
10548 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

PiCoCo: Pixelwise Contrast and Consistency
Learning for Semisupervised Building Footprint

Segmentation
Jian Kang , Member, IEEE, Zhirui Wang , Ruoxin Zhu, Xian Sun , Senior Member, IEEE,

Ruben Fernandez-Beltran , Senior Member, IEEE, and Antonio Plaza , Fellow, IEEE

Abstract—Building footprint segmentation from high-resolution
remote sensing (RS) images plays a vital role in urban planning, dis-
aster response, and population density estimation. Convolutional
neural networks (CNNs) have been recently used as a workhorse for
effectively generating building footprints. However, to completely
exploit the prediction power of CNNs, large-scale pixel-level anno-
tations are required. Most state-of-the-art methods based on CNNs
are focused on the design of network architectures for improving
the predictions of building footprints with full annotations, while
few works have been done on building footprint segmentation with
limited annotations. In this article, we propose a novel semisuper-
vised learning method for building footprint segmentation, which
can effectively predict building footprints based on the network
trained with few annotations (e.g., only 0.0324 km2 out of 2.25-km2

area is labeled). The proposed method is based on investigating
the contrast between the building and background pixels in latent
space and the consistency of predictions obtained from the CNN
models when the input RS images are perturbed. Thus, we term the
proposed semisupervised learning framework of building footprint
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segmentation as PiCoCo, which is based on the enforcement of
Pixelwise Contrast and Consistency during the learning phase. Our
experiments, conducted on two benchmark building segmentation
datasets, validate the effectiveness of our proposed framework as
compared to several state-of-the-art building footprint extraction
and semisupervised semantic segmentation methods.

Index Terms—Building footprint segmentation, consistency
learning, contrastive learning, missing labels, semantic
segmentation, semisupervised learning.

I. INTRODUCTION

S EGMENTING building footprints from high-resolution re-
mote sensing (RS) images has become a basic task within

the field of intelligent RS image interpretation. The footprints
of buildings are indispensable elements for the research in
urban planning [1], [2], disaster response [3], population den-
sity estimation [4], etc. Although distinguishing building pixels
from the background is a binary segmentation problem, it is
still a challenging and hot topic in the RS community, due to
the complex context information present in high-resolution RS
images. In recent decades, with the rapid development of aerial
and spaceborne sensors, massive volumes of high-resolution
RS data have significantly promoted the technical evolution of
building footprint extraction [5]–[11].

Conventional methods for characterizing building footprints
rely on hand-crafted features extracted from high-resolution
RS images, such as contours [12], geometry [13], and mor-
phology [14]. In addition, assisted data sources, such as digital
surface models, light detection and ranging, or geographic
information system, have been widely utilized for improving the
building footprint segmentation accuracy with their complemen-
tary information [15]–[19]. Although the aforementioned meth-
ods have achieved prominent performances in building footprint
generation, they often suffer from accuracy degradation on com-
plicated RS images. Nowadays, with the rapid development of
deep learning methods, convolutional neural networks (CNNs)
have been widely utilized for the intelligent interpretation of
high-resolution RS images in a data-driven manner [20]–[23].
By simultaneously and automatically learning low- and
high-level features from massive RS images, CNNs can
effectively capture both the shape and semantic information for
building regions, which significantly improve the generalization
and robustness capabilities for the footprint segmentation of
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Fig. 1. Semisupervised building footprint segmentation: learning to segment
buildings based on the training areas where a small portion is labeled. Within
the above 2.25-km2 area, only an area of 0.0324 km2 is labeled and the other
area of 2.2176 km2 is without annotations. (The image was obtained from the
Inria Aerial Image Labeling Dataset.)

diverse RS images compared to the conventional methods [24].
Therefore, extensive research has been pursued for developing
advanced deep learning methods to automatically extract
building footprints [24]–[27]. However, to completely release
the prediction power of CNNs, large-scale and pixel-level
annotations are required. Such a labeling procedure is unrealistic
for humans, especially when the RS data are scalable. One
alternative approach for annotating ground-truth building
regions is based on crowd-sourcing geospatial information,
e.g., Google Maps or OpenStreetMap [6], [28]. Nonetheless,
under this scenario, missing or incorrect annotations may often
appear in the generated ground-truth building mask layer due to
some plausible reasons, including urban construction, delayed
updating, disagreement among different volunteer annotators,
or even low-quality volunteered geographic information. With
corrupted annotations as the ground truth, CNNs can be easily
overfit to the associated training samples, which severely
influences the prediction accuracy of the obtained models [29].

