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Thermoacoustic amplifiers are analyzed in the framework of nonreciprocal Willis coupling. The closed form
expressions of the effective properties are derived, showing that an applied temperature gradient causes the
appearance of a nonreciprocal Willis coupling. Even and nonreciprocal Willis couplings are exhibited already
in the first-order Taylor expansion of the solution and are of equal modulus but opposite sign, thus suggesting
that the even Willis coupling is a reaction to the nonreciprocity introduced by the temperature gradients. These
Willis couplings cause a coalescence point in the k space, which deviates from Re(k) = 0 (with k the wave
number) and is thus a zero-group-velocity point, as well as the opening of an amplification gap at low frequency.
Effective parameters and scattering properties are found in excellent agreement with experimental results. This
article paves the way to further control the acoustic waves at very low frequencies with nonreciprocal systems.

DOLI: 10.1103/PhysRevB.104.184109

I. INTRODUCTION

Swapping source and receiver has long provided identical
frequency responses due to reciprocity features, thus pre-
venting the possible tuning of the transmission coefficient
in opposite directions. In acoustics and elasticity, the reci-
procity of wave propagation can be broken via three means:
by using spatiotemporal dependent material properties [1], by
combining nonlinear properties with an asymmetry [2—4], or
by introducing an external bias [5,6]. Nonreciprocal devices
and their applications have recently been reviewed in Ref. [7].
Among the various possibilities offered by the introduction
of an external bias in acoustic systems, thermoacoustics,
although effective [8,9], is often neglected. Thermoacous-
tics is concerned with the thermal interaction between an
acoustic wave and the surrounding waveguide wall [10,11].
Although research in thermoacoustics has mostly been
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oriented towards the development of thermodynamic ma-
chines and the understanding of the phenomena controlling
their behavior—on the one hand, the thermoacoustic prime
movers (or engines) [12,13]; on the other hand, thermoacous-
tic heat pumps and refrigerators [14,15]—more fundamental
research has relied on the thermoacoustic amplification or
damping of acoustic waves in recent years. Quasiperiodic and
chaotic oscillations [16,17] or synchronization phenomena
involved in thermally driven autonomous oscillators [18,19],
thermoacoustic shock waves [20,21], and solitary waves [22],
thermoacoustic diode [8], or a PT -symmetric system [23]
have been the focus of a growing interest. Thermoacoustics
still appears to be overlooked as far as nonreciprocal systems
are concerned.

Meanwhile, Willis materials have received an increasing
interest since the publication of the seminal work [24], thanks
to their analogy with bi-isotropic electromagnetic metamate-
rials [25]. The Willis coupling parameters couple the potential
and kinetic energies in the acoustic conservation relations,
therefore enhancing the ability to control waves in these
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metamaterials compared to other materials that do not exhibit
such coupling. Three categories of Willis coupling parame-
ters have been highlighted: the even coupling related to the
structure asymmetry, the odd coupling related to nonlocal ef-
fect (although its existence is questioned for one-dimensional
systems), and the nonreciprocal coupling [26]. Only a few
nonreciprocal systems [1,27-29] have been modeled and an-
alyzed as Willis materials so far. Interestingly, nonreciprocal
Willis coupling was found to be nonzero already in the first-
order Taylor expansion of the solution, while even Willis
coupling was found to be nonzero in the second-order Tay-
lor expansion of the solution. None of these articles derived
closed form expressions of the coupling parameters and inves-
tigated the possible induced asymmetry by the nonreciprocity.

In this article we derive the closed form expressions of
the effective properties of a one-dimensional periodic arrange-
ment of a thermoacoustic amplifier following Ref. [30]. The
procedure relies on the Padé’s approximation of the total
transfer matrix that links the state vectors at both sides of the
unit cell and directly provides both even and nonreciprocal
Willis coupling terms. The analysis of the effective parameters
as well as the dispersion relation show that the system pos-
sesses a coalescence point in the k space [31] that resembles a
PT -broken phase and yields to zero-group velocity for given
temperature differences.

