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Abstract—Fingerprint-based indoor positioning is widely used
in many contexts, including pedestrian and autonomous vehicles
navigation. Many approaches have used traditional Machine
Learning models to deal with fingerprinting, being k-NN the
most common used one. However, the reference data (or radio
map) is generally limited, as data collection is a very demanding
task, which degrades overall accuracy. In this work, we propose
a novel approach to add random noise to the radio map which
will be used in combination with an ensemble model. Instead
of augmenting the radio map, we create n noisy versions of
the same size, i.e. our proposed Indoor Positioning model will
combine n estimations obtained by independent estimators built
with the n noisy radio maps. The empirical results have shown
that our proposed approach improves the baseline method results
in around 10% on average.

Index Terms—Indoor Positioning; Fingerprinting; Radio Map;
Noisy samples; Ensemble.

I. INTRODUCTION

Despite the large variety of technologies for Indoor Posi-

tioning –based on visible light communications (VLC), ul-

trasounds, ultra-wide band (UWB), among others–, Wi-Fi and

Bluetooth Low Energy (BLE) fingerprinting are widely spread.

Bahl and Padmanabhan [1] proposed RADAR, the first RF-

based indoor positioning system for locating and tracking

users inside buildings 20 years ago. The idea was simple, the

digital signature of the Radio-Frequency (RF) signals could

be used to estimate the position of the users. In particular,

they exploited the signal strength information provided by the

discover protocol of the nearby available Wi-Fi routers and

Access Point (APs). They combined that information with

previous empirical samples and signal propagation modelling

to propose the final indoor positioning system. Their proposed

method, based on the k-NN algorithm, is still widely used for

smartphone-based applications and vehicles tracking [2], [3].
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In machine learning, the ensemble model is widely used

to improve the accuracy of estimators. When heterogeneous

estimators are combined, the overall error decreases as demon-

strated by Tumer and Ghosh [4] and Dietterich [5]. The key

of ensembles is the diversity of the different base estimators,

which mainly comes from the reference or training data used

to build up the model. Ideally, if the number of base classifiers

is large enough and they are built up over fully independent

data, the errors should be minimised. Ensembles have already

been used in Indoor Positioning [6], [7], [8], [9].

However, one of the main limitations of the fingerprint-

based methods is the limited amount of information included

in the radio map. Data collection is time-consuming and ex-

pensive, so developers try to find the optimal trade-off between

collection costs and accuracy. Despite multiple fingerprints

being collected at every reference position in some cases, this

might not be enough to build enough different estimators.

In this paper we will exploit the generation of noisy radio

maps. A noisy radio map is a radio map where random noise

is added to every reference fingerprint. Our hypothesis is

that if we can generate a large enough number of different

artificial radio maps, we might reduce the positioning error

without the need of additional site-surveys. We propose that

the module of the added random vector be dependent on the

distance of the reference fingerprint to the closest match in

the radio map. As some datasets include multiple independent

fingerprints collected in the same location, we restrict the

closest match search to only those reference fingerprints which

were collected in a different location. We contribute with:

• A new method to generate a noisy radio map considering

the features of fingerprinting problems

• An ensemble model combining multiple noisy radio maps

• An empirical evaluation in three different real use-cases

The remainder of this paper is organised as follows. Section

II describes the method to generate the noisy radio maps.

Section III describes the ensemble model applied to indoor

positioning. Section IV describes three use cases and shows

the results. Section V introduces general discussion. Section

VI concludes the paper.



II. GENERATING A NOISY RADIO MAP

Different strategies can be implemented when collecting

the reference fingerprints, being the professional and crowd-

sourced strategies commonly used. While the professional

strategy defines a regular systematic data collection procedure

in locations generally distributed over a regular grid, the

crowdsourced relies on the system users, who voluntary collect

fingerprints in arbitrary locations which were not predefined.

Even in a professionally generated radio map, the resulting

distribution of samples in the feature –or Received Signal

Strength (RSS)– space might not follow any regular patterns.

Fig.1 shows the location of the reference points in a real

professional deployment and the related fingerprints vectors

(restricted to one sample per point and two APs for visu-

alization purposes). Despite the regular distribution of the

reference positions in the radio map (Fig.1(a)), the density of

the fingerprints is not regular in the feature space (Fig.1(b)).

The distance of a reference fingerprint to its closest match is

not constant, being large in some cases. e.g. the reddish point

in the center or the two blue points on the top side of Fig.1 (b).