In order to avoid the huge labor cost associated with RS
images with full annotations and the performance degradation
based on the trained models with label noise, we seek to design
a proper semisupervised segmentation method for extracting
the building footprints, where limited annotations are required.
For example, as shown in Fig. 1, within a 2.25-km2 area, only
a small portion of 0.0324 km2 is labeled and the other area
of 2.2176 km2 is without annotations. By taking advantages
of limited areas with labels and large amounts of unlabeled
areas, we propose a novel semisupervised building footprint
segmentation framework—PiCoCo, which is based on contrast
and consistency learning in a pixelwise manner. Specifically,
PiCoCo is constructed on two learning concepts: 1) contrast
learning, which is aimed at learning compact and discriminative

latent representation space for distinguishing building and back-
ground pixels; and 2) consistency learning, which is targeted at
imposing the prediction consistency of the models on different
perturbations of input images. To this end, the main contributions
of the proposed framework can be summarized as follows.

1) A novel semisupervised building footprint segmentation
framework, i.e., PiCoCo, is proposed for effectively
learning the building footprints with only around 1%
pixels existing labels.

2) We first investigate the need for simultaneously imposing
the contrast among the features from labeled pixels and
the consistency of the predictions from unlabeled pixels
within the semisupervised learning framework.

3) When applied to two standard benchmark datasets, PiC-
oCo outperforms several state-of-the-art building foot-
print extraction and semisupervised semantic segmen-
tation methods, which demonstrates great potential in
real applications. The codes of this paper will be made
publicly available in https://github.com/jiankang1991/
JSTARS_PiCoCo.

The rest of this article is organized as follows. Section II
presents some related work from the perspectives of build-
ing footprint and semisupervised semantic segmentation. Sec-
tion III introduces the overall framework ofPiCoCo. Section IV
demonstrates the conducted experiments and analyzes the as-
sociated results. Section V concludes this article with some
remarks and hints for the follow-on research directions.

II. RELATED WORK

A. Building Footprint Segmentation

Recently, CNNs have been served as workhorse for effectively
learning building footprints from high-resolution RS images.
One of the first deep-learning-based building footprint segmen-
tation methods is based on the fully convolutional network
(FCN), which learns the building segments based on the skip
architecture fusing low- and high-level semantic information in
a fully convolutional manner [24], [30]. An encoder–decoder
CNN framework with a spatial residual inception module is
proposed in [31], which captures and fuses multiple scales of
building features to generate the final footprints. Wei et al.
proposed an FCN architecture with multiscale feature aggre-
gation and the polygon regulation for extracting and refining
the building boundaries [32]. By directly exploiting hierarchical
features, Li et al. introduced a multiple-feature reuse network
(MFRN) to accelerate the computational performance of the
models applied on very large input RS images [33]. Li et al.
integrated feature pairwise conditional random field into CNN
models for learning sharp building boundaries and fine-grained
building segments [34]. Zhu et al. proposed a multiple attending
path neural network for precisely generating multiscale building
footprints based on combining a multiscale feature extraction
strategy and attention mechanisms [35]. A modified Pix2Pix [36]
framework is proposed in [37] to solve the problem of extracted
inaccurate boundaries. Different from the building footprint
extraction based on learning segments, extensive research has
also been focused on learning vector polygons of buildings. For
example, Li et al. proposed PolyMapper to directly extract the
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Fig. 2. Graphical illustration of the semisupervised segmentation framework PiCoCo. The labeled images are fed into a segmentation model, such as
DeepLabV3+, to calculate the contrast and supervised losses, where the contrastive module is consisted of Conv-BN-ReLu and Conv layers. Then, unlabeled
images are fed into the same model to obtain pseudo labels. After that, augmented image and pseudo label pairs are obtained. At last, predictions of the augmented
images can be made by the model and the consistency loss is calculated.

