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The fact that the popular head loss coefficient concept, may become negative in branched junctions, is a
symptom that something is not correctly managed. The paper makes a review of recent works which have
sought new models based on physical concepts, as a way to avoid speaking about ‘‘negative losses”.
Herwing and Schmandt [1], showed that the origin of the negative sign was a diffusive shear work
exchange between the two streams of a branched junction. Traditionally, the head losses at the branched
junctions are neglected, but definitely it cannot be done in HVAC air-duct networks.
Firstly, the paper illustrates how, by ignoring this ‘‘negative loss” contradiction, traditional duct net-

work analysis may encounter unexpected numerical difficulties. Secondly, it shows that the Minimum
Energy Dissipation Principle (MinEDP) can be successfully applied to analyze the steady-state of any flow
network (not necessarily HVAC ductworks), with or without shear work at junctions. Moreover, the new
method does not need to know the latter, beforehand, although the nature of the solution is very different
in either case.
Finally, the paper includes a practical example of an HVAC ductwork to illustrate the outcomes. The

new method works smoothly and quickly and does not need any ad hoc modification to cope with an
eventual ‘‘negative” head loss.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation, goals and the MinEDP

Within the EU project EE-Metal [3], seven partners belonging to
the metal-mechanic sector (from France, Italy, Poland and Spain),
collaborated between 2016–2019 in searching for energy efficiency
measures stemmed from field-based audits. Document D2.6 of [3],
HVAC section, concludes that ventilation sub-systems have a big
improvement potential. Besides the energy saving target, the
unprecedented covid-19 pandemic has also put the focus on the
relationship between the ventilation systems and human health.
Just to mention one of the many concerns; most of the ‘‘airborne
infection isolation rooms (AIIR)” also known as ‘‘negative-
pressure rooms” in hospitals were checked, and it was discovered
that they were not so negative or even had a positive pressure. This
flaw was already known many years before covid-19 (see [4]), but
it was just overlooked. Dealing with the AIIR performance and the
EE-Metal objectives, implies the correct analysis of flow HVAC duct
networks.

Providing the engineering practitioners with good HVAC-
ductwork analysis tools is, thus, crucial. During the development
of the tools using standard techniques, some unexpected difficul-
ties came across (see Appendix A). They were bypassed by an ad
hoc patch, but it did not seem a neat solution.

� What is the origin of the troublesome eventualities?
� Is there any generalized method for dealing with them?

The short answer to the first question is the existence of a work
interaction at the branched junctions. The head loss at the
branched junctions is usually discarded but, in air duct systems,
it cannot be done. This interaction sometimes shows up as a nega-
tive head loss coefficient. This eventual negative sign was the source
of our difficulties. Despite a negative head loss looks indicative that
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Nomenclature

Acronyms
�v Average velocity m=s½ �
Dp Pressure drop Pa½ �
_D Diffusive shear work exchanged between the streams of

the junction W½ �
_SD Entropy production rate W=K½ �
F Generalized local energy rate function per unit volume

flow rate Pa½ �
A Cross-sectional area m2

� �
a,a0 Correction factors
C Coefficient
d Diffusive shear work exchanged between the streams of

the junction per unit mass flow rate J=kg½ �
d13 Diffusive shear work received by a stream flowing from

r to t J=kg½ �
em Mechanical energy per unit mass J=kg½ �
F Generalized global energy dissipation rate per unit vol-

ume flow rate Pa½ �
f D;i Darcy’s friction factor at straight conduit at the i-section

of the network
g Linear map between the independent variables and the

flow ratios at each network section
h Function which maps each component of its argument

to its absolute value
K Energy dissipation factor per unit of mass J=kg½ �
mfit The Afzal’s universal relation for the Darcy’s friction fac-

tor is fitted to the power law: f D ¼ Kfit � Remfit

/ (see the
details in [2])

nsect Amount of sections in the network

Greek Symbols
a Non-dimensional correction factor for the kinetic en-

ergy
_U Energy dissipation rate W½ �
m Kinematic viscosity kg � s�1 �m�1

� �
wi Volume flow rate ratio at section i, wi ¼ _Vi= _VT

q Density kg=m3
� �

u Energy dissipation per unit mass J=kg½ �

Superscripts
y External model for energy dissipation
_ The magnitude per unit timeb The magnitude per unit volume

Subscripts
ij Magnitude referred to the flow rate flowing through

and
u Pure dissipative
aux Auxiliary
d Shear work exchange
eq Equivalent
sol Solution
T Total
t Test point
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something is not correctly managed, it has been overlooked for
long because of its ‘‘hidden” nature (see subsection 2.1).

The response to the second question, is the use of the Minimum
Energy Dissipation Principle (MinEDP). The detailed explanation of
the theory behind the MinEDP is out of the paper’s scope. The
interested reader may find many literature elsewhere. A chapter
in book [5] summarizes the idea as: ‘‘The concept of minimum
energy dissipation rate principle is that, when an open system is
at a steady non-equilibrium state, the energy dissipation rate is
at its minimum value. The minimum value depends on the con-
straints applied to the system. If the system deviates from the
steady non-equilibrium state, it will adjust itself to reach a steady
non-equilibrium state. The energy dissipation rate will reach a
minimum value again.” In other words, once one or more volume
flow rates are fixed (see [6]) the flow distribution and pressure
drops correspond to the minimum of the energy dissipation
allowed by any constraints.

This paper is based on our previous works [2,6] for dissipating
flow networks without shear work exchange and extends the out-
comes to general networks with internal work exchange at their
branched junctions.
1.2. The new paradigm which extends the steady state flow
distribution analysis

The traditional method based on the energy balances (Bernoul-
li’s equation), checks that the head loss between two points of a
network is the same regardless of the path.

Unfortunately the current definition of the junction head loss
coefficients, allows negative losses and, roughly, it may eventually
lead to a negative hydraulic resistance inside a square root, thus
crashing prematurely the search process for the solution. In short
2

or simply stated: the classical concept of hydraulic resistance
breaks down when branched junctions are included. Thus, any
method which uses this concept has to cope with this internal flaw.
However, our proposal based on the MinEDP leads to a unifying
extremal principle which finds exactly the same solution as before,
but in a very robust way.

Moreover, like other extremal principles in physics, it provides
new insights about the problem. For instance, the work by Herwing
and Schmandt [1] implicitly suggests that the correct modeling of
the physical phenomena inside a branched junction needs three
parameters (two dissipations and one work exchange) while for
classical methods just two (the head loss at each branch) suffice
to do the job. The MinEDP reconciles both views. Unfortunately,
its proof is not straightforward and it will be done in another
paper. Therefore, this paper is not about just a new or better way
of doing the same old things. It additionally shows that the tradi-
tional solution is located at the minimum of the energy dissipation
function, with the work exchanged at the branched junctions as an
implicit internal constraint and proposes a solution method which
deals smoothly with this constraint.

To our knowledge, this is the first practical formulation of an
extremal principle which includes the effects of branched
junctions.

In our opinion this paper could also be, along with [2] [6], a
turning point about the way engineers deal and understand the
flow distribution in networks.
1.3. Structure of the paper

Next Section 2 explains the details of the new method. Subsec-
tion 2.1 reviews the state of the art of modeling branched junc-
tions. It shows how several authors have pointed out the need



Fig. 1. External or conventional model. (A) Converging T-junction (B) Diverging T-
junction. 1 common port, 3 main port, 2 branch port.
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for a better model or understanding than just the head loss coeffi-
cient. Through a simple example, Appendix A shows how the neg-
ative sign of the coefficient, leads to computational difficulties.
Based on this difficulties, subsection 2.2 compares a new branched
junction model with the traditional one. The Bernoulli’s equation is
modified using this new model in subsection 2.3. The next two
subsections 2.4 and 2.5 are key to prove that the MinEDP is equiv-
alent, under certain conditions, to the modified Bernoulli’s equa-
tion, developed previously in Section 2.3. Up to this point the
proof is performed on an instance of a tree-shaped network for
exposition simplicity. Subsection 2.6 generalizes the previous out-
comes to any network type.

Section 3 briefly elaborates on the previous outcomes and some
additional ideas.

Finally, Appendix B, illustrates the application of the MinEDP
method through an example. Incidentally, Appendix B.1 clarifies
the relationship among the traditional dissipation1 buy (commonly

known as pressure drop Dp), the head loss coefficient2 bC and the

energy factor bK y.
To get a much more detailed idea about the whole MinEDP

development, the reader is strongly referred to our previous works
[2,6].

2. Methodology

2.1. Branched junctions: review and state of the art

The well-known methods for flow network analysis neglect the
interaction effect at the branched junctions. However this is not
always possible as in HVAC ductworks. Recently, Meulman’s thesis
[7] mentions that the interaction is important in many types of
networks not only HVAC ductworks. Meulman also studies how
to modify the conventional methods to incorporate the junctions.

Jaroslav Stigler [8] published an interesting and critical paper
about the traditional model of the T-junctions. He argued:‘‘They
have not changed for more than 50 years. They have been derived
on the base of unrealistic assumptions.”. Assuming that all ports
are at the same height (see Fig. 1): The energy losses, for the
diverging case, are empirically evaluated based on the energy bal-
ance Eq. (1):

_U ¼ q � _V1
a1�v2

1

2
þ p1

q

� �
� q � _V3

a3�v2
3

2
þ p3

q

� �
� q

� _V2
a2�v2

2

2
þ p2

q

� �
ð1Þ
1 for coherence, we keep the nomenclature close to [1,2] buy (see ahead).
2 I d e l c h i c k h e a d l o s s c o e f fi c i e n t f c o r r e s p o n d e n c e

C ¼ buy= q�v2=2
	 
 ¼ f ¼ Dp= q�v2=2

	 

.