II. GENERAL STATEMENT

A. Wave propagation in a duct submitted to a
temperature gradient

Assuming an implicit time dependence e~ and following
Refs. [10,32], the equations that describe the acoustic wave
propagation in a duct of cross-sectional area S in the presence
of a longitudinal temperature gradient d7,,/0x are
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where p is the acoustic pressure, ¥ = S¢V is the volume
flow rate, with V the particle velocity and ¢ the porosity
across the waveguide, p,,, pm, and T, are the mean-state val-
ues (across the section) of the density, pressure (atmospheric
pressure), and temperature respectively, f, and f, are complex
frequency-dependent functions, which account respectively
for viscous and thermal losses [10] (see also Appendix A),
y 1is the specific heat ratio, and Pr is the Prandtl number.
Introducing the state vector W = (p, #)7, where T is the
transpose operator, these equations can thus be cast in the
matrix form

(1—f)(1—P)T, ax
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where p(x) is the effective density, C(x) is the effective com-
pressibility, i.e., the inverse of the effective bulk modulus
K(x), and ¢(x) is a “gain” term depending on the tem-
perature gradient d7,,/0x that represents the thermoacoustic
amplification/attenuation. The choice of the volume flow rate

]W — AW, 2)

as a second component of the state vector instead of the
particle velocity is motivated by the continuity conditions
(continuity of pressure and volume flow rate) at interfaces
between different materials and ducts of different cross sec-
tions. Note that the effective bulk modulus and density are
thus both divided by the waveguide cross section because of
the use of the volume flow rate as the second component
of the state vector. Thus, the effective bulk modulus and
density are bulk modulus per unit area (given in Pa m~?) and
density per unit area (given in Kg m~>). Note in addition that
the effective bulk modulus and density are spatially dependent
in an implicit way (but obviously frequency dependent), no-
tably because the fluid constants that appear in both functions
fv and f, depend on the temperature distribution 7;,(x). The
propagation matrix A depending on x and not commuting for
different values of x, the solution of the system Eq. (2), which
relates the state vector at a position [ to that at a position 0
via W(/) = M;W(0) involves a matricant M; that is evaluated
through a Peano series expansion [33]
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Of particular interest is the first-order expansion, which reads
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where p, C, and ¢ are the mean values of p(x), C(x), and
% (x) over the length [, i.e.,~ = % fol dx. This first-order itera-
tion corresponds to a first-order Taylor expansion of exp(Al),
when A does not depend on x. Introducing k = w/pC, the

determinant of Ml(l) reads in the first-order expansion
det (M{") = 1 + 91 + O[(k)™, (5)

which clearly shows that the system is not reciprocal in the
presence of the gain term, i.e., when 07,,/0x # 0. The term
&1 is a marker of the nonreciprocity that makes det(M;I)) #*
1. When ¢ =0 (.e., 8Tm{8x = 0), the system falls back
to reciprocal with det(M}1 )=1. The term G =1+ ¥I is
thus called nonreciprocity term in the following. In reality,
Eq. (4) relies on two assumptions and is O[(kl)?], i.e., the
system length is much smaller than the wavelength, but also
O[(91)?], i.e., the gain per unit length is weak. Effectively,
the dimensionless term ¢/ mainly depends on the temperature
gradient and is thus driven independently of k/. Note that
Eq. (5) turns out to be O[(kl)] but O[(¢1)?]. The determinant
does not depend on &/ and only depends on ¢/, thus empha-
sizing the central role of ¢! in the system nonreciprocity.

B. Calculation of the effective properties from the knowledge of
the transfer matrix of the unit cell

We assume a one-dimensional nonreciprocal and asymmet-
ric system composed of a d-periodic repetition of a unit cell of
respective propagation matrix A,. The system is homogenized
and A, does not depend on x. The state vectors at both sides of
the unit cell W(d) and W(0) are related to each other through
the 2 x 2 transfer matrix T = exp(A.d) of elements ¢;;, (i, j)
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FIG. 1. (a) Scaled representation of the unit cell together with the temperature distribution along the unit cell. The length of the
experimental cell is d = 195 mm. (b) Photography of the elements of the thermoacoustic cell and (c) schematic view of the experimental
setup for measuring the scattering matrix of the thermoacoustic amplifier.