topology map of building footprints based on the combination of
CNNs and recurrent neural networks [38]. Chen et al. exploited
the FCN-like segmentation method to generate the initial build-
ing contours and learn the shape priors of building polygons
based on a modified PointNet [39]. By integrating a frame field
output into a deep image segmentation model, Girard et al.
proposed a new polygonization algorithm for learning more
accurate building contours [40]. In addition, some works have
been introduced for designing novel losses to accurately predict
building regions and boundaries. Yuan et al. proposed to exploit
the signed distance function, which calculates the distance from
the pixels to their nearest points on the boundaries, for effectively
generating the building contours [41]. Wu et al. regularized the
region-based cross-entropy (CE) loss based on the boundary loss
for extracting building segments and outlines [9]. Bokhovkin and
Burnaev proposed a surrogate loss to penalize the misalignment
of building boundaries and achieved the out-performance than
the commonly utilized CE and Dice losses [42]. Although the
aforementioned methods have significantly improved the per-
formance of the building footprint generation, a few works have
been investigated to learn the segmentation models based on
limited RS images with annotations.

B. Semisupervised Semantic Segmentation

Semisupervised semantic segmentation is aimed at learning
the segmentation models based on both labeled and unlabeled
images [43]–[45]. Recently, one of the most effective approaches
is based on consistency learning. By randomly augmenting the
input images and enforcing the consistency on their predictions,
the decision function can be learned to lie in low-density re-
gions [46], [47]. Besides the perturbation on the input images,

some works focused on developing semisupervised segmenta-
tion methods have been based on perturbing latent features and
imposing the associated consistency. Ouali et al. first observed
that the low-density regions were more apparent within the latent
feature space than within the input images and proposed a cross-
consistency training method, where the invariance of the pre-
dictions was enforced over various perturbations of latent image
representations [48]. By means of knowledge exchange between
two student segmentation models, Peng et al. also insisted the
consistent predictions on unlabeled images of the two mod-
els [49]. Zou et al. generated well-calibrated structured pseudo
labels for training unlabeled and weakly labeled images and
integrated such a strategy into a one-stage consistency training
framework [50]. Chen et al. developed a cross-consistency train-
ing method based on the mutual supervision of two student mod-
els, which were independently initialized [51]. Different from
these methods, we integrate a contrast learning strategy within
the consistency learning framework, where the contrast learning
is imposed on labeled images to regularize the compactness and
distance of intra- and interclass latent features. Although contrast
learning has been investigated for semisupervised segmenta-
tion [52], we further show that both the contrast and consistency
learning are essential for semisupervised segmentation.

III. METHODOLOGY

The proposedPiCoComainly consists of two learning strate-
gies: 1) pulling intraclass representations and separating inter-
class representations in latent space for labeled images; and 2)
imposing the prediction consistency of the models on different
augmented unlabeled images. To achieve this, the models are
reused three times within each learning iteration, and a joint



KANG et al.: PiCoCo: PIXELWISE CONTRAST AND CONSISTENCY LEARNING 10551

loss function is proposed, which includes the supervised loss
term, the contrast loss term, and the consistency loss term. Fig. 2
graphically illustrates the proposed framework. In the following,
we describe all these components in detail.

A. Notations

Let XL = {XL
1 , . . . ,X

L
NL} denote a building extraction

dataset with NL labeled images with binary masks, i.e., Y =
{Y1, . . . ,YNL}, where each element of Yi is either 0 or 1. In
this article, 1 indicates the building region and 0 is considered as
background. Within the framework of semisupervised learning,
there also exists unlabeled dataset XU = {XU

1 , . . . ,X
U
NU} for

assisting to learn segmentation models. We exploit an encoder
model denoted as f(·) to learn a latent representation map Zi of
the input image Xi. For example, within DeepLabV3+ [53], Zi

is constructed by concatenating the low-level features from the
first convolutional layer and the high-level features from Atrous
Spatial Pyramid Pooling layer. Then, Zi is fed into one classifier
head φc(·) and one projection head φp(·) to generate predicted
building mask Ŷi and dense vectors Fi, respectively.