3

after discounting the losses due to the straight conduits (also
known as friction losses), _Ufitting (also known as shape losses) is
obtained and the head loss coefficient CP of the fitting, is defined with
respect to the common port r as:

_Ufitting ¼ q � _V1 � CP � aa�v2
1

2
¼ _V1 � bCP � aa�v2

1

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}buy

¼ buy � _V1 ¼ uy � _m1 ð2Þ

In practice a single value is not enough to characterize the junc-
tion, thus:

CP ¼
_V3

_V1

CP31 þ
_V2

_V1

CP21 ¼ w � CP31 þ 1� wð Þ � CP21 ð3Þ

where CP31 and CP21 are the traditional head loss coefficients in each
branch referred to the common one r. Stigler was conscious about
the problems related with this split: ‘‘They (the head loss coeffi-
cients) could be less than zero therefore they cannot be treated as
loss coefficients”. This has caused historically discussions among
researchers (see [9–11]). Stigler’s alternative was to use external
and physically meaningful magnitudes: CP and the momentum
coefficient CM , which measures the force component exerted by
the fluid over the junction in the direction of the common conduit.
Unfortunately, although in [12] he shows how to estimate them,
there is no clear practical application. In a recent review [13] of
the Rennels and Hudson book, it is shown how CP and CM can be
used along with semi-empirical correlations to obtain the tradi-
tional CP31 and CP21 (see chapter 16). In [14,15] experimental setups
are described. Dordevic et al. [16] made an important effort to char-
acterize the shape losses using exclusively the dissipation function.
Unfortunately, for branched junctions, they forgot to include the
key term shown in Eq. (4):

_D ¼
Z
A
s �~v � d~A ð4Þ

The meaning of _D is the diffusive work transfer between the two
branches as a consequence of the shear stress tensor s. This term
may cause CP31 or CP21 to become negative. Gan and Riffat [17] tried
to obtain both coefficients from CFD, but later on, Schmandt and
Herwig [1] made something similar but, in our opinion, muchmore
enlightening. Their model included Eq. (4), in a ingenious way: a
tracer variable was used to distinguish both streams. In doing so,
they could compute the diffusive work power _D exchanged (or
their work interaction, for short) and also assign different energy
dissipation to each branch. They named the volumetric form of

Eq. (4) _D000 ¼ r � s � v
� �

, the local stress work rate and its specific

value per unit of mass was called d ¼ R _D000 � dV= _m. Moreover Her-
wig and Schmandt [18,19] proposed to relate, directly, the losses
with the entropy production. The energy dissipation3 and the

entropy production are related by u ¼ T= _mð Þ � _SD. This relationship
allows to identify where the dissipation is taking place (see [20]).

Herwig and Schmandt’s ideas will be used in subsection 2.2 to
define a model which fulfills the Stigler’s target. Unfortunately, it
might seem that a CFD calculation is needed to make the Herwig
and Schmandt’s split, thus pushing the solution of the problem
back to the start. However, conceptually, it is a crucial step. In
another paper, it will be proven that, in fact, no CFD is really
needed. Anyhow, in practice, the traditional coefficients suffice
and, in agreement with Herwig and Schmandt, they should be
renamed as head change coefficients.
3 The difference between uy and u will be explained ahead



Fig. 2. Internal model: (A) Converging T-junction (B) Diverging T-junction. 1
common port, 3 main port, 2 branch port.
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2.2. The internal, external and dissipation model of a branched
junction

This section contains, partially, knowledge which is not wide-
spread in the field. It will be presented in a suitable way for a better
understanding.

On one hand, the traditional head change (formerly loss) coeffi-
cients of many junction types, can be found in a very well-known
handbook by Idelchik (note: many editions exist, [22]). This tradi-
tional model will be called extern because its parameters can be
directly measured in the lab. For a two branched junction, it
requires only two: the head change on each branch.

On the other, there exists a new proposal by Herwig and Sch-
mandt [1] that will be called internal, which requires four parame-
ters, instead of the previous two.

Finally, regardless of the model chosen, all the parameters can
be referred to the flow rate at the common branch or to the flow
rate at the corresponding branch.

Let’s review the internalmodel. Comparing the traditional exter-
nal model of Fig. 1 and the internal model shown in Fig. 2 the dif-
ferences should be clear: the latter has an extra symbol _D and the
u has no y superscript. As mentioned in subsection 2.1, _D is the dif-
fusive shear work exchanged between both streams and its value
per unit of mass flow rate is written d ¼ _D= _m. For the convergent
junction ( Að Þ in Fig. 2) the energy balance equation per unit of mass
is written as4 (see [1]):

em;3 � em;1 ¼ p3
q � p1

q þ a3 �v2
3

2 � a1 �v2
1

2 þ gz3 � gz1 ¼ u31 � d31 ¼ uy
31

em;2 � em;1 ¼ p2
q � p1

q þ a2 �v2
2

2 � a1 �v2
1

2 þ gz2 � gz1 ¼ u21 � d21 ¼ uy
21

ð5Þ
The Herwig and Schmandt’s split allows to assign the dissipa-

tion and the work exchanged to each stream independently. The
tracer variable used in their CFD generates a virtual boundary
between both streams. By em we mean the energy per unit mass.
Now the relationship between the formerly head loss uy and the
actual energy dissipation u can be clearly stated as:

uy ¼ u� d ð6Þ
Therefore the conventional methods do not split the pure dissi-

pation u, which is an actual loss, from the diffusive work
exchanged d. They just misinterpret uy as a loss. At first sight, it
seems that a CFD computation is needed to make such split (as
Herwig and Schmandt [1] did) but it is not. This paradox is quite
hard to work out, but by using the MinEDP and the conventional
head change (loss) coefficients, it can be proven that is actually
possible to solve for d. However, the details fall out of the paper
scope. Well, in fact, since _D is an internal work exchange, d31 and
d21 are not independent. Their relationship is:

_m3 � d31 ¼ � _m2 � d21 ¼ _D ¼ _V3 � bd31 ¼ � _V2 � bd21bd31 � _V3 þ bd21 � _V2 ¼ 0
ð7Þ

So now, there seems that the internal model still has three inde-
pendent parameters and thus, an extra degree of freedom remains.
Otherwise stated, many internal combinations of the dissipation
and work exchanged may lead to the same head change (loss) coef-
ficients. However this is not so, because the MinEDP closes the
problem.

Eq. (7) for a branched junction, given _m1 ¼ _m2 þ _m3 and defin-
ing the flow rate ratio w2 ¼ _V2= _V1 ¼ _m2= _m1 can be written per unit
volume or mass as follows:
4 a � 1 for turbulent flows

4

bd31 � 1� w2ð Þ þ bd21 � w2 ¼ 0
d31 � 1� w2ð Þ þ d21 � w2 ¼ 0

ð8Þ

Logically, since 0 6 w 6 1, Eq. (8) means that if bd31 ¼ d � q > 0

then bd21 < 0 and vice versa. In words, one stream receives the work
supplied by the other, thus its sign indicates the sense of the inter-
action. Finally, by definition, bu ¼ u � q > 0, nevertheless buy, at
some branch, might be negative. This occurs if the work d is greater
than the pure dissipationu at that branch (see Eq. (6)). In this latter
case, the head change coefficient C at that branch, becomes nega-
tive, although logically, the overall junction dissipates energy. In
general, when there is a d transfer between the two streams, from
an external standpoint, it seems that the streamwhich supplies the
work, dissipates ‘‘more” (losses more energy) and the other less
and one might get the misleading conclusion that d ¼ 0.

In the same way, as the C coefficients were defined, two new
types can be defined: the (pure) dissipation or (actual) head loss
coefficient Cu and the diffusive work coefficient Cd. What are the
relationships between both types?.

The conventional or external model establishes for the head
change at the i-branch i 2 2;3f g, referred to the common branch
r Ci1 the equation:

Ci1 ¼ uy
i1

�v2
1=2

¼ ui1�di1
�v2
1=2

¼ ui1
�v2
1=2

� di1
�v2
1=2

¼ Cu;i1 � Cd;i1

ui;1 ¼ Cu;i1 � �v2
1
2 ; di1 ¼ Cd;i1 � �v2

1
2

ð9Þ

where Cu;i1 > 0 is the (pure) dissipation or loss coefficient and Cd;i1

is the work coefficient that can be null, positive or negative due to
the sense of the interaction. Both are referred to the flow rate at the
common branch. They can also be referred to the flow rate at its cor-
responding branch, symbolized by Ci1.

C31 ¼ uy
31

�v2
3=2

¼ Cu;31 � Cd;31 ¼ u31 � d31

�v2
3=2

¼ C31

�v3=�v1ð Þ2 ð10aÞ

C21 ¼ uy
21

�v2
2=2

¼ Cu;21 � Cd;21 ¼ u21 � d21

�v2
2=2

¼ C21

�v2=�v1ð Þ2
ð10bÞ

Finally, for completeness, we include the relationship among
the coefficients based on both reference systems (branch and com-
mon). Taking into account the continuity of the flow rates:

A1 � �v1 ¼ A3 � �v3 þ A2 � �v2 ð11Þ
dividing by �v1 and clearing for �v3=�v1 we get:

A1

A3
� A2 � �v2

A1 � �v1
� A1

A3
¼ 1�

_V2

_V1

 !
� A1

A3

� �
¼ �v3

�v1
ð12Þ

therefore Eq. (10a) which expresses the relationship between both
coefficients is:



Fig. 3. Supply ductwork example to illustrate Bernoulli’s principle for intercating branches: (A) Loops and flow senses wi ¼ _Vi= _VT ; x supply flow rate ratio, (B) Interactions bd,
(C) Two independent loops C:1 and C:2, notice the work-link between the loops.
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C31 ¼ C31 � 1

1� _V2= _V1

� �2
� A1=A3ð Þ2

¼ C31 � 1

1� w2ð Þ2 � A1=A3ð Þ2
ð13Þ

where w2 ¼ _V2= _V1. Similarly for Eq. (10b) it can be written:

C21 ¼ C21 � 1

_V2 � A1

� �
= _V1 � A2

� �� �2 ¼ C21 � 1

w2
2 � A1=A2ð Þ2

ð14Þ

Notice that the total junction dissipation is the same regardless
of the type of coefficients (external or internal) and of the reference
system (branch or common). Before going into the details of the
MinEDP applied to interacting branches, next section employs this
internal model, to solve the network steady-state, based on the tra-
ditional energy and mass balance.