€ [1,2]. Following Ref. [30] the propagation matrix is correctly approximated by the inversion of the first-order Padé’s

approximation of the matrix exponential,

1

2 2
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with Tr(T) = #;; + t,. Equation (6) directly provides the elements of a nonreciprocal Willis material
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where p, is the effective density, C, is the effective compressibility, x is the even Willis coupling, and x," is the nonreciprocal

Willis coupling, respectively, equal to

. —4i 30}
Pe = "od 1+ Tr(T) + det(T)’
40 = —2i t — 1t

When considering reciprocal systems, det(T) = 1 and thus
x2* = 0. The expressions of the effective parameters then re-
duce to those provided in Ref. [30]. In addition, for symmetric
systems #; = t», and as a consequence ./ = 0.

III. EXPRESSION OF THE EFFECTIVE PROPERTIES OF A
PERIODIC THERMOACOUSTIC AMPLIFIER

We consider a d-periodic thermoacoustic amplifier, the unit
cell of which consists of five elements in series of respective
lengths [;, j =1,...,5, such thatd = 23:1 lj, see Fig. 1(a).
The /,-long porous material, where the thermoacoustic effect
takes place (customarily called stack), is subjected to a tem-
perature gradient applied with the help of an ambient and

‘wd 1+ Tr(T) + det(T)” ¢
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(

hot heat exchangers (denoted AHX and HHX) of respective
lengths /; and /3. The heat exchangers impose a temperature
difference AT = Ty — T¢, between the hot Ty and the am-
bient 7¢ temperatures. The HHX is followed by an empty
tube of total length 4 + I5. The temperature distribution loops
back to the temperature of the AHX along the /4-long portion,
which is therefore called the thermal buffer tube (TBT). In this
study, the resulting temperature distribution is considered one
dimensional, homogeneous in the heat exchangers, and varies
linearly in the stack and the TBT, as depicted in Fig. 1(a). The
temperature gradient d7,,/0x is thus positive along the stack,
while it is negative along the TBT, here also with reference to
Fig. 1(a). No temperature gradient is applied on the elements
1, 3, and 5. These elements are thus reciprocal.
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The state vector at the end of the unit cell W(d) is related
to that at the other end W(0) via the full transfer matrix T
which is the multiplication of the five matrices modeling the
propagation along the five elements of the unit cell

W(d) = TW(0) = T,M'T, M;'T,W(©0). (9

where T; = exp(Al) is the usual transfer matrix along a dis-
tance [ with A the propagation matrix of the element, the
first-order Taylor expansion of which takes the form

k i7 Si 1 1
_ |: <fos( 1) [ sm(kl):| ~ |: za),oli| +0[(kl)2],
isin(kl)/Z  cos(kl) iwCl 1

(10)

where k is the wave number and Z is the impedance (divided
by the duct cross-sectional area in our case). Equation (10)
formally corresponds to Eq. (4) in the absence of gain term.
Viscothermal losses are accounted for in each element, see
Appendix A. Considering the first-order Taylor expansion of
the total transfer matrix elements, we end up with

2

= —————(pilh+ 02l +[p3l5 + Paly + pslsG41Ga),
d[1+g2g4](/)11 Pala+[p3l3 + pals + ps515G41G2)

Pe

2 _ _
C = m(csls +Culy + [C3lz+ Cola+ C111G21Ga),

o —ill — 2G4l
Xe = doll + GaGal’
o [ = GyGy4]

_ , 11
¢ doll+ GG4] (an

where all the effective parameters are in O[(kd)?].

This result calls for several comments.

First, all the effective parameters are impacted by the
nonreciprocal terms, notably via a common denominator
1 4+ G,G4. This denominator arises from the assumption that
both % and ¥, are O[(kd)]. This implies that p,S/py < 1
and K,S/yPy < 1 at low frequencies, where py and P, are,
respectively, the ambient (air) density and atmospheric pres-
sure. Please note that Eqgs. (11) also rely on the assumption
that Eq. (4) is O[(Zd)?]. Thus, G:Gs = 1 + %l +G4ls +
O[(4d)*] rigorously.

Second, the thermoacoustic amplifier appears as a Willis
material and exhibits both even and nonreciprocal coupling
parameters at the first-order Taylor expansion. This constitutes
a major difference with respect to laminate or resonant Willis
materials, which require second-order Taylor expansion to
exhibit Willis coupling [26,30].