B. PiCoCo

1) Pixelwise Contrast Learning: With annotations, contrast
learning aims at characterizing the latent representation space by
decreasing and increasing the distances of intra- and interclass
representations, respectively [52], [54]. To achieve this, we
minimize the following loss:

Lcontrast =
∑

c∈{0,1}

∑

fq∈Rc
q

− log
exp(fTq f

c,+/
k τ)

exp(fTq f c,+k /τ) +
∑

f−k ∈Rc
k
exp(fTq f−k /τ)

Rc
q =

⋃

(u,v)

1(Y[u, v] = c)F[u, v, :]

f c,+k =
1

|Rc
q|

∑

fq∈Rc
q

fq

Rc
k =

⋃

(u,v)

1(Y[u, v] �= c)F[u, v, :]. (1)

Here, c denotes the class indicator and fq are the query vectors
sampled fromF. Within one labeled mini-batch, we utilize class
information to constrain the sampling of Mq query vectors, i.e.,
all query vectors are from the same class. It can be achieved by
resizing the spatial dimension of the building mask Y same as
F and then sampling from Rc

q . f c,+k represents the key vector,
which is the mean vector of class c. In order to discriminate
the positive representations from the negative ones, we also
sample Mk vectors from Rc

k, which is the set of key vectors
from different classes with respect to fq . τ denotes the tem-
perature parameter, which controls the concentration level of
the distributions. The objective of (1) is to learn compact and
discriminative classwise representations Z in latent space. As
suggested in [54], it is beneficial to apply contrast loss on F

obtained from the projection head φp(·) rather than Z, where
φp(·) is composed by two stacked convolutional layers.

Hard query sampling: It is time consuming and computa-
tionally expensive to sample all the dense vectors from Rc

q

in each training iteration under the above pixelwise contrast
learning framework. To avoid such issue, it is necessary to
sample informative query vectors. Following [52], we sample
hard queries whose associated pixel prediction confidences are
below a defined threshold δ. Specifically, in practice, Rc

q is
replaced by

Rc,hard
q =

⋃

(u,v)

1(Y[u, v] = c, Ŷ[u, v] ≤ δ)F[u, v, :]. (2)

We ignore those samples with high classification confidence,
since they make less contributions to the contrast loss.

It is worth noting that we only make contrast of the pixels
from labeled inputs (XL) under the semisupervised learning
framework. Differently, in [52], the contrast is made between the
positive and negative pixels from both the truly annotated pixels
and the pixels with pseudo labels predicted on the unlabeled
inputs (XU). One consideration is that the contrast loss is only
applied on the latent space of truly annotated pixels in order to
improve the generalization capability of the learned classifiers
for unseen images. In addition, the generated pseudo labels
may contain label noise, which influences such metric learning
performance of classwise representations.

2) Pixelwise Consistency Learning: To leverage a large num-
ber of unlabeled images XU, inspired by [55], we apply pix-
elwise consistency learning on the class predictions from the
input images and their augmented versions. Specifically, we first
generate pseudo labels ŶU given the inputs XU. Then, heavy
augmentations are applied on the pairs of (XU, ŶU) and yield the
augmented pairs (XU

pert, Ŷ
U
pert). After the class predictions of

XU
pert are obtained through f ◦ φc, the consistency of the models

on those predictions can be achieved by increasing the agreement
between ŶU

pert and probabilitiesP(ŶU|XU
pert). In our work, we

minimize CE and Dice losses to achieve this. Specifically, such
consistency learning strategy can be described by

XU → f ◦ φc → ŶU → ŶU
pert

↓ �
XU

pert → f ◦ φc → P(ŶU|XU
pert).

(3)

The consistency loss is defined as

Lconsistency = LCE(P(ŶU|XU
pert), Ŷ

U
pert)

+ LDice(P(ŶU|XU
pert), Ŷ

U
pert). (4)

The objective of (4) is to impose pixelwise consistency be-
tween the predictions of the original input images and their per-
turbed versions. In this way, we would like to learn segmentation
models that can achieve smooth predictions on the unlabeled
images with perturbations rather than the models that achieve
high predictions on those images without stable performances
when perturbations are applied. The former models are more
robustly adapted to unlabeled images than the latter ones, which
may be better generalized to unseen images.