2.3. Network steady-state: interacting branches (Bernoulli’s principle)

The steady-state of a flow network is usually solved by Bernoul-
li’s principle. Let’s see how to write it anew but using the internal
model. Instead of an abstract deduction, a simple supply ductwork,
described in Fig. 3, will be used to illustrate the key idea. Some
nodes are used as boundaries for each section of the network
and are identified as , while any j-node inside a k-section (Sk)
4 a � 1 for turbulent flows

5

is identified as (Sk; j). The energy losses (dissipation) along Sk are
computed and labeled according to the following equation:

u½ �Sk ¼
X

All j-nodes within Sk

u Sk;jð Þ ð15Þ

where u S;jð Þ in Eq. (15), is the pure dissipation between nodes Sk; jð Þ
and Sk; j� 1ð Þ within Sk (see Fig. 3(A)).

The total energy change in a loop or closed path must be zero.
Without loss of generality, our example is a tree-shaped ductwork
and w is a fixed-grade node, therefore on the right of Fig. 3 (A) the
‘‘pseudo-loops” are shown, which here, are just called loops. Look-
ing at the bottom of Fig. 3, the following equations must hold for
the C:1ð Þ-loop:

ð16Þ

where is the work received by the branch in section Sk

between the node and the first internal node, due to the other
stream flowing through the other branch of the junction. The equa-
tion at the bottom of (16) is the sum of the three equations above it.
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Each left hand side represents the change in the specific mechanical

energy , within a section between two nodes

. The telescopic sum on the left side of Eq. (16) cancels out,
since the sum is performed on a closed path. In a similar way, for
the C:2ð Þ-loop (bottom right of Fig. 3), the next equation holds:

0 ¼ u½ �S2 þ u½ �S4 � u½ �S3 � dr; S2;1ð Þ þ ds; S4;1ð Þ � dr; S3;1ð Þ
	 
 ð17Þ

Taking into account Eq. (6), dissipation and work terms can be
joined in Eq. (17), and thus rewrite it as:

0 ¼ u½ �yS2 þ u½ �yS4 � u½ �yS3
� �

ð18Þ

Eq. (18) is a very well-known result, but its actual meaning is
misunderstood. Written mistakenly without our y symbol seems
to indicate a loss. Even, more plainly, multiplying by q and chang-
ing the symbol buy by the pressure drop: 0 ¼ DpS2 þ DpS4 � DpS3.
Engineers learn Eq. (18), in this latter form, by heart as: the energy
dissipation or head loss along either path must be the same or,
otherwise stated, the net head loss around any closed path must
be zero. For instance, that would be the case for paths
r�s�t�w andr�v�w in loop C:2ð Þ of Fig. 3 (if the work
interaction were not present). For the case of non-interacting
branches, any d is zero and only then is correct to assume
uy ¼ u, i.e.,‘‘the dissipation is pure dissipation”. However, the inter-
action at the branched junctions actually exists, so that Eq. (18)
cannot be interpreted naively, as just a head loss. Its equivalent in-
ternal Eq. (17) greatly clarifies things. The correct and overlooked
interpretation is: the surplus net work received by the fluid in
one path (for instance r�s�t�w) must equal the surplus
energy loss along that path in order to balance the energy loss
along both paths. It may also be restated as: the net head loss
around any closed path must equal the net work received along
that path. Moreover, strictly speaking, the traditional previous
statement is just false for networks where the interaction is not
neglected. Recall, incidentally, that dr; S2;1ð Þ – dr; S3;1ð Þ (see Eq. (8)).

Finally, to solve the steady-state flow distribution of the exam-
ple, there are only two independent loop flow rates, since the sup-
ply flow is fixed _VT ,. This relationship is made clear as:
x1 þ x2 þ x3 ¼ 1, where x ¼ _V= _VT is the supply flow rate ratio at
each diffuser/grille. Therefore using the two Eqs. (16) and (17)
for solving for two independent flow rates (for instance x1 and
x2) is enough to solve the problem (see also our first paper [2]
for the details). Notice that, by reversing the flow senses, a return
network is obtained and the head change coefficients vary, but
essentially the procedure to solve the problem is the same.

For completeness and better understanding, since it is not a
widespread knowledge, next section gathers our main results [2],
about the application of the MinEDP to non-interacting networks
(d ¼ 0).

2.4. Network steady-state: non-interacting (MinEDP)-overview

The energy dissipation function of a flow network, where all its
components are pure dissipative elements can be expressed as:

_U ¼ uT � qð Þ � j _VT j ¼
Xnsect
j¼1

u½ �j � q
� �

� j _Vjj ¼
Xnsect
j¼1

bu� �
j � j _Vjj

¼ buT � j _VT j > 0 ð19Þ
where the sum comprises all components of the network grouped
by each of the nsect network sections. Taking the non-
dimensional flow rate ratios wj at each j-section, the previous equa-
tion can be rewritten as:
6

F w1;w2; . . . ;wnsectð Þ ¼ F ~w
� �

¼
_U

j _VT j
¼ DpT ¼ buT

¼
Xnsect
j¼1

bu� �
j � jwjj > 0 ð20Þ

As before, bu� �
j is the sum of the specific dissipations within the

j-section. Recall that the wj are not independent variables. Let us
express the energy dissipation as a function of the xi; i 2 1 . . .nf g
variables, since they are related directly with the desired flow rates
at the diffusers. In non tree-shaped networks they can be the loop
flows, see [6]. Notice that these are not yet independent variables,
since some flow rates (not necessarily one), must be fixed before-
hand. If, as in the previous example of subsection 2.3, the supply/
return flow rate is fixed then just a single linear relationship existsP

x ¼ 1. Temporarily, in order to simplify the mathematics, let’s
assume that wj does not change its sense (i.e. wj > 0). Afterwards,
in subsection 2.6, this constraint will be removed. So finally, Eq.
(20), is written as:

F � gð Þ x1; x2; . . . ; xn�1ð Þ ¼ F g ~xð Þð Þ ¼
Xnsect
j¼1

bu� �
j � wj ~xð Þ > 0 ð21Þ

where there are n� 1 independent variables. The original expres-

sion of F is now composed with a linear transformation g :~x ! ~w.
In paper [2] we showed that if the condition expressed by Eqs.
(22) is fulfilled, then the dissipation function has a minimum and
coincides with the steady-state flow distribution of the network.
That is, the solution is the same as the one obtained by using the
energy and mass balances.

@bu j

@wj
wj ¼ m � buj

dbu jbu j

¼ m � dwj

wj

ln buj
	 
 ¼ m � ln wj

	 
þ ln bKu;j

� �
¼ ln bKu;j � wm

� �
buj ¼ bKu;j � jwjjm > 0

ð22Þ

In the deduction of Eq. (22) bK , the energy dissipation factor,
must be constant and positive. That is why we have emphasized

this fact by using bKu instead of just bK . The physical meaning ofbK can be found in [2]. For a network of straight smooth conduits,

[2] showed that specially defined values bK ¼ bKfit and m ¼ mfit

can be fitted so that they remain constant for a huge Reynolds

number range. In general, bK is not constant and the value of m
actually does not matter (within some validity range) to solve
the problem, (see [2]). Therefore by measuring or tuning the dissi-
pation bu with a law like Eq. (22), allows us to write Eq. (21) in the

general and equivalent bK-form:

F g ~xð Þð Þ ¼
Xnsect
j¼1

bKu

h i
j
� wmþ1

j > 0 ð23Þ

where bKu

h i
j
equals the sum of all bKu of the components in series

inside the j-section. The fact that bKu

h i
j
is not constant, transforms

the solution from a strict minimization into a sequence of mini-
mizations, inside a global fixed-point problem. In concrete, given
a certain test flow distribution ~xt , its associated constant vector is

denoted as: bKu

�!
j~xt ¼ bKu

h i
1
; . . . ; bKu

h i
nsect

� �
j~xt . Eq. 23 with bKu

�!
j~xt is

labeled as F ~xð Þj~xt and renamed as the ‘‘local” form of F. It is called
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‘‘local” because the physical phenomena which dissipate energy are
‘‘frozen” at the local point~xt . The function F ~xð Þj~xt has a minimum at
~x�. If this new flow distribution ~x� is close to ~xt , or the other way
round, the new~x� is coherent/compatible with the physics assumed

by bKu

�!
j~xt , then that is the steady-state solution. This can be seen as a

fixed-point problem either in the flow distribution~x or in the factorbKu

�!
.

2.5. Network steady-state: interacting branches (MinEDP)

This section extends the results of our previous paper [2], sum-
marized previously in subsection 2.4.

