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Abstract: Nanofibers mats derived from the task-specific functionalized polymeric ionic liquids based
on homocysteine thiolactone are obtained by electrospinning them as blends with polyvinylpyrroli-
done. The presence of this functional moiety allowed the post-functionalization of these mats through
the aminolysis of the thiolactone ring in the presence of an amine by a thiol–alkene “click” reaction.
Under controlled experimental conditions the modification can be performed introducing different
functionalization and crosslinking of the electrospun fibers, while maintaining the nanostructure ob-
tained by the electrospinning. Initial studies suggest that the nanofibers based on these functionalized
polymeric ionic liquids can be used in both sensing and catalytic applications.

Keywords: poly(homocysteine thiolactone); nanofibers; electrospinning; sensing; catalysis

1. Introduction

Electrospinning techniques combine simplicity, versatility, and low cost with superior
capabilities to elaborate scalable ordered and complex nanofiber (NFs) assemblies [1]. NFs
mats present advantages over other nanostructured materials due to their high porosity,
high surface-area-to-volume ratio, interconnectivity, and ease preparation [2]. These have
demonstrated their potential application in different fields such as filter media [3], oil/water
separation [4], energy [5], drug delivery [6], sensors [7,8], food packaging [9], tissue
engineering [10], catalysis [11], etc.

Polymeric Ionic Liquids (PILs) merge the unique properties of the Ionic Liquids (ILs)
with those of advanced materials [12,13]. These macromolecules formed by ionic liquid
units connected through a polymeric backbone present an enhanced mechanical stability,
processability, flexibility and durability, and improved dimensional control over their
structure [14]. PILs with different architectures and properties can be designed according
to the desired specific application [15,16]. The combination of the unique properties of the
PILs and the use of the electrospinning can lead to nanofibers mats for different applications.
However, there are only few examples of the preparation of NFs derived from PILs [17].
In this regard, the molecular structural diversity introduce for PIL has been exploited to
modify surface wetting properties of the mats for oil/water separations [18].

PILs nanocomposite fibrous membrane containing metal nanoparticles of tungsten ox-
ide fabricated by electrospinning has been used for the preparation of functional electrolyte
for quasi solid-state dye sensitized solar cell (QSS-DSSC) [19]. The power conversion
efficiency and stability were improved using electrospun PILs nanofiber composite when
compared to the cell with the liquid electrolyte. In a similar way, PILs obtained by chemical
modification of poly(vinylidene fluoride-co-hexafluoropropylene) with different molar
ratios of 1-butylimidazolium iodide has been explored for the preparation QSS-DSSC [20].
The membrane obtained by electrospinning showed good efficiency with a high η of 9.26%,
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and excellent long-term stability (up to 97% of its initial η over 1500 h). PILs with well-
defined chemical structure were also applied as precursors for nitrogen-doped carbon NFs
mats via the electrospinning technique [21], The electrical conductivity of the mat was ca.
200 S cm−1, which is fairly satisfactory compared to carbons prepared from many other
organic polymers and materials at the same temperature.

Here, we report on the use of functionalized PILs with amide-thiolactone moieties
as a unique platform for the development of NFs mats by electrospinning (Figure 1). The
presence of the thiolactone unit allows the orthogonal post-functionalization of these NFs
mats through its aminolysis in the presence of an amine (first level of functionalization)
followed by the so-called thiol–alkene “click” reaction of the generated –SH groups in the
presence of an alkene (second level of functionalization).
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Figure 1. Preparation and post-functionalization of NFs mats derived from TS-PIL 6.

The high flexibility of this post-modification protocol allows one to obtain a large
variety of TS-PILs through the synthetic manipulation of a reduced number of common
simple intermediates, easily available even in large scale. The methodology here reported
not only allows introducing orthogonal functionalities but also provides a simple strategy
for crosslinking the NFs without losing their NFs morphology. The simple preparation and
post-medication procedures here developed allows exploiting these NFs mats as advanced
materials for sensing and catalytic applications.