Third, x¢ = —x.*, which implies that the top left element
of the effective propagation matrix is null in the first-order
expansion. The propagation matrix thus strongly resembles
Eq. (2). This suggests that the thermoacoustics’ fundamental
equations Eq. (1) are a specific form of those of a nonrecip-
rocal Willis material. Together with the second comment, we
conclude that the even Willis coupling arises from the asym-
metry of the temperature gradient and appears in reaction to
the nonreciprocity. This becomes clear when both temperature
gradients are of opposite sign so as to lead to %1, = —%,l4.
In this case, GrGs = 1 + O[(9d)?] and thus x¢ = —x> = 0
in the first-order expansion, while the system material orga-
nization is asymmetric. Both Willis coupling parameters only

depend on the temperature gradient and not on the material
asymmetry in the first-order expansion.

Fourth, when % and ¥, are both equal to zero, the effec-
tive parameters collapse to those of a usual laminate fluid
in the first-order expansion, with y/ = x.;* = 0. Note that
the Willis even coupling term does not vanish in that case
when second-order expansions are used because the unit cell
involves different materials and is asymmetric [30].

Fifth, the form of both p, and C, exhibits different cu-
mulative impacts of the temperature gradients. While the
temperature gradient impacts the following density terms,
i.e., the density terms following a nonreciprocal element are
multiplied by the product of all the preceding nonreciprocity
terms, it impacts the preceding compressibility terms, i.e.,
the effective compressibility terms preceding a nonreciprocal
element are multiplied by all the following nonreciprocity
terms. The effect of the temperature gradient on the density
derives directly from its flow source nature. Its effect on
the compressibility is more complex and can be analyzed in
the way that the temperature gradient acts as a volume flow
amplifier rather than a pure flow source, with the volume flow
rate depending on the previous compressibilities.

Sixth, both the even and nonreciprocal coupling parameters
are almost purely imaginary and nonzero at low frequency
for a thermoacoustic amplifier. The dispersion relation thus
exhibits at first glance a band gap at zero frequency that
is shifted along the imaginary wave-number axis, i.e., kX =

—iw| x| £ o/ —x2> + p.Ce, see Appendix B.

IV. EXPERIMENTAL AND NUMERICAL VALIDATIONS OF
THE EFFECTIVE PARAMETERS AND DISCUSSION

The experimental setup consists of a waveguide of rect-
angular cross section (2a x 2b = 1cm x 5cm) containing
either a single thermoacoustic cell or 15 identical thermoa-
coustic cells of length d = 19.5 cm in both cases, as depicted
in Figs. 1(a)-1(c). Only the results for the single-unit cell are
discussed in this section, while those for the 15 identical cells
are discussed in Appendix D. The stack is a cordierite sub-
strate with a pore density of 400 CPSI, of length [, = 15 mm.
Its pores are square of half-width r;, = 585 pm and its porosity
is ¢ = 0.85. The ambient heat exchanger is made of a section
of 1/8 in. aluminum honeycomb (porosity ¢ = 0.945), with
l; = 15 mm, used to ensure a uniform temperature distribution
over the cross section. The hot heat exchanger is a section
of the stack material of length /3 = 3 mm supporting a re-
sistive wire providing sufficient heating power to maintain
temperature up to 7y = 373 K. The TBT is assumed to be
of length /4 = 23 mm. The thermoacoustic system is placed
between two waveguides of the same cross section for the
measurement of the scattering matrix by means of the two-
source method [34]. As illustrated in Fig. 1, each of these
measurement sections consists of a straight 1.2m duct, on
which a pair of 1/4 in. microphones are flush mounted, a
moving coil loudspeaker is side mounted in a small enclosure,
and ends with an anechoic termination. Each microphone pair
is separated by a distance of 65 cm, allowing measurements
in the 10 to 200 Hz range, provided that they have been
precisely calibrated (both in amplitude and phase) to limit
the errors on the measured and calculated quantities [35]. A
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FIG. 2. Real and imaginary parts of the even Willis coupling parameter (a) and (b), normalized density (c) and (d), normalized bulk modulus
(e) and (f), and nonreciprocal Willis coupling parameter (g) and (h) for AT = 0K (blue curves), AT = 22 K (cyan curves), AT = 42K (green
curves), AT = 75K (orange curves), and AT = 100K (red curves). Real and imaginary parts of the dispersion relations (i) and (j). The inset
of (i) shows a zoom on the real part of the dispersion relation at low frequency. The results depicted with solid curves are calculated with the
expressions given in Eq. (11), the dashed curves represent the numerical evaluation with the transfer matrix method, and the circles depict the

measurements.