The proposed method injects uniform random noise to each

reference fingerprint to fill the free space surrounding it.

(a)

(b)

Fig. 1. Example of distribution of the reference fingerprints in the real world
and in the RSS space (b). Nearby reference points, in the geometric space,
have similar colours.

One way to generate a new noisy radio map consists of

adding random noise to all the reference fingerprint vectors.

However, adding noise to samples might increase the position-

ing error if the noise does not consider the nature of finger-

printing. Thus, the proposed method considers the Euclidean

distance, in the RSS space, of each reference fingerprint to its

closest match in the radio map (see Algorithm 1). As some

datasets and collection strategies collect multiple consecutive

fingerprints per reference point, the search to the closest match

is restricted to those fingerprints which were collected in a

different reference position.

Algorithm 1 Noisy Radio Map Generation

input: T = {s1, . . . , sN;p1, . . . ,pN} (radio map)

output: T̃ = {s̃1, . . . , s̃N;p1, . . . ,pN} (noisy map)

for i = 1 to N do

closestDistance = +∞;

for j = 1 to N do

currentDistance = distancefeat(si, sj);
if (distancegeom(pi,pj) > 0) then

if (currentDistance < closestDistance) then

closestDistance = currentDistance;
end if

end if

end for

Randomly generate a vector with noise:

noisek =

{
uniformDist(−1, 1) ∀k/si,k 6= N/A

0 otherwhise
Normalize noise vector and set its length

length = randomDist(0, 1);

module =
√∑NAPs

k=1
(noisek)2

˜noisek = noisek · length·closestDistance
module

, ∀k
Set noisy fingerprint:

s̃i = si + ˜noise;
end for

Let T and T̃ be the original and new noisy radio maps,

respectively. The radio maps have N samples, each of them

represented by a fingerprint vector, si, and its location in

the operational area, pi. The functions distancefeat and

distancegeom stand for the distance metric in the feature

(RSS) space and geometric space, respectively. In both cases,

we have used the Euclidean distance. The random values for

the noise vector and its length follow a uniform distribution.

III. ENSEMBLING IPS WITH NOISY RADIO MAPS

The ensemble model has been successfully used in machine

learning, e.g. neural networks. According to different theo-

retical frameworks [4], [5], the ensemble estimator provides

better accuracy than any of the individual base estimators if

they are diverse enough. Although Bagging and Boosting are

traditional ways to successfully generate diverse base estima-

tors when training data (i.e. the radio map in fingerprinting)

is limited, having multiple fully independent versions of the

radio map is preferred. However, the latter alternative is not

feasible as it involves repeating the data collection multiple

times, whose cost might be prohibitive.

Due to the noise injected in the radio map, a simple esti-

mator built on top of a single noisy radio map is not expected

to improve the accuracy provided by a traditional system

based on the original radio map. Nevertheless, Algorithm 1

introduces a method able to create multiple noisy radio maps

with a certain degree of independence. Despite two different

radio maps being different, those areas in the feature space

with highest density of fingerprints will remain very similar.

Therefore, the degree of diversity will not reach the levels of

independent radio maps empirically collected on-site.



The proposed solution integrates noisy radio maps and the

ensemble model. In particular, we propose an ensemble of 100
base indoor positioning systems, each of them based on the k-

NN model and built on top of a different noisy radio map. The

position estimate for any operational fingerprint –in terms of

x, y and z– corresponds to the centroid of the 100 estimations

(see Fig. 2).

Fig. 2. Ensemble-based approach: taking the geometric centroid of the 100
individual position estimates.

IV. EXPERIMENTS

In order to evaluate the feasibility of the proposed noisy en-

sembles, we performed its evaluation over three different use-

cases given by public available datasets: 1) an extended version

of UJIIndoorLoc, a guided crowdsourced dataset whose private

test was used in the 2015 EvAAL-ETRI Competition to

evaluate the participants; 2) a Wi-Fi Fingerprinting dataset

with multiple simultaneous interfaces; and 3) a multi-slot BLE

raw database collected in three indoor/outdoor environments.

We implemented two positioning algorithms based on k-

NN, a plain and a fingerprint-optimized version. For the plain

k-NN, the search for the closest neighbors is computed over

the whole radio map. For the optimized implementation, the

search is restricted only to those reference fingerprints which

share with the operational fingerprint the same dominating

APs, as done in [10]. We used the plain k-NN in the BLE

datasets and the optimized version in the Wi-Fi datasets. The

k-NN hyper-parameters have been set according to the original

references. Full parameters are reported in Table I.