Let’s see first the expression for the energy dissipation function
F. The dissipation function has the same form as Eq. 20 but in this
case bu� �

j should be the pure dissipation of the internal model. Now

lets add the sum of the internal work exchanged at the branched
junctions. This sum is, by definition, zero since it is an internalwork
exchange (see Eq. (8)) and thus we can write:

F g ~xð Þð Þ ¼
Xnsect

j¼1
bu� �

j � wj

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{0pure0 dissipation

�
Xnsect

j¼1
bdj � wj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

external work¼0

ð24Þ

Now, if in every j-section Sj, we separate from the sum bu� �
j, the

term corresponding to the dissipation at the k-branched

junction and we rewrite the new sum as bu� �H
j , i.e.,

then:

ð25Þ

Notice that for any component, inside the j-section which does
not belong to a branched junction, there is no work interaction and

thus it is true that: bu� �H
j ¼ buy� �H

j . As expected, Eq. (25) means that

the dissipation function can still be computed with the traditional
coefficients. More clearly stated: The energy dissipation function of
the network is the same, regardless of the type of the coefficients
employed; the head loss (internal) or the head change (external) coef-
ficients. Therefore, by direct extrapolation, similarly to the Eq. (23),
Eq. (25) can also be written in K-form as:

F g ~xð Þð Þ ¼
Xnsect
j¼1

bK y
h i

j
� wmþ1

j > 0 ð26Þ

Like in the previous subsection 2.4, bK y, in general, is not con-
stant. Moreover, notice that although Eq. (23) looks like Eq. (26),

the latter has a work interaction subtly included inside the bK y.

The difference in the notation of the bK terms in both equations,
makes explicit that they have a different physical meaning. Never-
theless, in numerical form, both are easily confused, since both are
used to compute the energy dissipation.
7

Obviously, some questions show up: under what conditions the
minimization of Eq. (26) or (25) is equivalent to the results in sub-
section (2.3)?. Has got, adding the total internal work, any effect on
the results?.

Instead of using a completely general mathematical formula-
tion, let’s use the same example of subsection 2.3. Taking Eq.
(24), the conditions for the stationarity of the dissipation function
for that example are: @F=@x1 ¼ 0 and @F=@x2 ¼ 0. In order to sim-

plify the notation instead of let’s just write bdj for the

work interaction at the branch in the j-section. Thus, writing only
the partial derivative with respect to x1:

@F
@x1

¼ @ bu� �
2

@w2
w2 �

@bd2

@w2
w2 þ

@ bu� �
4

@w4
w4 �

@bd4

@w4
w4 �

@ bu� �
3

@w3
w3 þ

@bd3

@w3
w3

 !
þ bu� �

2 þ bu� �
4 � bu� �

3 � bd2 þ bd4 � bd3

� �� �
¼ 0

ð27Þ
Now, let’s keep the same assumption as in subsection 2.4 for the

pure dissipation term, that is: it fulfills the same expression (22).
Similarly, some assumption must be taken for the diffusive shear

work bdj and there is no loss of generality by considering that it fol-
lows a similar law. In fact, such assumption is necessary, as it will

be shown below, to group both bu and bd into the conventional buy.

In the following derivation, the sign of bdj indicates the sense of the
work and therefore it can be chosen as positive (i.e. received by the
branch):

@bdj

@wj
wj ¼ m � bdjbdj ¼ bKd;j � jwjjm

ð28Þ

Notice, nevertheless, that bKd;j may be positive or negative,

depending on the sense of the work interaction, but bKu;j is always

positive. According to our hypotheses, both bKd;j and bKu;j must be
constant in Eq. (28) and (22), respectively. Finally, if both hypothe-
ses are fulfilled then Eq. (26) is transformed into Fj~xt the ‘‘local”
version of the dissipation function F. As before, the suffix ~xt indi-

cates that F depends on the flow distribution point where bKu

and bKd are evaluated, or in order words, by keeping these factors
constant, the physical dissipation and work transfer mechanisms
are ‘‘frozen” at their local values at~xt . The function Fj~xt represents
the ‘‘local” behavior of the system.

The F stationary condition (for the same example of subsection
2.4), converts Eq. (27) into:

@F

@x1
¼ mþ 1ð Þ � bu� �

2 þ bu� �
4 � bu� �

3 � bd2 þ bd4 � bd3

� �� �
¼ 0 ð29Þ

If the terms buj and bdj for the branched element of the j-section

are grouped, we get the important relationship for bK y
j at the j-

branch of the junction:

buy
j ¼ buj � bdj ¼ bKu;jjwjjm � bKd;jjwjjm ¼ bK y

j � jwjjm ð30Þ
This latter equation means that, whenever the conventional

head change coefficient is used, i.e. by computing bK y
j , then it is also

assumed implicitly that the work exchange, at the junction, follows
a potential law. We would like to stress that although Eq. (30)
looks like Eq. (22), they are not equal. Even when the energy factorbK is positive in both cases, their physical meaning is completely

different and a source of confusion. In Eq. (22) bK is an energy dis-
sipation factor, while in Eq. (30), it is just an energy factor.
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Taking into account that for the rest of the elements in series
within a section bu ¼ buy , i.e. there exist only pure dissipation,
Eq. (29) is written as:

@F

@x1
¼ mþ 1ð Þ � bu� �y

2 þ bu� �y
4 � bu� �y

3

� �
¼ 0 ð31Þ

Notice that Eqs. (29) and (31) are equal to the Eqs. (17) and (18)
respectively. An analogous result would be obtained for the other
partial derivative @F=@x2 ¼ 0. Therefore, by generalizing, we get a
very important result: each partial derivative of F corresponds to
one energy balance at an independent loop of the network. Minimizing
a ‘‘local” form of Eq. (25), using the traditional head change coeffi-

cients (which lead to bK y
j , see Section Appendix B.1) is equivalent to

the energy balance at each independent loop, including any work
exchange.

Solving the problem can be accomplished as in section subsec-
tion 2.4, by a sequence of minimizations steps, inside a global
fixed-value problem. In other words, an initial point~x0 is assumed
and Fj~x0 is computed. If the solution~x� to the minimization step of

Fj~xn�1
is not compatible or coherent with the constant vector bKy�!

computed at ~xn�1, a new bKy�!� is computed at ~x� ¼~xn and a new

minimization step is performed until~x� �~xn�1 or bKy�! � bKy�!�.
At first sight, it may seem that the steady-state solution of the

network is going to be a minimum of the dissipation function F,
but unlike the non-interacting case, is not. Let’s see more in detail
what is going on. Recall that the solution is a sequence of mini-
mization problems of an approximate or ‘‘local” dissipation func-

tion F. This function is formally like Eq. (26) but any bK y
j is kept

constant bKy
j . Thus, the F has the form:

F g ~xð Þð Þ ¼
Xnsect
j¼1

bKh iy
j
� wmþ1

j

¼
Xnsect

j¼1
bKh i

u;j
� wmþ1

j

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼dissipation

�
Xnsect

j¼1
bKd;j � wmþ1

j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼external work

ð32Þ

Notice that this function is not the dissipated energy. The exter-
nal work is not zero as in (24). The second sum in Eq. (32) is only

zero at the flow distribution test point ~xt where the vector ~Ky

was computed. During the minimization step the work factorsbKd are kept constant and therefore you may think of the work
received by the network as ‘‘external” and proportional to a power
of the flow rate in the branch. Therefore conceptually minimizing
Eq. (32) is equal to minimizing the dissipation and maximizing
the ‘‘external work” received by the network, assuming as constant
the physical mechanism by which the branches are currently dissi-
pating energy and exchanging work. Therefore, after a minimiza-
tion step, the ‘‘external” work is non-zero. Nevertheless, step by
step the amount is reduced until the solution is reached. Obviously,
at the solution there is no net ‘‘external” work applied to the
branches. In other words, the solution must be on a hyper-
surface of the space represented by ~x	 F ~xð Þ, or the global energy
dissipation hyper-surface. Recall that, on this surface, the net exter-
nal work is always zero (see the second sum in Eq. (24)).

It can be said that the proposed solution procedure is equivalent
to a constrained minimization problem related with this internal
work exchange. Therefore the network does not approach its min-
imum dissipation, since the internal work exchanged creates a bias
in its tendency to minimize the energy dissipation. Let’s make this
point clearer. If Eq. (32) is rewritten as:

rF ¼ r dissipationð Þ � r external workð Þ ¼ 0 ð33Þ
8

then, the idea shows up. This equation after some iterations on~x is
also valid at the steady-state solution~xsol. At this point is true that:

rFj~xsol ~xsolð Þ ¼r dissipationð Þ ~xsolð Þ � r external workð Þ ~xsolð Þ ¼ 0ð34Þ
Fj~xsol ~xsolð Þ ¼F ~xsolð Þ ; implicitly external work ¼ 0 ð35Þ

and therefore r dissipationð Þ ~xsolð Þ ¼ r external workð Þ ~xsolð Þ – 0.
This means that the dissipation is not a minimum at the steady-
state, for a network with interacting branches. The physical mean-
ing could be: the work interaction at the branched junctions transfers
energy from some branches to another ones so that globally the net-
work dissipates more energy than without such interactions and in
doing so, the net is able to re-balance itself. Additionally, if the ‘‘local”
approximation at the solution~xsol , i.e. Eq. (35), is multiplied (scalar
product) by vector D~x, we get:

rF ~xsolð Þ � D~x ¼ r dissipationð Þ ~xsolð Þ � D~x�r externalworkð Þ
	 ~xsolð Þ � D~x

¼ 0 ð36Þ
Eq. (36) could provide some extra insight about the nature of

the steady-state. If the flow distribution makes a very small, ‘‘vir-
tual”, displacement in direction D~x, assuming that the physical
mechanisms present within the network for energy dissipation
and work transfer remain the same, then the increase in the ‘‘exter-
nal” work received by the network is balanced by an equal increase
its energy dissipation, thus inhibiting such displacement. At the
steady-state solution this is true for such ‘‘virtual” displacement
in any direction and is coherent with a null ‘‘external” work.

Next section generalizes the previous result to any type of net-
work, not simply tree-shaped ones.