relative calibration is therefore realized using a homemade
small cavity coupler. The low frequency anechoic termina-
tions attached to the measurement sections consist of a larger
cavity (1.5cm x 7cm) with an adjustable length closed by
stainless steel wire mesh screens [36]. The reflection coeffi-
cient of such terminations has an amplitude lower than 5%
in the frequency range of interest, which is a sufficiently low
value for the needs of this study. The sources are driven at
amplitudes that generate sufficiently low acoustic pressures to
ensure a linear system behavior during all measurements.
Figures 2(a)-2(h) depict the real and imaginary parts of
the even and nonreciprocal Willis coupling parameters, nor-
malized density, and bulk modulus as evaluated from the
expressions given in Eq. (11) (solid curves), from the direct
calculation with the transfer matrix method (see Appendix C

and indexed by num) (dashed curves), and as measured (see
Appendix B) (open circles) for AT = 0K (blue curves),
AT = 22K (cyan curves), AT = 42K (green curves), AT =
75K (orange curves), and AT = 100K (red curves). Note
that the direct calculation with the transfer matrix method is
conducted by discretizing the stack and the TBT (subjected
to temperature gradients) in piecewise constant elements. All
curves are found in good agreement. Slight discrepancies are
nevertheless noticed, notably for the normalized bulk mod-
ulus [see Fig. 2(e)], which are attributed to the assumption
of the linear variation of the temperature distribution, but
also to the measurement difficulties at very low frequency.
As pointed out in the previous section, the two Willis cou-
plings are almost purely imaginary at low frequencies and
are of equal modulus but opposite sign. Interestingly, the
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FIG. 3. Transmission and reflection coefficients along the ampli-
fication, T and R* (a) and (c), and attenuation, T~ and R~ (b) and
(d), directions, for AT = 0K (blue curves), AT =22K (cyan
curves), AT = 42K (green curves), AT = 75K (orange curves),
and AT = 100K (red curves). The results as calculated with the
expressions given in Eq. (11) are depicted with solid curves, as
numerically evaluated from the transfer matrix method are depicted
with dashed curves, and as measured are depicted with the curves
marked with circles.

Willis coupling parameters do not vanish at low frequency
as it is the case for laminate structures or detuned Helmholtz
resonators [30]. When AT = 0K, " = x¢ = xpum = 0, but
Xmum 7 0 although very small. This comes from the fact that
Xom captures the second-order expansion element which ac-
counts for the material asymmetry [30]. While the numerically
evaluated effective parameters are in good agreement with the
measured parameters whatever the temperature gradient, the
parameters given in Eq. (11) slightly deviate from both nu-
merical and experimental results with increased temperature
differences, mainly at low frequencies. This is particularly
visible on the Willis coupling and is due to the use of the
first-order Peano series expansion, for which the gain term
is approximated by its mean value. Effectively, the only use
of the mean value can become too harsh an approximation
when the temperature gradient becomes large. This is a direct
translation of the assumption that Eq. (4) is O[(¢1)*]. Nev-
ertheless, the overall trend is correctly captured. This is also
visible in Figs. 3(a)-3(d), which depict the absolute values of
the reflection and transmission coefficients for each incidence,
i.e., that where amplification occurs 7" and R and that where
attenuation occurs 7~ and R™. Note that the transfer matrix is
calculated via Padé’s approximation when A, is used, thus val-
idating the derivation of the expressions given in Eq. (11), i.e.,
(I—A.d/2) 'd+ A.d/2). When AT = 0K, the structure is
symmetric R = RT = R~ and reciprocal T = T+ =T~ and
is almost acoustically transparent, i.e., |R| = 0 and |T'| ~ 1.
As the temperature difference increases, |R™| is different from

[R™| which translates the asymmetry of the configuration
and emphasizes the need for even Wills coupling parameters.
Note that the even Willis coupling parameter is mainly driven
by the asymmetric temperature gradient. Nevertheless, the
amplitudes of both reflection coefficients are low, although
increasing with the temperature difference. As a corollary, the
amplitude of the transmission coefficients is quite large, the
structure being almost acoustically transparent in the absence
of a temperature gradient. Interestingly, the amplitude of |T |
is greater than unity, the larger the temperature difference.
Conversely, the amplitude of |7~| is smaller than unity, the
larger the temperature difference. This is a direct indication
of the nonreciprocity and of the amplification and attenuation
directions. This difference highlights the need for the nonre-
ciprocal Willis coupling parameter.