2. Materials and Methods
2.1. Materials

All the reagents and solvents used were commercially available. K2CO3 (Scharlau
extra pure, Barcelona, Spain), dl-homocysteine thiolactone hydrochloride (Aldrich 99%),
bromoacetyl bromide (Aldrich 98%, St. Louis, MO, USA), citric acid (Aldrich 99%), an-
hydrous MgSO4 (Scharlau extra pure), 4,4’-azobis(2-methylpropionitrile) (Aldrich 98%),
poly(4-vinylpyridine) (Aldrich, average Mw~160,000 g/mol), and were used as received.
The 1-vinylimidazole (Aldrich 99%) was purified by vacuum distillation. All solvents used
were of analytic degree.
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2.2. General Characterization Protocols

ATR-FTIR spectra were obtained using a spectrometer (JASCO FT/IR-6200) equipped
with an ATR (MIRacle single-reflection ATR diamond/ZnSe) accessory at 4 cm−1 resolution
(4000–600 cm−1 spectral range). 1H-NMR experiments were carried out using a Varian
INOVA 500 (1H-NMR, 500 MHz, 13C, 125 MHz) and Bruker, Billerica, MA, USA (1H-NMR,
400 MHz) spectrometer.

2.3. Synthetic Protocols
2.3.1. Synthesis of Thiolactone Derivative (3)

dl-homocysteine thiolactone hydrochloride (9.2 g, 60 mmol) was dissolved in milli-Q
H2O (20 mL) in a round-bottom flask equipped with a stir bar an ice-cooled (0 ◦C), then
K2CO3 (25,7 g, 186 mmol) was slowly added. The resulting mixture was stirred for 5 min
and CH2Cl2 (200 mL) was added. After this, bromoacetyl bromide (10.5 mL, 120 mmol),
dissolved in CH2Cl2 (40 mL), was added dropwise during 1 h. After the addition, the
reaction mixture was allowed to react for 30 min at 0 ◦C and then 1 h when the reaction
reached rt. A 5% solution of citric acid (2 × 40 mL) was added afterwards to the reaction
mixture. The organic phase was decanted, washed with milli-Q® H2O (2 × 40 mL), dried
over anhydrous MgSO4, filtered, and concentrated providing a white solid used without
further purification. Yield: 70%. 1H NMR (CD3CN, 400 MHz): δ (ppm): 7.03 (s, 1H),
4.65–4.48 (m, 1H), 3.85 (s, 2H), 3.45–3.21 (m, 2H), 2.58 (dddd, 1H), 2.24–2.06 (m, 1H). 13C
NMR (CD3CN, 101 MHz): δ (ppm): 205.7, 167.4, 59.9, 31.1, 29.4, 27.9.

2.3.2. Synthesis of Poly(1-vinylimidazole) (5)

Compound 5 was obtained as shown in Scheme 1 according to methods already
reported in the literature. Characterization data were consistent with published values [21].

Polymers 2021, 13, x FOR PEER REVIEW 13 of 13 
 

 

2.2. General Characterization Protocols 
ATR-FTIR spectra were obtained using a spectrometer (JASCO FT/IR-6200) equipped 

with an ATR (MIRacle single-reflection ATR diamond/ZnSe) accessory at 4 cm−1 resolu-
tion (4000–600 cm−1 spectral range). 1H-NMR experiments were carried out using a Varian 
INOVA 500 (1H-NMR, 500 MHz, 13C, 125 MHz) and Bruker, Billerica, MA, USA (1H-NMR, 
400 MHz) spectrometer. 