2.6. Generalization for any network (not necessarily tree-shaped)

Without loss of generality, previously, it was assumed that w
does not change its sign (reverses its sense), to simplify the expo-
sition. This section relaxes that hypothesis. Eq. (21) is valid in gen-
eral. To clarify what is the effect of using the absolute value of the
flow rate ratios jwjj, the function composition in (21) becomes:

F � h � gð Þ x1; x2; . . . ; xn�1ð Þ ¼ F h g ~xð Þð Þð Þ ¼
Xnsect
j¼1

bu� �
j � jwjj > 0 ð37Þ

which uses a new map h : ~w ! jw1j; . . . ; jwnsect jð Þ. The derivative of F
respect to ~x using the chain rule, and forcing the stationarity of F
gives:

D F � h � gð Þ ¼ DF � h � gð Þð Þ � Dh � gð Þ �Dg ¼~0 ð38Þ
where Dh is a diagonal matrix with an entry in each j-row equal to
sign wj

	 

. Now if the previous equation is applied to the example of

subsection 2.4, its Eq. (27) is rewritten as:

@F
@x1

¼

@ bu� �
2

@jw2 j jw2jsign w2ð Þ � @bd2
@jw2 j jw2jsign w2ð Þ

þ @ bu� �
4

@jw4 j jw4jsign w4ð Þ � @bd4
@jw4 j jw4jsign w4ð Þ

� @ bu� �
3

@jw3 j jw3jsign w3ð Þ þ @bd3
@jw3 jw3sign w3ð Þ

0BBBBB@

1CCCCCA
þ bu� �

2sign w2ð Þ þ bu� �
4sign w4ð Þ � bu� �

3sign w3ð Þ	
�

bd2sign w2ð Þ
þbd4sign w4ð Þ
�bd3sign w3ð Þ

0BB@
1CCA
1CCA ¼ 0

ð39Þ

When the hypotheses which lead to the power laws for the
energy dissipation and work exchanged, are applied to Eq. (39)
we obtain the derivative of its ‘‘local” form F:
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@F

@x1
¼ mþ 1ð Þ �

bu� �
2sign w2ð Þ þ bu� �

4sign w4ð Þ � bu� �
3sign w3ð Þ

� bd2sign w2ð Þ þ bd4sign w4ð Þ � bd3sign w3ð Þ
� �0@ 1A ¼ 0

ð40Þ

whose corresponding previous equation was (29). Finally Eq. (40)
can also be written as:

@F

@x1
¼ mþ 1ð Þ � sign w2ð Þ bu� �y

2 þ sign w4ð Þ bu� �y
4 � sign w3ð Þ bu� �y

3

� �
¼ 0

ð41Þ
The important conclusion here is that Eqs. (40) and (41) are

equal to the energy balances (17) and (18) respectively, but cor-
rected with the sign wj

	 

, so that in case of flow reversal, the energy

balance is performed correctly. Therefore, the completely general
expression of the dissipation is (37) and the minimization of its
‘‘local” form F � h � gð Þ x1; x2; . . . ; xn�1ð Þ is equivalent to the correct
energy balance, regardless of the final sense of the flow rate at each
network section.

At first sight, the MinEDP method might look a bit complex but,
in fact, is quite simple, robust and unifying. Although, the goal of
the present paper is not going into the very details of a concrete
calculation, Appendix B.2 is devoted to illustrate the ideas through
an example.

3. Discussion

The paradoxical possibility of getting a negative head loss coef-
ficient at branched junctions, has been controversial for long time
[8–11]. In practice, it is frequently overlooked but is, also, a symp-
tom that something is not being managed properly. Moreover,
while developing an analysis assistant tool, numerical problems
were encountered in HVAC duct networks, which stemmed from
this possibility and the ignorance about the final flow distribution.
Herwig and Schmandt [1], clearly identified the cause of the nega-
tive sign of the head loss coefficient as the diffusive shear work
exchange. We wondered if there was a higher level principle which
avoided such inconveniences, thus centering our research on a
MinEDP formulation. Our approach was to increase the complexity
gradually: first dealing with networks without interaction at the
branched junctions, (see [2,6]) and then including them.

Notice that even when the traditional head loss coefficients are
positive simultaneously at both branches, there may still exist a
work exchange inside the junction. We acknowledge that this cre-
ates a lot of confusion and has contributed to overlook the issue.
The paper defines two types of models: the conventional, called ex-
ternal, and the new called internal. The names point to the fact of
being or not directly measurable, respectively. The conventional
model just needs two independent parameters (the head loss/
change coefficients at each branch) while the second ‘‘apparently”
needs three, two (real) head loss coefficients and the exchanged
work. This creates an apparent contradiction or paradox: how
can the solution be found traditionally just with two parameters
but now there is a need for a third?. The cost of the contradiction
is allowing negative hydraulic resistances. Nevertheless, it can be
solved by using the MinEDP method exposed here, but this will
be proven in another paper, because it needs quite effort. Inciden-
tally, as shown in the example, the conventional head loss coeffi-
cients are enough for our MinEDP methodology, so all flow
resistance databases are still useful. However the internal model
is needed to understand what is going on behind ‘‘the curtain”.
Based on the new internalmodel the traditional Bernoulli’s analysis
of flow networks can be rewritten. The minimization of the local
form of the dissipation function, is proven to be equivalent to this
new Bernoulli’s set of equations. Additionally, the physical mean-
ing attached to K indicates the existence of a fixed-point which
9

represents the solution. In other words, the solution can be com-
puted by performing a sequence of minimizing steps (equivalent
to energy balances) of its ‘‘local” form F within a global fixed-
point iteration (equivalent to matching the physical dissipation
and work exchange mechanisms with those associated to the com-
puted K).

After our paper [2], for non-interacting branches, the flow dis-
tribution solution coincides with the minimum of the ‘‘global” dis-

sipation function F. In this case, the energy factors bK y are equal to

the energy loss factors bKu.
However, here it has been proven that if the branched junctions

are included then the flow distribution does not coincide with the
minimum of F. The problem becomes a constrained minimization
one. The interesting fact, is that the procedure to solve the problem
is exactly the same: a sequence of minimizing steps of the ‘‘local”
form F of the ‘‘global” dissipation function F. Though, now, the

energy factors bK y change their physical meaning, and this is crucial.
Notice that exponent m of the power-law employed to express

the dissipation function (see Eq. (26)) does not really affect the
result since it also modifies the K factors (the dissipation value
does not depend on the chosen exponent). The role of m was
shown in detail in our previous work [2]. It is the energy dissipa-
tion, along with the constraints, what determines the global solu-
tion. The exponent acts as a tuning parameter for the metric
associated to the energy dissipation but does affect the conver-
gence to the solution. In other words, in the general case m cannot
be settled to fit simultaneously all the energy dissipation mecha-
nism of the network and this creates the need for a fixed-point
iteration.

Although the computational performance was not the goal of
the paper, implementation in Scilab indicates very promising
results. The calculation was very quick, simple to code and robust,
since the solution was not sensible to the initial flow distribution
point (see Appendix A).

Finally, the shear work exchange has ‘‘hidden” effects on the
flow distribution, which some authors try to minimize [23], but
could be foreseen with the new methodology.

4. Conclusions

� The paper shows that the steady-state of any flow network can
be obtained with a practical method based on an extremal prin-
ciple, the MinEDP. The solution is exactly the same as the one
obtained by using the Bernoulli’s equation. It avoids running
into difficulties due to eventual negative hydraulic resistances
during the search for the solution. It is a very robust method
since the solution process does not depend on the assumed ini-
tial flow distribution.

� Moreover, the MinEDP formulation extends our knowledge
about the nature of the flow distribution. When there is no work
exchange at the branched junctions the steady-state is located
at a minimum of the global dissipation function F, however this
is not so when there exist work interactions. In other words, the
system tries to minimize its dissipation rate but limited by the
constraints imposed by those interactions.

� Based on the work of Herwing et al. [1], the paper formalizes the
internal model for the branched junctions as a physically mean-
ingful alternative to the head loss coefficients. Nevertheless, our
method can still use the traditional head loss (change) coeffi-
cients.
Although not proven here, it is worthwhile mentioning (be-
cause it seems a bit paradoxical) that the internal model can
be obtained, if needed, by using the MinEDP as the closing equa-
tion. In other words, the work interaction is encoded inside the
conventional coefficients and the MinEDP.
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� The new methodology does not need to be aware of the work
exchange at the junctions (the constraints). It can use the con-
ventional head loss (change) coefficients found in many data-
bases. The solution method is always the same (see [2]) and
moves on to the constrained problem, naturally.
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Appendix A. The negative hydraulic resistances issue

This appendix illustrates the difficulties which arise from a nega-
tive hydraulic resistance, since they sparked this research.

A.1. Operating point of a fan duct-network

As mentioned in Section 1 difficulties arise due to some head
change (loss) coefficient becoming negative (see [1]). Let’s see the
detailed explanation.

The concept of operating point as the intersection of the resis-
tance curve of a flow network and the fan curve is widely spread
in the literature (see Fig. A.4). A traditional way of obtaining this
point can be summarized in five steps:

1. Guess a flow distribution and compute the hydraulic
resistances.

2. (Compression step) Compute the duct-network characteristic
curve.

3. Intersect the previous curve with the characteristic curve of the
fan.

4. (Decompression step) Re-compute the flow rate at each section
and at the terminals (diffusers and/or return grilles).