The real and imaginary parts of the dispersion relations
are depicted in Figs. 2(i) and 2(j), respectively. The higher
the temperature difference, the more asymmetric k;'[, which
translates the nonreciprocal nature of the configuration. The
trajectories of both k¥ are modified when a temperature gradi-
ent is applied. In particular, both k" are shifted in the negative
Im(k) space at low frequencies. Thus, & is amplified while
k; is attenuated. When Im(k}") crosses back to the positive
half Im(k) space, i.e., no amplification is observed anymore,
|T*| moves from values larger than 1 to values lower than 1
because the structure is almost acoustically transparent. This
is highlighted by the magenta arrows, Figs. 2(j) and 3(a),
when AT = 75K, for example. A coalescence point in the
k space, where both k are equal, is reached for a temperature
difference around AT = 75K as pointed out by the black
arrows in Figs. 2(i) and 2(j). A zero-group-velocity point is
reached at this frequency, where both modes are amplified,
ie., Re(k¥) > 0, while Im(k¥) < 0 at this frequency. This
is due to the almost purely imaginary nature of both Willis
coupling parameters as explained in Sec. III. This zero-group-
velocity point is purely due to the even and nonreciprocal
Willis coupling parameters and does not translate into the
effective compressibility and density, as assumed in Ref. [9].
In practice, the even Willis coupling parameter is usually
purely imaginary at low frequency, see Ref. [30] for exam-
ple, and thus a band gap can be opened at zero frequency.
Nevertheless, the even Willis coupling is usually nonzero
in the second-order Taylor expansion for purely asymmetric
laminated or resonant structures and usually vanishes notably
in the case of Helmholtz resonators. This band gap is thus
rarely or never noticed. The story is completely different in
nonreciprocal systems, in which the even coupling is nonzero
already in the first-order expansion and does not necessarily
vanish at low frequencies. It is also accompanied by the non-
reciprocal Willis coupling that shifts the mode in the Im(k)
space. This behavior was already noticed at much higher
frequencies and at a higher pass band in Ref. [27]. This
coalescence point in the k space does not seem to translate
into a particular behavior of the scattering matrix, although
the reflection and transmission coefficients present inflection
points at a frequency that is close. Interestingly, the k;~ branch
presents infinite group velocity points for lower frequencies
and higher temperature differences, which find translation
neither in the effective parameters, nor in the scattering
elements.

184109-6



NONRECIPROCAL AND EVEN WILLIS COUPLINGS IN ...

PHYSICAL REVIEW B 104, 184109 (2021)

V. CONCLUSION

A periodic one-dimensional thermoacoustic amplifier is
analyzed as a Willis material. The closed form expressions of
the effective properties are derived from Padé’s approximation
of the total transfer matrix that links the state vectors at both
sides of the unit cell. A first-order Taylor expansion of the
transfer matrix elements is sufficient to derive the effective
properties notably both the even and nonreciprocal Willis
couplings. The odd Willis coupling is absent, while the even
Willis coupling is found to be only related to the asymmetry
of gain, i.e., the temperature gradient that is applied to the
unit cell, already in the first-order expansion. Even and non-
reciprocal Willis couplings are found of equal modulus but
opposite sign, which suggests that the even coupling appears
as a counter reaction to the nonreciprocal coupling and that
the thermoacoustics fundamental equations describe specific
forms of Willis materials. We show that both Willis couplings
are almost purely imaginary at low frequencies, thus enabling
a zero-group-velocity point and more importantly the opening
of an amplification band at vanishing frequency. The effective
parameters and scattering properties of a single unit and a
15 units system are validated against experimental results.
These results pave the way for a better physical understanding
of Willis couplings in nonreciprocal systems, for easing the
engineering application of Willis materials, and for various
applications of such systems to further control the acoustic
waves at very low frequencies. Concurrently, this article also
aims at promoting thermoacoustics as an excellent mean to
design nonreciprocal systems.
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APPENDIX A: EXPRESSION OF THE EFFECTIVE
PROPERTIES IN THE PRESENCE OF VISCOTHERMAL
LOSSES