3) Joint Loss Function: Besides the above two loss
terms, given the true annotations YL and class probabilities
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Fig. 3. Training set construction for the Inria dataset. For each tile of 2.25-km2 area, we only randomly crop 0.0324-km2 area with the spatial size of 600 × 600
pixels to be labeled. The others are regarded as unlabeled images in the training set.

Algorithm 1: Optimization Scheme for PiCoCo.

Require: XL, Y , and XU

1: Initialize the parameters of the encoder f , the classifier
head φc, and the projection head φp, along with Mq ,
Mk, δ, and τ .

2: for The epoch number t = 0 to maxEpoch do
3: Sample one mini-batch of labeled and unlabeled

images, i.e., (XL
B , YL

B) and XU
B , respectively.

4: Calculate the supervised loss Lsupervised based on
YL
B and f ◦ φc(XL

B).
5: Calculate the contrast loss Lcontrast based on (1).
6: Obtain the pseudo labels ŶU

B based on f ◦ φc(XU
B )

7: Augment the unlabeled image and pseudo label pairs
(XU

B , ŶU
B) and yield (XU

Bpert
, ŶU

Bpert
).

8: Calculate the consistency loss Lconsistency.
9: Obtain the joint loss L and backpropagate the

gradients.
10: end for
Ensure: f , φc and φp.

P(ŶL|XL), we minimize the following supervised loss term to
improve the confidences of the class predictions on the labeled
images:

Lsupervised = LCE(P(ŶL|XL),YL)

+ LDice(P(ŶL|XL),YL). (5)

To this end, the joint loss function for semisupervised building
footprint segmentation is formulated as

L = Lsupervised + Lcontrast + Lconsistency. (6)

The associated optimization scheme of PiCoCo is described in
Algorithm 1.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset Configuration: In our experiments, we exploit
two building footprint extraction benchmark datasets: 1) Inria
Aerial Image Labeling Dataset [5] and 2) NZ32km2 [9].

1) Inria: This dataset contains 180 aerial orthorectified tiles
with a spatial resolution of 0.3 m covered 405-km2 areas
over Austin, Chicago, Kitsap County, Vienna, and West
Tyrol in the training set and 180 tiles over Bellingham, San
Francisco, Bloomington, Innsbruck, and East Tyrol in the

TABLE I
NUMBER OF LABELED AND UNLABELED PATCHES IN THE TRAINING

SETS OF INRIA AND NZ32KM2

enclosed test set. For our experiments, we split the original
training set into training and test sets according to [56].
From the training set, we only randomly crop an area with
the size of 600 × 600 pixels covered 0.0324 km2 for each
tile to construct labeled training set (as shown in Fig. 3),
and the others belong to unlabeled training set. Thus, we
have a training set with 153 labeled patches with the size
of 600 × 600 pixels and 15 147 unlabeled patches.

2) NZ32km2: This dataset covers a 32-km2 area in
Christchurch, New Zealand, which is composed of eight
tiles (four tiles for training and test) with a spatial resolu-
tion of 0.075 m. Similar to the above setting, we randomly
crop 122 patches with the size of 600 × 600 to be the
labeled patches, which only cover areas of 0.247 km2.
Thus, we finally have a training set with 122 and 12 166
labeled and unlabeled image patches, as summarized in
Table I.