5. Return to step 1 until the initial guess and the new flow rates
are nearly the same.

Let’s assume that any j-element of the net fulfills the potential
law shown in Eq. (A.1):

Dpj ¼ bK j �
_V2
j

A2
j

ðA:1Þ
Fig. A.4. Operating point of a fan-duct network system.
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Here by bKj it is meant the loss at any; diffuser, fitting or straight
conduit. In the case of a branched junction, the loss is split into the
different branches. The equivalent resistance curve of the net has
the same form as Eq. (A.1) and the flow _VT is the total flow of
the supply or return network. This equivalent curve is obtained
in step 2 (compression) using the equivalence between sections
connected in series or in Y (parallel) (see Fig. A.5). The transforma-
tion equations are the following:

bKeq ¼ bK i þ bKj � Ai

Aj

� �2

ðA:2Þ

for series, while for parallel (Y) the formula is:

bKeq ¼ bKc þ H2
i;j � bKj � Ac

Aj

� �2

ðA:3Þ

where:

Hi;j ¼ 1þ Ai

Aj
�
ffiffiffiffiffiffiffiffiffiffiffiffiffibKjbK i

 !vuut24 35�1

ðA:4Þ

The procedure is iterative since some bKj may depend on the vol-
ume flow rate or/and the flow distribution (like in branched junc-
tions). Notice that the same equations are used in step 4 to
decompress the net. During this latter step, the flow through each
branch is obtained as: _Vi ¼ Hi;j � _Vc and _Vj ¼ _Vc � _Vi. Everything
works whenever Eq. (A.4) can be applied, i.e., the term inside the
square root is positive.

In the next two sections, let us apply this procedure to a simple
network.
A.2. Example (sizing-step)

Let us size the duct network shown at the top of Fig. A.6. The
sizing is performed using the equal friction method with
Dploss=L ¼ 1 Pa=m½ �. The solution is drawn at the bottom of
Fig. A.6. Table A.1 shows the parameters that characterize the ele-
ments of the ductwork. Table A.2 illustrates that at the lateral
return paths, X3 and X5, the pressure loss due to the short straight
ducts is not enough to compensate for the head increase at the
junction (notice the negative values).

Obviously, the net needs to be balanced or, in other words,
forced to get the desired design flows through each grille. The fol-
lowing dampers are needed; along the path X1� X3 a loss of
21:15 Pa½ � is needed and can be obtained with a cross sectional
area reduction ratio of 0:56, while in the path X1� X2� X5 the
additional loss 12 Pa½ � needed can be obtained with a reduction
ratio of 0:62. Therefore the design operating point would be after
balancing: _V ¼ 1600 m3=h

� �
;DpT ¼ Dpsupply þ Dpreturn ¼ 36:72þ

23:74 ¼ 60:46 Pa½ �.
Fig. A.5. Equivalence transformation: Left) series, Right) Parallel.



Fig. A.6. Example return network. Top: Geometrical layout and design flow rates. Bottom: top-view of the sized network.

Table A.1
Properties of the diffuser and return grilles of the example network.

Fitting Name Ref. m3=h
� �

Value at Ref. Pa½ �

Diffuser I1 1600 Dptotal ¼ 31:82
Return grille R1 200 Dpstatic ¼ 1:73
Return grille R2 1200 Dpstatic ¼ 2:05
Return grille R3 200 Dpstatic ¼ 1:76
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At this point, practical questions usually arise: are these dam-
pers really needed?, otherwise stated, after the sizing step: would
the flow rates be close enough to the design ones without the dam-
pers?. Therefore to answer these questions, the designer now
needs to evaluate or analyze an already sized network.
A.3. Example (analysis-step): Difficulties

Before choosing a fan, we have to remove the dampers and force
that the operating point is always at _V ¼ 1600 m3=h

� �
. Now, the

problem is to find out the actual flow distribution, i.e., an operating
point. A bad initial guess, of the flow distribution, may lead during

the Section Appendix A.1 iteration to bKj < 0 at some compression/
decompression step. Eq. (A.4) could not be evaluated and therefore
the computation crashes. This does happen with the previous net-
work, if the design flow rates are used as the initial guess. Notice
that this does not mean that there is no solution. It does have
one, but the algorithm needs to be specially careful to surpass this
eventual difficulty. Basically it needs a method to estimate a better
guess when this exception occurs. Table A.3 shows the solution
after this ad hoc solution is devised. Looking at the table it can
be seen that there is a big difference between the design and the
actual flows.

Last but not least, any procedure based on the operating point
calculation as shown in Sections Appendix A.1 might find difficul-
ties when dealing with branched junctions. Even before trying to
analyze the net. For instance, some sizing methods use the operat-
ing point for sizing (designing) the ductwork. The T-method is an
example. It uses a compression-optimization-decompression
Table A.2
After the sizing step: pressure loss per section without including the diffuser and grilles

Supply Return Retur

Name I1 X1 X
Dp Pa½ � 4.91 4.91 8.4

11
sequence, while trying to optimize the network size. However it
has problems [21], including the one explained above.

Appendix B. Example

This appendix illustrates the ideas exposed in the paper through
an example. The paper along with our previous works [2,6], are
enough for the implementation of the method.

B.1. Relationships: buy; bC ; bK y

Using the head change coefficient of a converging fitting,
referred to the branch t-r C31 we have:

buy
31 ¼ C31 � q � �v2

3
2 ¼ bC31 � 12 �

_V3
A3

� �2
¼ bC31 � 12 �

_V3
p�D2

3=4

� �2
� _VT

_VT

� �2
buy

31 ¼ bC31 � 8
p2 �D4

3

� �
� j _VT j2 � jw3j2 ¼ bK y

31 � jw3j2
ðB:1Þ

or using a general exponent m based on the Darcy’s friction factor
fitting (for details on mfit see [2]), the power law becomes
m ¼ 2þmfit

	 

:

buy
31 ¼ bC31 � 8

p2 � D4
3

 !
� j _VT j2
jw3jmfit

� jw3j 2þmfitð Þ

¼ bK 31;fit � jw3j 2þmfitð Þ ðB:2Þ

Notice that the value of bK y
31 or bK y

31;fit in general, due to bC , can be

positive or negative in branched junctions, and therefore the sign
of buy

31 is undefined.
Finally, it is easy to demonstrate that the same relationships

(B.1) and (B.2) are valid, in general, for any fitting (see [2]).

B.2. Example of interacting branches

At the top of the Fig. B.7 the sizes and geometry of a round-duct
example-network, are sketched, while at the bottom of the same
figure we display the name assigned to each section and the work
interaction at the branched junctions. Just, in the middle of the
Fig. B.7, the elements of the flow model and their respective buy
n Return Return Return

2 X3 X4 X5
1 �4.13 8.40 �3.40



Table A.3
Comparison of the design and actual flow rates, at the diffuser and return grilles, for the sized network shown at the bottom of Fig. A.6.

Name Design flow rate m3=h
� �

Actual flow m3=h
� �

v m=s½ � Dp Pa½ �

D1 1600 1600 3.74 31.82
R2 1200 897 2.11 1.13
R1 200 414 2.34 7.80
R3 200 289 1.64 3.81

Fig. B.7. Example of a network to illustrate the MinEDP application. The middle
scheme indicates the specific dissipation functions to be evaluated. The interacting
branches are shown at the bottom.
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are made explicit. Eq. (B.3) illustrates the concrete form of the glo-
bal energy dissipation of this network. Notice that, by construction,buy

L1 � jw1j is always constant, and that it is also always true thatbu ¼ buy but for the branched junctions. The global dissipation func-
tion is:

F � h � gð Þ x1; x2ð Þ ¼ buy
L1 � jw1 j þ buy

12 þ buy
L2 þ buy

elbow

� �
� jw2jþbuy

13 þ buy
L3 þ buy

G3

� �
� jw3 j þ buy

24 þ buy
L4 þ buy

G1

� �
� jw4 jþbuy

25 þ buy
L5 þ buy

G2

� �
� jw5 j

F � h � gð Þ x1; x2ð Þ ¼ buy� �
1 � jw1j þ buy� �

2 � jw2 j þ buy� �
3 � jw3j þ buy� �

4 � jw4j þ buy� �
5 � jw5 j

ðB:3Þ

If it is arbitrarily assumed that m ¼ 2 for the general potential
law of Eq. (30) then Eq. (B.3) can be also written as:

F � h � gð Þ x1; x2ð Þ ¼ bK y
L1 � jw1j 2þ1ð Þ þ bK y

12 þ bK y
L2 þ bK y

elbow

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bK y
� �

2

�jw2j 2þ1ð Þþ
bK y

13 þ bK y
L3 þ bK y

G3

� �
� jw3j 2þ1ð Þþ

bK y
24 þ bK y

L4 þ bK y
G1

� �
� jw4j 2þ1ð Þþ

bK y
25 þ bK y

L5 þ bK y
G2

� �
� jw5j 2þ1ð Þ

ðB:4Þ
This latter assumption is made explicit, in Eq. (B.4), by writing

the exponent as 2þ 1ð Þ. Recall that in the previous expression of
12
F, the energy factors bK y are not necessarily constant. Additionally,
their values also depend, on the exponent m chosen, but the global
dissipation F is always the same for a certain flow distribution. A
more compact way of writing (B.4) using the scalar product, is:

F � h � gð Þ x1 ; x2ð Þ ¼ bK y
h i

1
; bK y
h i

2
; bK y
h i

3
; bK y
h i

4
; bK y
h i

5

� �
� jw1j3 ; jw2 j3 ; jw3 j3; jw4j3; jw5j3
� �

F � h � gð Þ x1 ; x2ð Þ ¼ bK y
�!

� jwj3
��!