2.3. Synthetic Protocols 
2.3.1. Synthesis of Thiolactone Derivative (3) 

dl-homocysteine thiolactone hydrochloride (9.2 g, 60 mmol) was dissolved in milli-Q 
H2O (20 mL) in a round-bottom flask equipped with a stir bar an ice-cooled (0 °C), then 
K2CO3 (25,7 g, 186 mmol) was slowly added. The resulting mixture was stirred for 5 min 
and CH2Cl2 (200 mL) was added. After this, bromoacetyl bromide (10.5 mL, 120 mmol), 
dissolved in CH2Cl2 (40 mL), was added dropwise during 1 h. After the addition, the re-
action mixture was allowed to react for 30 min at 0 °C and then 1 h when the reaction 
reached rt. A 5% solution of citric acid (2 × 40 mL) was added afterwards to the reaction 
mixture. The organic phase was decanted, washed with milli-Q® H2O (2 × 40 mL), dried 
over anhydrous MgSO4, filtered, and concentrated providing a white solid used without 
further purification. Yield: 70%. 1H NMR (CD3CN, 400 MHz): δ (ppm): 7.03 (s, 1H), 4.65–
4.48 (m, 1H), 3.85 (s, 2H), 3.45–3.21 (m, 2H), 2.58 (dddd, 1H), 2.24–2.06 (m, 1H). 13C NMR 
(CD3CN, 101 MHz): δ (ppm): 205.7, 167.4, 59.9, 31.1, 29.4, 27.9. 

2.3.2. Synthesis of Poly(1-Vinylimidazole) (5) 
Compound 5 was obtained as shown in Scheme 1 according to methods already re-

ported in the literature. Characterization data were consistent with published values [21]. 

 
Scheme 1. Synthesis of PIL 6. (i) K2CO3, H2O/CH2Cl2 0 °C, then rt. (ii) AIBN, 100 °C, 24 h DMF. (iii) 
DMF, 80 °C, 24 h. 

2.3.3. Quaternization of Poly(1-Vinylimidazole) (5) to Produce (6) 
Poly(-1-vivylimidazole) (5) (5.9 g, 5.88 mmol) was dissolved in dry DMF (15 mL). The 

solution was heated to 85 °C, and 3 (2,1 g, 8.82 mmol) dissolved in dry DMF (15 mL) was 
added dropwise. The reaction mixture was bubbled by N2 and was allowed to react for 24 
h, to 85 °C with stirring keeping N2 atmosphere. After cooling down to room temperature 
the polymer was precipitated in to 1 L of diethyl ether and the mixture was left stirring 
for 30 min. Finally, the diethyl ether was decanted and the solid was washed with diethyl 
ether (4 × 20 mL) and dried under high vacuum. The solid was purified by dialysis in 
water and lyophilized, obtaining a brown solid. Yield: 40%. 1H NMR (400 MHz, D2O) δ 
(ppm): 7.58 (d, 1H), 5.11 (s, 1H), 4.36 (s, 1H), 3.51 (d, 1H), 2.55 (d, 2H). 13C NMR (101 MHz, 
D2O) δ (ppm): 209.93, 166.27, 137.02, 136.21, 126.40, 119.17, 59.70, 51.16, 39.50, 29.70, 27.84. 

Scheme 1. Synthesis of PIL 6. (i) K2CO3, H2O/CH2Cl2 0 ◦C, then rt. (ii) AIBN, 100 ◦C, 24 h DMF.
(iii) DMF, 80 ◦C, 24 h.

2.3.3. Quaternization of Poly(1-vinylimidazole) (5) to Produce (6)

Poly(-1-vivylimidazole) (5) (5.9 g, 5.88 mmol) was dissolved in dry DMF (15 mL). The
solution was heated to 85 ◦C, and 3 (2,1 g, 8.82 mmol) dissolved in dry DMF (15 mL) was
added dropwise. The reaction mixture was bubbled by N2 and was allowed to react for 24 h,
to 85 ◦C with stirring keeping N2 atmosphere. After cooling down to room temperature
the polymer was precipitated in to 1 L of diethyl ether and the mixture was left stirring
for 30 min. Finally, the diethyl ether was decanted and the solid was washed with diethyl
ether (4 × 20 mL) and dried under high vacuum. The solid was purified by dialysis in
water and lyophilized, obtaining a brown solid. Yield: 40%. 1H NMR (400 MHz, D2O) δ
(ppm): 7.58 (d, 1H), 5.11 (s, 1H), 4.36 (s, 1H), 3.51 (d, 1H), 2.55 (d, 2H). 13C NMR (101 MHz,
D2O) δ (ppm): 209.93, 166.27, 137.02, 136.21, 126.40, 119.17, 59.70, 51.16, 39.50, 29.70, 27.84.
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2.4. Preparation of the Electrospun Fibers