2) Implementation Details: For the segmentation architec-
ture f , we adopt DeepLabV3+ [53] since it is one of the
most popular CNN architectures for segmentation. ResNet50
is selected as the CNN backbone for extracting hierarchical
deep features. The classifier head φc and the projection head
φp are both composed of two stacked convolutional layers
to extract the class predictions and dense vectors, which are
constructed by Conv[3× 3]-BN-ReLu and Conv[1× 1] layers.
The spatial size of the input images is 600 × 600, and we feed
the images into the segmentation model after the augmenta-
tion by: 1) RandomCrop with the size of 512 × 512 pixels; 2)
RandomFlip; and 3) RandomRotate. The number Mq of query
vectors is 256 and the number Mk of negative key vectors is
512. The threshold δ is set as 0.97 and τ is defined as 0.1.
For the consistency learning strategy, the heavy augmentation
is composed of: 1) RandomResizedCrop with a scale from 0.2
to 1; 2) RandomBrightnessContrast; 3) HueSaturation; and 4)
ToGray. We utilize the stochastic gradient descent optimizer to
train the segmentation model with an initial learning rate of
5 × 10−3 and the polynomial scheduler. We train the networks
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for a total of 200 epochs with mini-batches of the size 12. All the
experiments are implemented in PyTorch [57] and carried out
on an NVIDIA RTX3090 GPU. To validate the effectiveness of
the proposed method, we compare it to several state-of-the-art
methods from both the perspectives of building extraction and
semisupervised semantic segmentation.

1) UNet [58]: By fusing multilevel feature maps to simul-
taneously capture hierarchical semantics and preserving
fine-grained shapes of building masks, UNet architecture
and its modified versions have been widely served as
strong baselines for building footprint segmentation [59],
[60].

2) MFRN [33]: The MFRN architecture is a kind of the
multifeature reuse network, where each layer is connected
to all the subsequent layers with the same size.

3) Multitask [61]: Besides the CE loss, a multitask learning
framework with the integration of truncated distance loss
is proposed to learn the accurate contours of buildings.

4) BF [42]: A boundary regularization loss is proposed for
sufficiently penalizing the misalignment of boundaries.
By combining the boundary loss with CE and Dice losses,
the state-of-the-art building extraction performance is
achieved.

5) ReCo [52]: A pixelwise contrast loss is introduced for
semantic segmentation, which achieves the state-of-the-
art performances on both supervised and semisupervised
semantic segmentation.

6) CPS [51]: A novel consistency regularization approach
is proposed for semisupervised semantic segmentation,
which imposes the consistency on two segmentation mod-
els perturbed with different initialization of the same input
image.

It is worth noting that the CNN backbones for extracting deep
features of the considered methods are the same, i.e., ResNet50.

3) Evaluation Metrics: For all the tiles in the two test sets, we
calculate intersection over union (IoU), Dice, precision, recall,
and overall accuracy (OA) scores for each tile and obtain the
associated mean values, where these metrics are defined as
follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

IoU =
TP

TP + FP + TN
(9)

Dice =
2TP

2TP + FP + TN
(10)

OA =
TP+ TN

TP + FP + TN+ FN
. (11)

TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

B. Experimental Results

1) Comparison to State-of-the-Art Approaches: Fig. 4 dis-
plays the learning curves of all the considered methods on

Fig. 4. Learning curves of all the considered methods on the validation sets
of the two datasets: (a) Inria and (b) NZ32km2.

the validation sets of the two benchmark datasets. It can be
observed that the Dice scores of UNet, MFRN, and Multitask
are lower than the other methods. One plausible reason is that
the number of labeled training images is limited for sufficiently
training the associated segmentation models from scratch. As a
comparison, the DeepLabV3+ architecture is constructed upon
the pretrained CNN backbones on ImageNet, e.g., ResNet50,
and can be well adapted to the novel segmentation task even with
limited training images. Tables II and III demonstrate the mean
values of all the metrics evaluated on the compared methods
of Inria and NZ32km2 datasets, respectively. In addition, we
also present the results based on the DeepLabV3+ architecture
trained by the images with full labels as the performance upper
bound. Consistently with the above observation, the methods
with DeepLabV3+ architectures perform better than the others
on the tests sets. For Inria, PiCoCo can improve the mean IoU
score with more than 2% than the recently proposed CPS method
and 3% than the contrast learning-based ReCo method.PiCoCo
achieves all the best performances on the five metrics among
the compared methods. For NZ32km2, PiCoCo outperforms
the CPS method with a mean IoU value more than 1% and
reaches the best performances of three metrics out of five.
Compared to CPS, PiCoCo only exploits one segmentation
model and achieves the out-performance. CPS simultaneously
trains two segmentation models and exploits cross-consistency
loss to optimize each other, which requires more GPU memory
and computational cost than PiCoCo. Compared with another
contrast learning-based method, ReCo, PiCoCo can perform
better since it uses the consistency to regularize the learning
in order to well adapt the model on the unlabeled images. In
addition, within ReCo, the dense vectors from both labeled and
unlabeled images are made contrast to discover the latent repre-
sentation space. Due to some unreliable pseudo labels from the
unlabeled images, they may influence the accurate construction
of the latent representation space. As a comparison, we only
make contrast of the dense vectors on the labeled images to
avoid such issue. Besides the above quantitative comparison,
we also display some visual results in Fig. 5. Compared to
some methods, such as BF, PiCoCo has less false positive
predictions. Moreover, the building boundaries obtained by the
proposed method are more accurate than the other methods,
even the method BF that integrates a boundary loss. As shown
in the following subsection, we enforce to make contrast of
the hard query vectors with respect to the negative ones. The
locations of those informative samples usually lie on the building
boundaries so that the representations of the boundaries can be
more accurately learned.
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TABLE II
EVALUATION METRICS OF ALL THE CONSIDERED METHODS ON THE INRIA TEST SET