¼ F ~xð Þ
ðB:5Þ

In Eq. (B.5), the symbols bK y
�!

and jwj3
��!

represent two vectors
whose components are shown at the top of the same Eq. (B.5). Both
depend, in general, on the independent variable~x ¼ x1; x2ð Þ. Finally,
the ‘‘local” form of Eq. (B.4) is obtained by computing the energy
factors at a certain test point or flow distribution, ~xt :

Fj~xt � h � g	 

x1; x2ð Þ ¼ bKy

L1j~xt � jw1j 2þ1ð Þ þ bKy
12 þ bKy

L2 þ bKy
elbow

� �



~xt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bKy
� �

2
j~xt

�jw2j 2þ1ð Þþ
bKy

13 þ bKy
L3 þ bKy

G3

� �



~xt
� jw3j 2þ1ð Þþ

bKy
24 þ bKy

L4 þ bKy
G1

� �



~xt
� jw4j 2þ1ð Þþ

bKy
25 þ bKy

L5 þ bKy
G2

� �



~xt
� jw5j 2þ1ð Þ ¼ Fj~xt x1; x2ð Þ

ðB:6Þ

The evaluation of the component bK y
h i

2
at some test point~xt is

written as bKy
h i

2
j~xt . Recall that Eq. (B.6), when there exist work

interaction, is not strictly a pure dissipation function.
According to our previous paper [2], for m ¼ 2 the energy (dis-

sipation) factor of a straight i-conduit is given by:

buy
Li ¼ f D;i �

8qL
p2 � D5

� �
� j _VT j2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{bK y
Li

�jwij2; ðB:7Þ

while for any branched junction bK y
��, elbow-fitting bK y

elbow and any

grille bK y
G� the Eq. (B.1), can be used to define the energy factor. This

latter Eq. (B.1), in turn, is based on the head change coefficient C of
the branched junction, the elbow and the grilles. Just for illustrative
purposes, four network cases, based on the example of Fig. B.7 have
been analyzed, operating either in supply sð Þ or return rð Þ mode. In
all cases, the head change coefficient of the elbow fitting is C ¼ 0:22.
The total flow rate _VT has been kept constant and it is imposed
either as supply or return flow. Although the effective head change
C at a certain given grille, is different in supply and return modes,
here their values have been kept constant for all cases. Therefore,
the only difference between supply and return operating modes,
in our example, has been the selection of the energy factor (ulti-
mately, the head change coefficient) for the branched junctions. This
dependence of the energy factor on the sense of the flow, for non-
symmetrical elements, must be taken into account, implicitly, by
the procedure. As aforementioned, the grilles head loss is also
non-symmetrical but their values were kept constant in all cases,
so that, in practice, it is like having two different types of grilles:
one for supply and another for return mode.



Table B.4
Example return network. Summary of the different cases.

Case Geometry Return grilles
C

#1(s)
(r)

~L ¼ 10;5;10;1;1ð Þ
~D ¼ 0:50;0:50;0:45;0:50;0:45ð Þ

0.1

#2(s)
(r)

same as case 1 1.0

#3(s)
(r)

~L ¼ 10;5;10;1;1ð Þ
~D ¼ 0:50;0:50;0:20;0:50;0:20ð Þ

1.0

#4(s)
(r)

~L ¼ 10;5;10;1;1ð Þ
~D ¼ 0:50;0:50;0:50;0:50;0:50ð Þ

1.0
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The head change coefficients of the branched junctions have
been obtained from Idelchik [22].5 The, Eqs. (B.8) and (B.9), show
their expressions but using our nomenclature instead of the Idel-
chik’s guidebook.

C31 ¼ buy
31

q�v2
1=2

¼ 1� 1�
_V2

_V1

 !2

� A1

A2

_V2

_V1

 !2

ðB:8aÞ

C21 ¼ buy
21

q�v2
1=2

¼ a � 1þ
_V2

_V1

A1

A2

 !2

� 2 1�
_V2

_V1

 !2

� A1

A2

_V2

_V1

 !2
24 35 ðB:8bÞ

a ¼

ifA2=A1 6 0:35then1otherwise0
else
if _V2= _V1 6 0:4then0:9 � 1� _V2= _V1

� �
else0:55

8>>>><>>>>: ðB:8cÞ

Eq. (B.8) Convergent 60�;A2 þ A3 > A1;A1 ¼ A3 (Idelchik [22])

C12 ¼ buy
12

q�v2
1=2

¼ a0 � 1þ
_V2= _V1

A2=A2

 !2

� 2
_V2= _V1

A2=A2
� cosa

24 35 ðB:9aÞ

C13 ¼ buy
13

q�v2
1=2

¼ 0:4 � _V2= _V1

� �2
ðB:9bÞ

a0 ¼
if A2=A1 6 0:35thenif _V2= _V1 6 0:4then1:1� 0:7 � _V2= _V1 else 0:85
else
if _V2= _V1 6 0:6then1:1� 0:65 � _V2= _V1 else 0:60

8><>: ðB:9cÞ

(B.9) Divergent 0 < a 6 60�;A2 þ A3 > A1;A1 ¼ A3 (Idelchik
[22]).

In every case the starting iteration point was the same
~x0 : x1 ¼ 0:5 and x2 ¼ 0:4. However a series of runs, with the initial
point chosen arbitrarily, were also performed without problems of
convergence or appreciable changes in calculation speed.

Table B.4 shows the geometry for each case and the C of the
grilles. The lengths and angles of the network sections are kept
constant but, depending on the case, the diameters change (see
sections 3;4;5f g in that table).

The properties of the air at 20 �C½ � and 1 bar½ � are assumed to be:
m ¼ 1:813 � 10�5 kg � s�1 �m�1

� �
;1=q ¼ 0:85 m3=kg

� �
. The rough-

ness of the duct corresponds to galvanized steel sheet � ¼ 0:14.
As mentioned, section S1 has always the same values:
_V1 ¼ _VT ¼ 1:374450 m3=s

� �
or

w1 ¼ 1; Re ¼ 234288; v ¼ 7:00 m=s½ �; �=D ¼ 0:28, either operat-
ing in supply or return mode.

Tables B.5 and B.6 show the results of a total of eight runs: four
cases times two modes. In Table B.5, cases #1 and #2 compare the
effect of just increasing the C at the grilles. Looking at the column
named w, the flow rate ratio in each network section can be com-
pared. Notice its big impact on the flow distribution, reaching even
a case where in section S5 the supply flow is practically zero. In
5 These coefficients may change, due to recent revision, with the edition of the
Idelchik guidebook, here they are taken as valid for illustrative purposes.
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Table B.6, cases #3 and #4 compare the effect of increasing the
diameter of sections S3 and S5. It can be checked that the effect
is very different in supply and return modes.

Nevertheless, our goal here is to illustrate the new method and
to verify that it copes with the difficulties posed at Section 1. As
aforementioned, despite the very different flow distribution at
the solution for each case, the new method worked very well.
Regardless of the initial point ~x0, the method was always robust
in finding the solution.

In order to visualize the ideas and concepts of the new method,
the Fig. B.8 has been included. It represents the actual values for
the case #2 rð Þ (the return mode). The x1; x2ð Þ plane represents dif-
ferent flow distributions and the z� axis represents different speci-
fic power functions per unit of total volume flow rate Pa½ �. It only
has the meaning of an actual power dissipation for the F function.
Two, of the represented surfaces, correspond to functions already
presented in the paper: the global dissipation function F x1; x2ð Þ
(or the actual dissipation) and a ‘‘local” function F x1; x2ð Þ computed
at the test point ~xt ¼ 0:35;0:35ð Þ. It is worthwhile to stress that:
F ~xð Þ is an hypothetical energy dissipation of the network, or in
other words, F ~xtð Þ would be the dissipated power per unit of _VT ,
if the network could be kept at the flow distribution~xt but actually,
this is not physically possible. Moreover, any point on the F surface
has a net external work equal to zero, i.e., all work interactions are
internal and cancel out. On the other hand, Fj~xt , would be the local
energy ‘‘dissipation” (warning: see Section 2.5 for details), of the
network, if the physical mechanisms of dissipation and work
exchange were ‘‘frozen” at the values that the flow distribution

really has at the test point ~xt (i.e. bK y are kept constant for those
conditions). This makes a great difference. It means that any point
on the surface Fj~xt has a net external work exchanged not equal to
zero, although it looks similar to F. The only point on that surface,
where the work cancels out is, by definition, on the test point ~xt .
The third function in Fig. B.8, is an auxiliary function Faux x1; x2ð Þ
whose goal is to visualize that the solution ~xsol is not at the mini-
mum of the global dissipation function F ~xsolð Þ – Fmin. The new func-
tion is defined as follows: to any test point ~xt the mapped value
Faux ~xtð Þ, is computed as the minimization of the ‘‘local” form Fj~xt ,
i.e. Faux ~xtð Þ ¼ minimum~x Fj~xt ~xð Þ	 


(see Fig. B.8). According to the dis-
cussion in Section 2.5, this auxiliary function satisfies an interest-
ing property: it should touch the global dissipation function at a
single point, since if ~xt ¼~xsol then

Faux ~xsolð Þ ¼ minimum~x Fj~xsol ~xð Þ
� �

¼ F ~xsolð Þ which are precisely the

conditions for being a solution of the steady-state flow distribu-
tion, otherwise Faux ~xtð Þ– F ~xtð Þ, i.e., they have no points in common.

Using the Fig. B.8, the solution procedure can be visualized. At
the flow distribution plane x1; x2ð Þ three iteration steps are dis-
played. Let’s have a look at the two final ones. The iteration is at
~xt , and after computing the bK y factors to create the ‘‘local” form
Fj~xt ~xð Þ, this function is minimized leading practically to the solution
~xsol. Now, since~xsol is not coherent or compatible with the previous

physics assumed in F, a new compatible vector with bK y
sol

h i
compo-

nents is computed at~xsol, and a new ‘‘local” form Fj~xsol ~xð Þ is obtained
(warning: the surface Fj~xsol ~xð Þ is not shown in the Fig. B.8). This new

‘‘local” form has a minimum at ~xsol0 and therefore within a certain

tolerance:~xsol �~xsol0 or bK!y
sol � bK!y

sol0 and the solution is reached.
On the top right of Fig. B.8, there is a side-view of the three sur-

faces. There it can be seen clearly that the Faux touches the global
dissipation at a single point, close to its minimum but not at the
minimum of F ~xð Þ. One outcome, from this fact, is a better under-
standing of why a small modification of the resistance of the net-



Table B.5
Cases #1 and #2. Results for the example shown in Fig. B.7. Effect of the loss at the grilles. Note: (r) return, (s) supply.