The viscothermal losses are accounted for in the differ-
ent elements composing the unit cell through the complex
functions f, and f,. These functions describe the viscous
and thermal couplings between the oscillating gas and the
surrounding solid walls [10,37] and are defined for various
geometries of the waveguide channels (i.e., the waveguide

J

[—11 ZKTI;Z()):[
)

itself in the case of an empty duct such as the TBT, or the pores
of a porous material, as in the case of the stack or the heat ex-
changers). Considering 4, , the frequency-dependent viscous
and thermal acoustic boundary layer thicknesses given respec-
tively by 8, = /2 /w and 8, = ~/Pré,, classical results for
cylindrical channels of radius r (adequate approximation for
the honeycomb heat exchangers) yield

_ 2 Jl[(l+ 1)”/8\),1(]
(i 4+ Dr/8y, Jol(i + Dr/8y [’

where J,, is the nth order Bessel function of the first kind and

for rectangle channels of dimension 2a x 2b (such is the case

of the empty waveguide and for the stack square channels
where a = b = ry):

8 ? v,k
fU,K:1_<;> Z Fm:nv

m n

Jox (A1)

(A2)

withm,n =1,3,5, ... and where

2 —1
o = (e |y o 2 (B ) [E £
' 2\ r (a+b)?

(A3)

with » = 2ab/(a + b) the characteristic length of the channel.
The temperature dependence of the fluid (in this instance air)
is accounted for through the variations of its viscosity and
thermal conductivity following Ref. [38].

APPENDIX B: RECOVERY PROCEDURE OF THE
EFFECTIVE PARAMETERS FROM THE MEASURED
REFLECTION AND TRANSMISSION COEFFICIENTS

The two state vectors at both sides of the L-thick sample,
whose propagation matrix is assumed to be independent of x
by definition, are related by

W(L) = exp(A,L)W(0) = Vdiag(e® L)V'W(0), (B1)

where diag is the diagonal matrix, ©* are the eigenvalues of
A., and V is the corresponding eigenvector matrix. For an
asymmetric and nonreciprocal Willis material, the constitutive
matrix of which is given by Eq. (7), ¥% = ik* = iwx™ +

iy (x)? + p/K = iwx™ + iwo, and

v-! 1 [ 1/Ko (o0 — X“)/U:I

T V2l-1/Ko (o +xD/o

From the expression of %, the link with anisotropic fluid [39]
becomes clear via the terms iwy™. Introducing Z* = K (o +
x), left-multiplying Eq. (B1) by V~!, and expressing the
state vectors in terms of the scattering coefficients RY, T,
R~,and T~ [see Fig. 1(b)], leads to the two following systems
of equations:

(B2)

L Z—eE+L 1+R+
= mﬂ} ((1 - R*)/Zo>’

L Z—eE+L T—
TLzter L <—T_/Zo)’

(B3)

184109-7



COME OLIVIER et al. PHYSICAL REVIEW B 104, 184109 (2021)

where Z is the impedance (divided by the duct cross-sectional area in our case) of the surrounding fluid. Introducing r* =
(Zo + Z%)/(Zy — Z7), these equations can be inverted to yield

—(RTR~ =TT~ + 1)+ (RFR- —T+T~ + 1) —4R*R~

rt = ,
2Rt
. —(R*R =T T~ + 1) £ (R*R~ —T+T~ + 1)* — 4R*R-
r= ,
2R~
pioot _ TR e RTArORTT A1) -
T Rt 4+t N (T—)r+ '

(

When Tt =T~ =T, this set of equations collapses to that APPENDIX C: DIRECT NUMERICAL CALCULATION OF
derived in [30] for reciprocal system. From these equations, THE EFFECTIVE PROPERTIES FROM THE TOTAL
Xexps Xexp» Kexp, and pexp are subsequently recovered. Spe- TRANSFER MATRIX

cial attention must be paid to the choice of the sign in the
first two equations and to folding arising when L = Nd,
N e N.