The electrospinner used was a Fluinateck LE 100.V1 of BioInicia, Paterna, Spain. The
polymer solution was loaded into a plastic syringe equipped with a stainless steel needle
tip of 0.9 mm inner diameter. The tip-collector working was fixed at x: 15.5 cm, y: 15.5 cm,
z: 20.0 cm. The applied voltage was kept between +19.5 and −14.7 kV and the flow rate
was 1500 µL min−1. The electrospun fibers were collected on aluminum foil that covered a
rotating collector (100 rev min−1). All experiments were carried out at room temperature
and relative humidity between 39 and 41%. The obtained membranes were vacuum dried
overnight in an oven at 50 ◦C.

3. Results and Discussion
3.1. Synthesis and Characterization of a Task Specific PIL Containing Thiolactone Fragments

The desired functionalized PIL containing amino-homocysteine thiolactone units was
obtained as depicted in Scheme 1. TS-PILs 6 was synthesized by alkylation of poly(1-
vinylimidazole) (5) with the 2-bromoacetamide of the amino-homocysteine thiolactone 3
in DMF. Poly(1-vinylimidazole) (5) was prepared following the methodology reported by
Yuan and co-workers [21]. The alkylating agent could be synthetized in multi-gram scale
by reaction of dl-homocysteine thiolactone hydrochloride (1) with 2-bromoacetyl bromide
(2). This methodology allows for the synthesis of functionalized PILs with high molecular
weight, which are difficult to access by direct polymerization of the corresponding func-
tionalized IL-monomers. Indeed, it should be mentioned that all attempts to obtain the
polymer 6 by direct polymerization of the IL-monomer resulting from the alkylation of
vinyl imidazole with 3 were unsuccessful.

The chemical modification of the polymer 5 was confirmed by ATR-FTIR and NMR
analysis. Figure 2a shows the C=C/C=N stretching bands at 1484 cm−1 and 1440 cm−1

assignable to the presence of the imidazole rings in polymer 5. The disappearance of these
bands suggests the complete conversion of these imidazole rings into the corresponding
imidazolium salts (Figure 2b).
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Figure 2. Synthesis of the polymer 6 monitored by ATR-FTIR. (a) Polymer 5, (b) Polymer TS-PIL 6 and (c) alkylating agent
containing amino-thiolactone units (3).

The IR-spectra of the polymer 6 also showed the appearance of a broad band at
1650–1720 cm−1 associated to the C=O stretching of both thiolactone and amide carbonyl
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groups, appearing as two different bands for 3 (1697 cm−1 and 1656 cm−1, respectively).
The polymer 6 also showed an intense peak at 910 cm−1 assignable to the C-S stretching of
the thiolactone ring.

The 1H-NMR of polymers 5 and 6 confirmed a quantitative quaternization of the
imidazole rings (Figure 3). The proton signals of the imidazole ring in 5 (6.4–7.5 ppm)
disappeared after the alkylation and shifted to 7.5–9.5 ppm in good agreement with the
position expected for imidazolium signals [21]. A series of new signals corresponding to
the protons of the -CH2- and –CH groups in the thiolactone units appeared at 4.7–5.4 ppm.
The integrals for the thiolactone proton signals at 4.7–5.4 ppm and the imidazolium and
amide proton signals (7.5–9.5 ppm) displayed the expected ratio of 4.0/3.0. The presence of
the peak at 209 ppm associated with C=O of thiolactone and the peak at 166 ppm assignable
to the C=O of the amide on the 13C-NMR of polymer 6 confirmed successful alkylation of
the polymeric imidazole (Figure S14).
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Figure 3. 1H-NMR (D2O) spectra of 5 (poly(1-vinylimidazolium bromide)) and 6 (3-acetamide-
dl-homocysteine thiolactone-1-vinylimidazolium bromide).