Case parameters Case Number DpT Pa½ � Power W½ � x1 x2
Cgr ¼ 0:1

D3 ¼ D5 ¼ 0:45 m½ �
#1(r)
#1(s)

159.633
157.783

219.407
216.865

0.2909160
0.6986250

0.3031394
� 0

Section w _V m3=s
� � Reynolds v m=s½ � �=D

S2(r)
S2(s)

0.594
0.699

0.816498
0.960223

139180
163679

4.16
4.89

0.28

S3(r)
S3(s)

0.406
0.301

0.557949
0.414224

105676
78453

3.51
2.60

0.31

S4(r) 4(s) 0.291
0.699

0.399849
0.960223

68158
163679

2.04
4.89

0.28

S5(r)
S5(s)

0.303
0.000

0.416649
� 0

78913
� 0

2.62
� 0

0.31

Case parameters Case Number DpT Pa½ � Power W½ � x1 x2
Cgr ¼ 1:0

D3 ¼ D5 ¼ 0:45 m½ �
#2(r)
#2(s)

163.472
162.314

224.683
223.092

0.3130019
0.5381383

0.2921281
0.1541103

Section w _V m3=s
� � Reynolds v m=s½ � �=D

S2(r)
S2(s)

0.605
0.692

0.831719
0.951459

141775
162186

4.24
4.85

0.28

S3(r)
S3(s)

0.395
0.308

0.542728
0.422988

102793
80113

3.41
2.66

0.31

S4(r)
S4(s)

0.313
0.538

0.430204
0.739642

73332
126079

2.19
3.77

0.28

S5(r)
S5(s)

0.292
0.154

0.401514
0.211816

76046
40118

2.52
1.33

0.31

Table B.6
Cases #3 and #4. Results for the example shown in Fig. B.7. Effect of the diameter of the side branches. Note: (r) return, (s) supply.

Case parameters Case Number DpT Pa½ � Power W½ � x1 x2
Cgr ¼ 1:0

D3 ¼ D5 ¼ 0:20 m½ �
#3(r)
#3(s)

210.389
209.344

289.168
287.733

0.8386228
0.8882054

0.0991515
0.0623936

Section w _V m3=s
� � Reynolds v m=s½ � �=D

S2(r)
S2(s)

0.938
0.951

1.288920
1.306550

219709
222714

6.56
6.65

0.28
0.28

S3(r)
S3(s)

0.062
0.049

0.085526
0.067899

36446
28935

2.72
2.16

0.70
0.70

S4(r)
S4(s)

0.839
0.888

1.152640
1.220790

196479
208096

5.87
6.22

0.28
0.28

S5(r)
S5(s)

0.099
0.062

0.136278
0.085756

58075
36545

4.34
2.73

0.70
0.70

Case parameters Case Number DpT Pa½ � Power W½ � x1 x2
Cgr ¼ 1:0

D3 ¼ D5 ¼ 0:50 m½ �
#4(r)
#4(s)

157.161
156.764

216.009
215.464

0.2351134
0.5001686

0.2956164
0.1431726

Section w _V m3=s
� � Reynolds v m=s½ � �=D

S2(r)
S2(s)

0.531
0.643

0.729460
0.884238

124344
150727

3.72
4.5

0.28
0.28

S3(r)
S3(s)

0.469
0.357

0.644987
0.490208

109944
83561

3.29
2.5

0.28
0.28

S4(r)
S4(s)

0.235
0.500

0.323151
0.687455

55084
117184

1.65
3.5

0.28
0.28

S5(r)
S5(s)

0.296
0.143

0.406309
0.196783

69259
33544

2.07
1.0

0.28
0.28
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work (or the global dissipation function) may produce a quite big
change in the flow distribution without hardly changing the dissi-
pated power of the network. An example of this, can be found by
looking at cases #3 rð Þ and #4 rð Þ, in Table B.6.

The paper presents the main outcomes and ideas about the
application of MinEDP for solving the steady-state flow distribu-
tion of general networks. Therefore, a detailed study of the compu-
tational performance is out of the scope, since no optimization has
been studied. However, as a reference, we can provide some data.
The method was implemented in Scilab. The minimization method
for F was the Nelder-Meads algorithm. The tolerance in the search

space was 10�9 and was applied to the no rm of the vector bK!y. The
14
convergence of the overall fixed point problem and minimization
steps, was very fast. In regard to convergence, the value of m has
an effect which deserves to be studied a bit further. The physical
meaning of the exponent m in the potential law (22) is discussed
in [2]. As mentioned here and explained in [2], the exact value of
m does not really matter to reach the solution. As it has been
shown the energy dissipation and the internal work interactions
determine the solution. The exponent m acts as a tunning param-
eter for the measure of the dissipation/interaction power. In a pre-
liminary check, the number of iterations does depend on them (see
[2]). For instance, in a network without work interactions and
made up only of smooth straight conduits m can be chosen so that
in a single minimization step the solution is found (see [2]).



Fig. B.8. Case #2 rð Þ: actual representation in~x	 Dissipation space of several dissipation surfaces defined in the paper. The flow distribution solution is marked with a I. The
side-view illustrates that the solution is not at the minimum of the global dissipation function F.
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of friction and separation losses in ducts, Facta Universitatis 2 (7/2) (1997)
341–352, URL: http://facta.junis.ni.ac.rs/macar/macar97s/macar97s-02.pdf.

[17] S.B.R. Guohui Gan, Numerical determination of energy losses at duct junctions,
Applied Energy 67 (2000) 331–340.

[18] B.S. Heinz Herwig, Drag with external and pressure drop with internal flows: a
new and unifying look at losses in the flow field based on the second law of
thermodynamics, Fluids Dynamics Research 45, doi:10.1088/0169-5983/45/5/
055507..

[19] H. Herwig, B. Schmandt, How to determine losses in a flow field: A paradigm
shift towards the second law analysis, Entropy 16 (6) (2014) 2959–2989,
https://doi.org/10.3390/e16062959, URL: http://www.mdpi.com/1099-4300/
16/6/2959.

[20] H.H. Bastian Schmandt, Losses due to the flow through conduit components in
mini- and micro- systems accounted for by head loss/change coefficients, in:
Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering
Division Summer Meeting and 12th International Conference on
Nanochannels, Microchannels, and Minichannels,Chicago, Illinois, USA,
ASME, 2014.

[21] E. Mathews, D. Claassen, Problems with the t-method, Building and
Environment 33 (4) (1998) 173–179, https://doi.org/10.1016/S0360-1323
(97)00033-4, URL: https://www.sciencedirect.com/science/article/pii/
S0360132397000334.

[22] I.E. Idelchik, Handbook of hydraulic resistance (2nd Edition), Hemisphere
Publishing Corporation, 1986, ISBN: 0-89116-284-4..

[23] L. Tong, J. Gao, Z. Luo, L. Wu, L. Zeng, G. Liu, Y. Wang, A novel flow-guide device
for uniform exhaust in a central air exhaust ventilation system, Building and
Environment 149 (2019) 134–145, https://doi.org/10.1016/j.
buildenv.2018.12.007, URL: https://www.sciencedirect.com/science/article/
pii/S036013231830742X.

https://doi.org/10.1016/j.ijheatfluidflow.2015.06.004
https://doi.org/10.1016/j.ijheatfluidflow.2015.06.004
https://doi.org/10.1016/j.energy.2019.01.060
https://doi.org/10.1016/j.energy.2019.01.060
https://doi.org/10.1016/j.ajic.2006.10.012
https://doi.org/10.1007/978-3-319-11023-3_5
https://doi.org/10.1007/978-3-319-11023-3_5
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0045
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0045
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0050
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0050
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0065
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0065
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0065
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0070
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0070
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0080
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0080
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0080
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0085
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0085
https://doi.org/10.3390/e16062959
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
http://refhub.elsevier.com/S0378-7788(21)00788-X/h0100
https://doi.org/10.1016/S0360-1323(97)00033-4
https://doi.org/10.1016/S0360-1323(97)00033-4
https://doi.org/10.1016/j.buildenv.2018.12.007
https://doi.org/10.1016/j.buildenv.2018.12.007

	A new HVAC ductwork steady-state flow analysis method: The Minimum Energy Dissipation Principle applied to flow networks including the effects of branched junctions
	1 Introduction
	1.1 Motivation, goals and the MinEDP
	1.2 The new paradigm which extends the steady state flow distribution analysis
	1.3 Structure of the paper

	2 Methodology
	2.1 Branched junctions: review and state of the art
	2.2 The internal, external and dissipation model of a branched junction
	2.3 Network steady-state: interacting branches (Bernoulli’s principle)
	2.4 Network steady-state: non-interacting (MinEDP)-overview
	2.5 Network steady-state: interacting branches (MinEDP)
	2.6 Generalization for any network (not necessarily tree-shaped)

	3 Discussion
	4 Conclusions
	Declaration of Competing Interest
	Appendix A The negative hydraulic resistances issue
	A.1 Operating point of a fan duct-network
	A.2 Example (sizing-step)
	A.3 Example (analysis-step): Difficulties

	Appendix B Example
	B.1 Relationships: [$] {\widehat{\varphi}}{}^{\dagger}, \widehat{C}, {\widehat{K}}{}^{\dagger}[$]
	B.2 Example of interacting branches

	References