TABLE I
HYPERPARAMETERS FOR k-NN USED FOR EACH DATASET

UJIIndoorLoc+ MultInt BLE1 BLE2 BLE3

Base method optimized optimized plain plain plain
k 1 3 1 1 1
RSS Distance Euclidean City Block Euclidean Euclidean Euclidean

The positioning error is computed as the 3D Euclidean dis-

tance between the true and estimated positions. As suggested

in the ISO18305 standard, we provide the mean, median and

three quartile values for numerical comparison. Moreover, we

provide the CDF plots for visual comparison of the baseline

and the proposed ensemble model.

A. Crowdsourced Wi-Fi fingerprinting

The extended UJIIndoorLoc database was used in the 2015

EvAAL-ETRI competition [11]. The radio map dataset is

composed of the training and evaluation samples collected in

the original UJIIndoorLoc, thus consisting of 20.972 reference

samples. The evaluation set has 5.179 fingerprints whose

location has not been published. A total of 520 APs were

detected in this dataset. We have selected this dataset as it

combines a guided and arbitrary crowdsourced data collection

performed by more than 20 users and device models. Some

reference points contain multiple fingerprints whereas others

have just one fingerprint.

Table II shows the numerical results, whereas the CDFs are

reported in Fig.3. In both cases, we report the results of the

baseline method and the proposed ensemble, as well as of the

100 individual IPS based on noisy radio maps.

Fig. 3. CDF - Crowdsourced Wi-Fi fingerprinting.

TABLE II
MAIN RESULTS - CROWDSOURCED WI-FI FINGERPRINTING

Method mean median 75 perc. 90 perc. 95perc.

Baseline 8.02 5.70 11.00 16.89 20.62
Noisy Simple 8.21±0.25 6.15±0.23 11.30±0.28 16.72±0.43 20.37±0.79

Noisy Ensemble 6.50 5.09 8.37 12.99 17.14

According to the table and figure, the baseline provides

significantly worse results than the ensemble. The individual

noisy estimators (Noisy Single) tend to perform worse than

the baseline method. The averaged mean positioning error of

the noisy individual estimators is 8.21 m with a standard

deviation of 0.25 over the 100 noisy versions. However for

the large percentile values, the individual noisy estimators are

slightly better than the baseline. Nevertheless, the ensemble

model provides the best results in the five reported metrics.

The ensemble successfully takes benefit of the diversity gen-

erated from the 100 noisy radio maps, especially reducing the

presence of large errors.



B. Multiple Interfaces for Wi-Fi fingerprinting

This dataset was generated by means of a Raspberry Pi

and multiple simultaneous Wi-Fi interfaces [12]. In contrast to

traditional Wi-Fi fingerprinting datasets, the device was able to

collect synchronized fingerprints from 5 interfaces. Averaging

the five fingerprints makes the radio map more robust. We have

selected it to evaluate our proposed model on a dataset with

high accuracy and low presence of large positioning errors.

The radio map consists of 4973 fingerprints per interface

collected in the reference locations shown in Fig.1, whereas

evaluation has 810 fingerprints per interface. The number of

detected APs is 11. Results are in Table III and Fig.4.

Fig. 4. CDF - Wi-Fi fingerprinting with multiple interfaces.

TABLE III
MAIN RESULTS - WI-FI FINGERPRINTING WITH MULTIPLE INTERFACES

Method mean median 75 perc. 90 perc. 95perc.

Baseline 2.45 2.20 3.31 4.66 5.36
Noisy Simple 2.42±0.05 2.21±0.11 3.26±0.09 4.47±0.11 5.20±0.10

Noisy Ensemble 2.26 2.12 2.98 4.02 4.55

As in the crowdsourced dataset, the proposed model per-

forms better than the baseline for this dataset. Despite the

differences being lower, the 95th percentile is reduced to 4.55
m. The results are especially promising in this dataset, as the

use of multiple interfaces significantly improved the results

provided by single interface systems. Finally, some individual

noisy radio maps have performed better than the baseline.

C. BLE fingerprinting with multiple slots

This database uses BLE as main positioning technology

instead of Wi-Fi [13]. The BLE beacons were configured

to broadcast messages on 6 slots with different transmission

power, which were fused (averaged) in the fingerprints to have

a more robust RSS measurement. A total of three independent

environments were surveyed with 2 or 3 smartphones each. We

have selected this dataset as BLE presents relevant differences

with respect to Wi-Fi and it is becoming popular.

