracy.

8 Conclusions

In this paper, a new method to obtain the frequency
response points of systems from the relay experiment has
been presented. Unlike previous approaches which are
based on the describing function technique, this method
can take into account the effect of several harmonics in
the calculus, increasing the accuracy of the estimation
as more harmonics are considered.

An extensive simulation study over a batch of models
has been carried out using the proposed procedure and
some of the most used relay-based identification meth-
ods. The proposal improves the results obtained by the
conventional approaches for the majority of the models,
reducing the relative error of the estimation in around
15% in some cases.

Besides, the identification of several points of the fre-
quency response simultaneously is possible with the pro-
posed method. Particularly, those that correspond to
odd multiples of the oscillation frequency, using the same
relay experiment data. Nevertheless, in order to deter-
mine its frequency response, more harmonics have to be
taken into account in the calculus, increasing the com-
putational cost of the algorithm. However, if the size of
the resulting matrices is not a drawback for certain ap-
plications, considering more harmonics increases signif-
icantly the accuracy of the method.

Additionally, the effect of the noise and the sampling in
the estimation is evaluated. It is shown that the method
can be applied to noisy temporal responses by substitut-
ing the ideal relay by a relay with hysteresis, which con-
stitutes one of the most common solutions. The method
proves to be successful when using a relay with hystere-
sis and shows to increase its accuracy as the output of
the relay δ increases.

The proposed method also allows a Least Squares for-
mulation, which has been studied. The principles that
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rule the estimation methodology proposed are also ap-
plicable to the LS approach, offering the same results,
in terms of accuracy, while reducing the size of the ma-
trices to consider, but at the expense of estimating less
points of the frequency response.

Appendix A Fourier series expansion of e(t)

Consider the signal u(t) to be a square signal with pulse
width modulated by ρ as shown in Figure 2, then the
expression of u(t) can be obtained through Fourier series
expansion:

u(t) =
a0
2

+

∞∑
n=1

(
an cos(nωot) + bn sin(nωot)

)
,

where a0:

a0 =
2

To

ρTo∫
0

(δo+δ)dt+
2

To

To∫
ρTo

(δo−δ)dt = 2δ(2ρ−1)+2δo,

and an and bn:

an =
2

To

ρTo∫
0

(δo + δ) cos(nωot)dt+
2

To

To∫
ρTo

(δo-δ) cos(nωot)dt,

bn =
2

To

ρTo∫
0

(δo + δ) sin(nωot)dt+
2

To

To∫
ρTo

(δo-δ) sin(nωot)dt.

After some calculations:
u(t) = δ(2ρ− 1) + δo

+
2δ

π

∞∑
n=1

1

n

(
sin(2πnρ) cos(nωot) + (1- cos(2πnρ)) sin(nωot)

)
,

and arranging:

u(t) = δ(2ρ−1)+δo+
4δ

π

∞∑
n=1

1

n
sin(πnρ) cos(πnρ−nωot).

Then, y(t) is obtained by the relation y = G ·u, where G
is the open-loop transfer function of the system, which
results in expression (20), and then as e(t) = yref (t)−
y(t), the error signal e(t) is obtained, resultin in equation
(21).

Appendix B Mathematical proofs

Proof (1) Let us consider the euclidean norm (‖·‖2).
The euclidean condition number of B is the ratio be-
tween the maximum and minimum eigenvalues:

κ2(B) =
λmax(B)

λmin(B)
=

1

1/n
= n.

Then, applying the results on Lemma 1 about the con-
dition number of the product of matrices, the condition
number of A must be forced to 1. This can be attained
by forcing A to be orthogonal. By definition, an orthog-
onal matrix Q follows that QQT = QTQ = I, which can
be reformulated as:

〈qi, qj〉 =
{
0, ∀i, j, i 6= j

1, ∀i, j, i = j

where qi, qj are the ith and jth row vectors of Q.

Defining αk as the kth row vector of A, and re-writing
θk = 2πτk for the sake of brevity, the terms of the prod-
uct AAT are:

〈αi, αj〉 =
h∑

p=1

sin((2p− 1)θi) sin((2p− 1)θj)

+ cos((2p− 1)θi) cos((2p− 1)θj) (22)

〈αi, αj〉 =
h∑

p=1

cos((2p− 1)(θi − θj))

Considering i 6= j in equation (22), i.e. the terms outside
the main diagonal, we can solve 〈αi, αj〉 = 0, which has
the following general solution in terms of τ and h:

|τi − τj | =
1

4h
,
2

4h
, · · · , 2h− 1

4h
,
2h+ 1

4h
, · · · , 4h− 1

4h
.

Considering i = j in equation (22) result in 〈αi, αj〉 = h
regardless of the values θk, so the matrix Awill be similar
to an orthogonal matrix, more specifically:

AAT = ATA = hI. (23)

From the definition of the condition number and the
euclidean norm:

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

=
√
λmax(ATA)

√
λmax((A−1)TA−1),

where λmax(·) denotes the largest eigenvalue of the ma-
trix. Applying some matrix algebra and the result on
equation (23):

κ2(A) =
√
λmax(ATA)λmax((AAT )−1)

=

√
λmax (hI)λmax

(
1

h
I

)
=

√
h
1

h
= 1.