TABLE III
EVALUATION METRICS OF ALL THE CONSIDERED METHODS ON THE NZ32KM2 TEST SET

TABLE IV
ABLATION STUDY OF THE PROPOSED METHOD

2) Ablation Study: To sufficiently understand the two main
loss terms in PiCoCo, we conduct extensive ablation experi-
ments to separately analyze the effects of these terms. First, we
train the segmentation models with Lsupervised, Lsupervised +
Lcontrast, and Lsupervised + Lconsistency and evaluate their re-
sults in Table IV. It can be seen that both the two loss terms
are necessary for segmenting the building regions with limited
training images with annotations. By involving Lcontrast and
Lconsistency, the mean IoU performances can be boosted by more
than 6% and 3% for Inria and NZ32km2 datasets, respectively.
Compared to Lconsistency, the performance improvement of
Lcontrast is larger, which indicates that the latent representation
space constructed by the labeled images plays a vital role in
the generalization capability of the trained model on the unseen
images. As shown in Fig. 6, we also present the probabilities of
the predicted building areas in some examples. Without the con-
trast loss, some background areas cannot be well distinguished
from the building regions nearby. For example, in the first row of
Fig. 6(a), some predicted probabilities of the parking lot areas are

larger in the results of Lsupervised and Lsupervised + Lconsistency

than the results with the contrast loss involved. This indicates that
the contrast learning on the representations in the latent space
can assist the improvement of building extraction, especially
for some confused areas. To clearly analyze the effect of the
contrast loss, we demonstrate the class confidences of some
examples obtained by PiCoCo in Fig. 7. Brighter color denotes
the higher confidence, while the darker color indicates the lower
confidence. Within the strategy of contrast learning, we focus
on selecting hard query vectors from the locations with low
confidences. It shows that those locations most likely belong
to the building boundaries, from where the representations are
paid more attention to be discriminative with respect to the
background representations. In this way, more accurate building
boundaries can be obtained, and less false positive predictions
exist in the results. In addition, we also calculate the similarities
between Rc

q and f c,+k , and the ones between Rc
q and f c,−k for

building pixels. Fig. 8(a) and (c) shows the histograms of the
similarities between the building representations and their mean
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Fig. 5. Some visual comparison examples among all the considered methods: (a) Inria and (b) NZ32km2. It can be observed that PiCoCo has less false positive
predictions. Moreover, the building boundaries obtained by the proposed method are more accurate than the others.

representation for Inria and NZ32km2, respectively. Fig. 8(b)
and (d) shows the histograms of the similarities between the
building representations and the mean representation of back-
ground. Obviously, the contrast loss can pull the intraclass
representations together and push the ones from different classes
away in the latent space. Thus, the learned classifier can well dis-
tinguish the building and background pixels. As demonstrated in
Fig. 9, we display two predicted building footprints viaPiCoCo
for the test tiles in the Inria (a) and NZ32km2 (b) datasets. It can
be seen that most buildings can be accurately segmented based
on the proposed method.