3.2. Synthesis of NFs Mats by Electrospinning

The preparation of NFs mats was evaluated using different electrospinning parame-
ters, which could be adjusted during the process by collecting small samples in-situ and
analyzing their morphology by optical microscope. The Table S1 summarizes the conditions
evaluated to achieve NFs formation by electrospinning. Negative voltages were applied to
the collector to direct the electrospinning jet towards the collector. Once stabilized under
the efficient electrospinning conditions, NFs mats were collected over aluminum foil as
membranes of ca. 20 × 15 cm2. The mats were dried under vacuum at 50 ◦C and their
morphology analyzed by scanning electron microscopy (SEM).

Initially, electrospinning of a 65% w/v solution of polymer 6 in DMF was assayed.
The material collected under these conditions was basically composed of beads mixed
with some fibers (Figure S1). At the view of these initial results, a 50% weight/volume
polymer blend solution formed by polyvinylpyrrolidone (PVP, Mw = 1,300,000 g/mol)
and the polymer 6 in a 1:1 weight ratio in DMF was assayed. It has been reported that
PVP-PILs blends can enable the production of NFs by electrospinning [18]. Using this
solution and the conditions summarized in Table S1 the collection of NFs mats (NFm-6)
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was possible. Figure 4 shows some representative images of the morphologies observed
for these electrospun mats. The PVP/6 blend afforded a dense entanglement of bead-free
fibers in most cases displaying a cylindrical form and with an average diameter of 474 nm
(Figure 4a,c). The presence of some micro-ribbons instead of cylindrical fibers was also
detected (Figure 4b). The width of these micro-ribbons was in the micrometer range (ca.
2.4 µm). The presence of these ribbons can be attributed to the association of some of the
fibers [1]. The mat shows many interconnected NFs crossing in different direction defining
a clear open porosity. The section of the NFs mat showed a thickness of ca. of 92 µm
(Figure 4d).
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Figure 4. SEM images for the electrospun mat (NFm-6) formed from polymer blends PVP/TS-PIL 6
at different magnification. Surface view (a–c) and section view (d). Scale bar represent 10 µm (a,d)
and 1 µm (b,c). (e) NFs size distribution.
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The obtained NFm-6 was also analyzed by ATR-FTIR showing the characteristics
bands corresponding to both PVP and 6. A complex broad band at 1750–1600 cm−1

was observed for the NFm-6, resulting from the overlapping of the individual bands
corresponding to the carbonyl groups of the thiolactone and the amide fragments present
in 6 and the amide group from PVP. The mat also showed the peak assignable to the amide
II of 6, which appeared red shifted (1553 cm−1 vs. 1550 cm−1 for 6 alone). The thiolactone
C-S band at 920 cm−1 also confirmed the presence of 6 in NFm-6. The skeletal symmetric
stretching of the imidazolium ring along with components assigned to CH2(N) stretching
appeared in the mat at 1169 cm−1, while peaks at 1157 cm−1 and 1167 cm−1 were found
for the corresponding original PILs. The peak for the -CH- waggingν(C–N) of PVP for
NFm-6 mat also showed a shift to 1289 cm−1 from the value of 1287 cm−1 for pure PVP. All
these red shifts suggest an interaction between PVP and 6 leading to an intimate blending
through electrospinning. This interaction justifies the morphology of the NFs observed by
SEM, where no signals of phase separation were appreciated [22].

3.3. Post-Functionalization of the NFs Mat

Once demonstrated the suitability of polymer 6 blended with PVP for the preparation
of NFs mats, their solubility and the effect of different solvents was evaluated. The results
obtained are summarized on Table S2. The mat was soluble in polar solvents (water and
methanol) while being insoluble in apolar media such as toluene, hexane or diethyl ether.
In these solvents, the material maintained their shape (1 × 1 cm mat pieces) once dried.
However, when dichloromethane was tested the size of the mat was reduced from 1 × 1 cm
to 0.3× 0.2 cm also increasing its rigidity. Thus, apolar solvents such as toluene and diethyl
ether were suitable solvent media for the modification and washing of these mats. Thus,
the post-functionalization of 6 with different amines and acrylates and acrylamides was
assayed as highlighted in Figure 1. In a first experiment, the modification of NFm-6 was
performed in the presence of an amine by suspending the mats in the corresponding liquid
amine at 60 ◦C for 20 h. The film was then rinsed with toluene and the excess solvent
evaporated at 50 ◦C until constant weight.