In each of the three datasets, the radio map consists of

one sample per reference point and device. The number of

reference samples is 417, 552 and 250; whereas the number

of evaluation samples is 102, 138 and 60. The number of BLE

beacons is 30 in the three datasets. The results are reported in

Table IV and Fig.5.

Fig. 5. CDF - BLE fingerprinting with multiple slots.



TABLE IV
MAIN RESULTS - BLE FINGERPRINTING WITH MULTIPLE SLOTS

Method mean median 75 perc. 90 perc. 95perc.

1
Baseline 3.53 3.04 4.76 5.92 6.51

Noisy Simple 3.81±0.15 3.11±0.12 4.97±0.14 6.18±0.26 7.79±0.60
Noisy Ensemble 3.07 2.77 4.13 4.93 6.01

2
Baseline 4.64 3.36 5.70 9.03 13.84

Noisy Simple 5.21±0.28 3.93±0.22 6.19±0.32 10.21±1.08 14.88±1.14
Noisy Ensemble 4.28 3.25 5.37 8.22 11.05

3
Baseline 7.55 6.70 9.46 12.09 14.47

Noisy Simple 7.92±0.36 6.82±0.22 9.64±0.56 12.40±0.61 14.28±0.66
Noisy Ensemble 6.86 6.45 8.05 10.72 11.48

As in the two previous datasets, the proposed model per-

forms better than the baseline for each one of the three BLE

environments. However, the differences are lower than for Wi-

Fi datasets, especially in the second environment. The second

environment is special as the fingerprints apply a large window

to average RSS values over time and the multiple slots. The

RSS readings are less affected by multi-path and, thus, the

accuracy is higher. Therefore, this decreases the probability

of significant improvement. In the most challenging case, the

dataset collected on the third environment, our model clearly

improved the baseline.

V. DISCUSSION

After analysing the three use-cases, we have realized that

a single classifier based on a noisy radio map might make

no sense as its accuracy is usually lower than the baselines.

Despite the individual position estimations provided by noisy

estimators being worse than the baseline estimation, their com-

bination significantly improves the baseline. This demonstrates

that the proposed noise generator successfully creates different

versions of the radio map with a significant degree of diversity

and, above all, without additional site survey.

As a general trend, the worse the baseline performs, the

more significant the improvement is. Due to the nature of the

crowdsourced dataset –with irregular distribution of reference

positions, data collection involving multiple users & devices

and presence of outliers–, the mean error is 8.02 m, which

is significantly higher than in other Wi-Fi fingerprint-based

systems. With the proposed model, we reduced the mean error

to 6.5 m (almost 20%), also the large errors were reduced in

more than 3 m. Similar results are observed in the third BLE

scenario, where the data were collected in two buildings and

outdoor parts, having large distances between the reference

positions which degraded the positioning accuracy.

Despite some approaches fuse signal strength measurements

at the receiver (multiple interfaces) or emitter (multiple slots)

to have a robuster Indoor Positioning System, there is still

room for improvement. For the Wi-Fi datasets with multiple

interfaces, the average positioning error is slightly above 2 m
and the 95th percentile is 4.55 m with our proposed approach,

both are much lower than in the other datasets. Similar low

errors also apply to the first BLE environment.

VI. CONCLUSIONS

This paper proposes a method to add noise to a radio map,

which is being exploited in combination with the ensemble

model. Despite using an individual noisy radio map is not

suggested for positioning purposes, integrating multiple noisy

radio maps in an ensemble model significantly increases the

diversity within the ensemble estimators. As consequence, the

noisy ensemble works better than any of the noisy individuals

and, even, better than the baseline method. This demonstrates

that the proposed ensemble model is an alternative to consider

when designing an IPS, as it is able to successfully augment

the radio map without the need of additional site survey.

To validate our model, we considered three different use

cases involving a total of 5 datasets. In all the cases, our model

provides better results than the baseline. The improvement

is especially significant on challenging datasets where the

baseline positioning error is relatively high. In those cases

where the positioning error is already low, our ensemble model

also improves the positioning accuracy, especially reducing the

presence of large errors in the 90th and 95th percentiles.

This work opens a promising research line based on noisy

samples. Further work will be devoted to the definition of a

random noise generator in-line with signal propagation, as well

as a full validation over an extensive set of datasets.
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