3) Hyperparameter Analysis: We analyze the sensitivities
of the parameters τ and (Mq,Mk) on the building extraction
performance. τ controls the radius of the hypersphere on which

the normalized representations are projected. From another per-
spective, it also determines the smoothness of the contrastive
distribution in the contrast loss term. With larger τ , the dis-
tribution becomes smoother and smaller τ will sharpen the
distribution [62]. To increase the contrastive capability of each
pixel in the feature space. we make τ small and it lies in the
range from 0.05 to 1 [63], and we calculate five metrics and
display them in Table V. It can be observed that the building
extraction accuracies do not vary much for different τ , which
indicates that the choice of τ can lie in a relatively wide range,
and it does not require to be carefully tuned. The parameter
pair (Mq,Mk) controls the number of query and key vectors
to be compared. In general, as studied in [52], larger numbers
of Mq and Mk indicate that more vectors are made contrast,
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TABLE V
SENSITIVITY ANALYSIS OF THE TEMPERATURE PARAMETER τ

Fig. 6. Predicted probabilities of building regions based on Lsupervised,
Lsupervised + Lcontrast,Lsupervised + Lconsistency, andPiCoCo: (a) Inria
and (b) NZ32km2.

Fig. 7. Class confidences of some examples in (a) Inria and (b) NZ32km2
datasets. The brighter color denotes higher confidence, and the darker color
indicates lower confidence.

which can improve the sufficiency of contrast learning. As shown
in Table VI, the building segmentation accuracy is relatively
stable when Mq and Mk are varied from 128 to 512 and from
256 to 1024, respectively. Different from multiclass semantic

Fig. 8. Histograms of the similarities between Rc
q and fc,+

k
[(a) Inria and (c)

NZ32km2] and the ones between Rc
q and fc,−

k
[(b) Inria and (d) NZ32km2] for

building pixels.

segmentation, building footprint segmentation belongs to the
binary segmentation category. Thus, a query or key number from
128 to 1024 is sufficient for the contrast learning. Moreover, as
discussed above, the active query vectors are most likely located
around the building boundaries that do not contain large amounts
of vectors. Thus, we can choose the numbers of query and key
vectors starting from 128.

4) Discussion: As analyzed above, we carried out extensive
experiments to validate the performance of PiCoCo when the
segmentation model was trained on limited images with building
annotations. Compared to the other state of the art, PiCoCo
achieved the best performance especially on the Inria dataset.
Differently from NZ32km2, Inria contains the RS images from
different cities over the world, where the building and back-
ground pixels are more diverse. This requires that the trained seg-
mentation model should have strong generalization capability on
unseen images. With around 1% annotated pixels on the whole
dataset, DeepLabv3+ trained on the fully labeled dataset only
leads the performance with a mean IoU margin of 8% compared
to PiCoCo. Based on the ablation study, both the contrast and
consistency loss terms take effects on the performance gain for
the building extraction. This may also give insights for other
RS image interpretation tasks, such as scene classification, to
simultaneously exploit these two terms when limited annotations
in the training set are available. From the sensitivity analysis
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Fig. 9. Building footprint segmentation results of two test tiles based on PiCoCo: (a) Inria and (b) NZ32km2.

TABLE VI
SENSITIVITY ANALYSIS OF THE NUMBER OF QUERIES AND KEY VECTORS (Mq ,Mk)

of hyperparameters, the main parameters of PiCoCo are not
required to be tediously tuned. Thus, PiCoCo can be easily
adapted to different building extraction datasets. According to
the segmentation results over larger areas, PiCoCo has the
potential to be exploited in real scenarios, since it can accurately
predict the building segments without large amounts of ground
truth.

V. CONCLUSION

In this article, we propose a novel framework for semisu-
pervised learning building segments from training data with
limited annotations. To achieve this, we simultaneously make
contrast between the latent representations of building and back-
ground pixels and impose the consistency between the predic-
tions obtained from the unlabeled images and their perturbed
versions. Based on the extensive experiments on two RS building
datasets, our results validate the effectiveness of the newly
proposed PiCoCo and demonstrate its performance compared
to other state-of-the-art methods. As future work, we plan to
further investigate contrast and consistency learning strategies
for generating vectorized building polygons in a semisupervised
manner.
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