Mat 7 was obtained by modification of NFm-6 with 1,3-diaminopropane (Figure 5).
The modification was confirmed by ATR-FTIR (Figure S3a) showing the disappearance of
the peak at 920 cm−1 assignable to the C-S stretching of the thiolactone ring together with
the presence of a strong band at 1557 cm−1 (amide II) assignable to the formation of new
amide groups. The SEM pictures (Figure 6a) for mat 7 suggest that the post-modification of
the membrane induced important changes on the morphology. The modified mat showed
a complete porosity loss (Figure 6a vs. Figure 4). The di-topic nature of the amine can yield
not only the aminolysis of the thiolactone but also the crosslinking of the polymeric NFs.
An additional crosslinking of the NFs via S-S bridges is also possible. Thus, this double
crosslinking mechanism by diamide and disulfide bridges led to strong NFs fusion inducing
a complete loss of the initial structure. Similarly, the ATR-FTIR of the mat 8 confirmed
the post-functionalization with butylamine (Figure 6b). SEM pictures also showed the
fusion of NFs and the loss of the porosity. In this case, the change on morphology can be
only due to the dynamic crosslinking and fusion of the NFs via S-S bridges (Figure 6b).
It is noteworthy that the mats modified under these conditions changed their solubility
properties, becoming insoluble in DMF.
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ATR-FTIR spectra also demonstrated the successful modification of NFm-6 with
octylamine and 3-(dimethylamine)-1-propylamine affording mats 9 and 10 (Figures S5a
and S6a). However, in this case, after the post-functionalization, the open porosity defined
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by the NFs in NFm-6 was preserved (Figure 7a,b vs. Figure 4). The modification with
3-(dimethylamine)-1-propylamine produced an increase of the average diameter of the
NFs from 474 nm (NFm-6) to 644 nm (Figure S5c). Similar results were also found for the
mat modified with octylamine, although in this case with a slightly lower NFs size increase
(545 nm, Figure S6c). Mats 9 and 10 were insoluble in DMF confirming the crosslinking of
the NFs via S-S bridging of the thiols generated in-situ by the aminolysis of the thiolactone
moieties. In comparison with the mat 8, the larger hindrance introduce by the amine, can
preclude, at some extent, the crosslinking via S-S bridge decreasing the deformation of the
NFs and the loss of the open pore nanostructure of the mat.
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NFm-6 could also be modified sequentially with 1,3-diaminopropane and methacry-
late (mat 11), which can react with the thiols obtained in-situ by aminolysis of the thio-
lactone group and avoiding additional crosslinking via S-S bridges and leading to two
different levels of functionalization. The disappearance of the band at 920 cm−1 and the
presence, among others, of a stronger amide II band at 1556 cm−1 confirmed the aminolysis,
while the strong peak corresponding to the C=O of the ester at 1730 cm−1 suggested the suc-
cess functionalization of the thiol (Figure S7a). SEM pictures of the modified mat showed
that the NFs were fused and entangled together due to crosslinking induced by the diamine
(Figure 8). Indeed, the NFs average size increased from 474 nm for the unmodified NFm-6
to 922 nm. However, in this case, the addition of the acrylate avoided the crosslinking via
S-S bridges allowing tus o keep the nanostructure of open pores of the mat (Figure 8 vs.
Figure 4), although the porosity was greatly reduced in comparison with the unmodified
NFm-6.
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In the search of the additional methodologies allowing the simultaneous modification
and crosslinking of the NFs while maintaining the nanostructure and open porosity the
second level modification with N,N′-methylenebis(acrylamide) was evaluated. The bis-
acrylamide, in principle, can react through a Michael reaction with the generated thiol
groups providing an additional possibility for crosslinking. Two different amines, 1,3-
diaminopropane and butyl amine, were assayed for the first level of functionalization. The
first combination can lead to crosslinking both through the aminolysis and through thiol
modification, while in the case of butyl amine the crosslinking would be only due to the
thiolene click reactions. The modification was followed by ATR-FTIR and afforded the
modified mats 12 and 13 (Figures S8a and S9a). The mat modified with 1,3-diaminopropane
and bisacrylamide showed an almost completely loss of the porosity (Figure S8b). However,
thick fused cylindrical NFs were still observable. This change in the morphology can be
attributed to the extensive crosslinking provided by the bifunctional modifiers. When the
modification was performed with butyl amine, instead of 1,3-diaminopropane, a complete
loss of the NFs morphology was appreciated (Figure S9b). This reveals that S-S bridging
represents a more efficient mechanism for NFs fusion with the corresponding loss of the
original nanostructure.