�
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y(t) = (δ(2ρ−1)+ δo)G(0)+
4δ

π

∞∑
n

1

n
sin(nπρ)

(
<{G(jnωo)} cos(nπρ−nωot)+={G(jnωo)} sin(nπρ−nωot)

)
(20)

e(t) = yref (t)−(δ(2ρ−1)+δo)G(0)− 4δ

π

∞∑
n

1

n
sin(nπρ)

(
<{G(jnωo)} cos(nπρ−nωot)+={G(jnωo)} sin(nπρ−nωot)

)
(21)

Proof (2) For a given number of harmonics h, consider
in equation (7) the differences between the consecutive
sample time fractions to be:

τk − τk−1 =
1

4h
, k = 2, ..., 2h

and choosing τ1 = 0, the set of τk is:

τ1 = 0, τ2 =
1

4h
, τ3 =

2

4h
, ... , τ2h =

2h− 1

4h
.

�

Proof (3) For the sake of brevity consider A = AB.
Then, since ‖E‖ = ‖AS‖ ≤ ‖A‖ ‖S‖ and S−Ŝ = A−1u:

∥∥∥S − Ŝ
∥∥∥

‖S‖
=

∥∥A−1u
∥∥

‖S‖
≤

‖A‖
∥∥A−1

∥∥ ‖u‖
‖E‖

= κ
‖u‖
‖E‖

being κ the condition number of A. Furthermore, ‖u‖ =∥∥∥A(S − Ŝ)
∥∥∥ ≤ ‖A‖

∥∥∥S − Ŝ
∥∥∥ and ‖S‖ ≤

∥∥A−1
∥∥ ‖E‖ im-

ply that:∥∥∥S − Ŝ
∥∥∥

‖S‖
≥ ‖u‖

‖A‖ ‖S‖
≥ ‖u‖

‖A‖ ‖A−1‖ ‖E‖
≥ 1

κ

‖u‖
‖E‖

�

Proof (4) Let Ax = b be the exact system of equations
and (A− E)x̃ = b− e the approximation due to uncer-
tainties in A and b. Let B = A−1E such that ‖B‖ < 1.
Then, considering also that (A− E) = A(I −B):

x− x̃ = A−1b− (A− E)−1(b− e)

= A−1b− (A(I −B))−1(b− e)

= A−1b− (I −B)−1A−1(b− e)

x− x̃ = (I − (I −B)−1)A−1b+ (I −B)−1A−1e

Therefore, by considering 1/ ‖x‖ ≤ ‖A‖ / ‖b‖:

‖x− x̃‖
‖x‖

≤
∥∥I − (I −B)−1

∥∥+

∥∥(I −B)−1
∥∥∥∥A−1

∥∥ ‖e‖ ‖A‖
‖b‖

‖x− x̃‖
‖x‖

≤
∥∥I − (I −B)−1

∥∥+
∥∥(I −B)−1

∥∥κ(A)
‖e‖
‖b‖

where κ(A) is the condition number of A. Since ‖B‖ < 1,
(I −B)−1 can be developed by Neumann series:

(I −B)−1 =

∞∑
k=0

Bk

Then: ∥∥(I −B)−1
∥∥ ≤

∞∑
k=0

‖B‖k =
1

1− ‖B‖

and similarly:∥∥I − (I −B)−1
∥∥ ≤ ‖B‖

1− ‖B‖

thus, considering also that ‖B‖ ≤ κ(A) ‖E‖ / ‖A‖:
‖x− x̃‖
‖x‖

≤ κ(A)

1− κ(A) ‖E‖ / ‖A‖

(
‖E‖
‖A‖

+
‖e‖
‖b‖

)

�

Proof (5) From the LS formulation, A is a rectangular
matrix and B a square matrix. The condition number of
the product is:

κ(AB) = ‖AB‖
∥∥(AB)†

∥∥
where M† denotes the Moore-Penrose pseudoinverse,
which can be expressed as M† = (MTM)−1MT . Devel-
oping the pseudoinverse for the product:

(AB)† = ((AB)TAB)−1(AB)T = (BTATAB)−1BTAT

= B−1(ATA)−1(BT )−1BTAT

since BT = B:

(AB)† = B−1(ATA)−1AT = B−1A†
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Therefore as ‖AB‖ ≤ ‖A‖ ‖B‖ and
∥∥(AB)†

∥∥ ≤∥∥B−1
∥∥∥∥A†

∥∥:

κ(AB) ≤ ‖A‖ ‖B‖
∥∥B−1

∥∥∥∥A†∥∥ = κ(A)κ(B)

As in Theorem 1 B is a square matrix with the maximum
eigenvalue being 1 and minimum 1/n therefore κ(B) =

n. Then, κ(A) = ‖A‖
∥∥A†

∥∥ and ‖A‖ =
√
λmax(ATA).

Since the construction of the matrix A is the same than
in Theorem 1:

〈αi, αj〉 =
{
0, ∀i, j, i 6= j

h, ∀i, j, i = j

where αk is the k-th row vector of AT . Therefore, ‖A‖ =√
h. And for

∥∥A†
∥∥ =

√
λmax((A†)TA†):

(A†)T =
[
(ATA)−1AT

]T
= A((ATA)−1)T = A(ATA)−1

and then:

(A†)TA† = A(ATA)−1(ATA)−1AT = A(ATAATA)−1AT

since ATA = hI,

(A†)TA† = A(h2I)−1AT =
1

h2
AAT

and as λmax(AA
T ) = λmax(A

TA), λmax((A
†)TA†) =

1/h obtaining:

κ(A) =

√
h
1

h
= 1

which makes κ(AB) ≤ n. �
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