Once the total transfer matrix T is calculated, it is di-
rectly assimilated to exp(A.d), A, being homogenized. From
Eq. (B1), it is clear that the eigenvectors of T and A, are

SSC®O T Sz,

‘ 5 .
50 100 150 200
Frequency (Hz)

200 200
<150 <150
=z =
> >
2100 2100
<5} [}
= =
o o
= =
= 50 = 50

£ -5

)
0 50 100 150 200~ “0 50 100 150 200
Frequency (Hz) Frequency (Hz)

Im(ke)d/n

o AT =0K, - AT =25K, o AT =60K, o AT =90K

FIG. 4. Real and imaginary parts of the even Willis coupling parameter (a) and (b), normalized density (c) and (d), normalized bulk modulus
(e) and (f), and nonreciprocal Willis coupling parameter (g) and (h) for AT = 0K (blue curves), AT = 22K (cyan curves), AT =42K
(green curves), AT = 45K (orange curves), and AT = 100K (red curves). Corresponding transmission and reflection coefficients along the
amplification, T+ and R™ (i) and (k), and attenuation, 7~ and R~ (j) and (1), directions. Real and imaginary parts of the dispersion relations (m)
and (n). The results depicted with solid curves are calculated with the expressions given in Eq. (11), the dashed curves represent the numerical
evaluation with the transfer matrix method, and the circles depict the measurements.
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identical and that the exponential of the eigenvalues of A.d

are the eigenvalues of T. We immediately end up with
1

Alm — EVdiag[log(Ai)]V—', (C1)

where A* are the eigenvalues of T and V is the associated

eigenvector matrix. The four quantities x.n .. X oum> Pnum, and
K,um are subsequently evaluated.

APPENDIX D: EXPERIMENTAL AND NUMERICAL
VALIDATION IN CASE OF A SAMPLE COMPRISING
15 UNIT CELLS

Experimental validation was also conducted with a sam-
ple comprising 15 unit cells, see Fig. 1. In this case, the
construction of the unit cell is slightly different from that
considered in Sec. IV. The stacks are the same as in the
single cell system. Both ambient and hot heat exchangers
are made of a /; =3 = 15mm section of the same 1/8 in.
aluminum honeycomb (porosity ¢ = 0.945), used to ensure a
uniform temperature distribution over the cross section. The
ambient T¢ and hot Ty temperatures are imposed on the heat
exchangers through the 1-mm-thick stainless steel walls of the
waveguide, thanks to Peltier cooler modules for the cold side
and polyimide heaters for the hot side, applied on each face of
the waveguide. Due to the different heating system, the TBT
is here considered of length I, = 11.3 cm, the overall length
of the cell remaining d = 19.5 cm. The sample total length is
thus L = 15d = 292.5cm.

Figures 4(a)—4(h) depict the real and imaginary parts of
the even and nonreciprocal Willis coupling parameters, nor-
malized density, and bulk modulus as evaluated from the

expressions given in Eq. (11) (solid curves), from the direct
calculation with the transfer matrix method (see Appendix C)
(dashed curves), and as measured (see Appendix B) (curves
marked with circles) for AT = 0K (blue curves), AT = 25K
(cyan curves), AT = 60K (orange curves), and AT = 90 K.
Note again that the direct calculation with the transfer matrix
method is conducted by discretizing the stack and the TBT
(subjected to temperature gradients) in piecewise constant
elements. Some drops are visible, notably on the normalized
density and bulk modulus, which are due to Farby-Perot res-
onances, which blur the reconstruction around 60, 120, and
180 Hz. Figures 4(i)—4(l) depict the absolute values of the
reflection and transmission coefficients for each incidence,
i.e., that where amplification occurs 7+ and R and that where
attenuation occurs 7~ and R~. The Fabry-Perot resonances
are clearly visible around 60, 120, and 180 Hz. Note that
the transfer matrix is this time calculated via exp(A,L) when
A, is used, because L is no longer small with respect to the
wavelength. The real and imaginary parts of the dispersion
relations are depicted in Figs. 4(m) and 4(n), respectively.
Slight discrepancies are again noticed for each subfigure,
notably for the normalized bulk modulus and for large AT,
which are attributed to the assumption of the linear variation
temperature distribution, but also to the very low frequency
range of the measurements. Comments are similar to those
already reported for the case of a single cell, notably with the
presence of the coalescence point. Note that the amplification
and attenuation are more pronounced and more visible on
T* and T~ this time and that the amplitude of the reflection
coefficients are not small this time. This result validates the
effective properties derived in Eq. (11) and assumption of
one-dimensional system.
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