Finally, the modification of NFm-6 was performed with butyl amine and methyl
methacrylate to minimize the crosslinking of the fibers. The modification was successfully
achieved as the ATR-FTIR showed again the band for the ester group at 1738 cm−1 and
a strong amide II band at 1557 cm−1 along with the total disappearance of the C-S peak
of the thiolactone group (Figure S10a). The mat after the modification showed entangled
cylindrical NFs with an average size of 710 nm, thus preserving the essential nanostructure
but achieving a reduction in the porosity in comparison with the morphology observed for
unmodified NFm-6.

In summary, the presence of the thiolactone unit allows the chemical post-modification
of the NFs, although the resulting nanostructure of mats obtained was highly dependent
on the nature of the modifiers.

3.4. Application of the NFs Mat to Sensing

In the search of possible applications for the materials here prepared, a series of
proof-of-concept studies were carried out. Materials composed by NFs mats have found
promising applications as sensing devices [23], for instance, for a fast and low-cost detection
of volatile amines [24]. Natural volatile amines, which are often toxic, can be present in our
daily life (i.e., chemical manufacturing, agriculture and farming, release by rotten food or
exhalation under certain medical conditions or diseases, etc.) [25,26]. In the same way, ILs
and related materials have shown to be of interest in optical sensing technologies [27,28].
Different sensing principles have been reported for volatile amines detection. Among them,
the use of pH colorimetric sensors, which change their color upon contact to the volatile
amine, represents a facile, cost-effective, and non-power operated material for gas amine
detection [29].
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For this purpose, NFm-6 films were impregnated with a solution of bromothymol
blue (BTB) in toluene (2 mg in 10 mL). The films were dried under vacuum until constant
weight showing a yellow color due to the presence of the BTB in its acid form (Figure 9). To
evaluate the ability of these mats as volatile amine sensor, they were exposed to the vapors
of different amines (NH3, methylamine, butylamine, iso-propylamine and piperidine). In
all the cases, the NFs mats experienced, independently of the amine nature, a color change
from yellow to blue in less than a few seconds, easily observable by the naked eye (see
Video S1). The change agrees with those for aqueous solutions of BDB thar are yellow at
pH < 7, green under neutral pH and blue at pH > 7. The color change was reversible, and
the mats could be used in consecutives cycles of air-amine exposure (see Video S1). It is also
noteworthy that the films also responded to the presence of acid gases (HCl) experimenting
film shrinking and a color change to violet. The change in size can be explained through an
increase in the ionic interactions in the fibers.

Polymers 2021, 13, x FOR PEER REVIEW 13 of 13 
 

 

 
Figure 9. Naked-eye detection of a volatile amine (NH3) using NFm-6 doped with bromothymol 
blue (BTB). 

The colorimetric behavior of NFm-6 was compared, under the same conditions, with 
that of films prepared by casting from and identical polymeric blend. The sensor obtained 
by electrospinning, when exposed to the volatile amine, showed a faster and more intense 
color change than the mat prepared by casting (Figure S11 and Videos SV1–SV3). Thus, 
NFm-6 is able to break the so-called “trade-off” rule in sensing harnessing high sensitivity 
and fast response simultaneously in comparison with the membrane obtained by casting. 
The good response relies on the open and well-defined porous structure defined by the 
NFs (Figure 3) allowing a fast diffusion of the target analyte into the membrane and en-
hancing its interaction with the sensing unit. 

These initial results demonstrated that NFs mats obtained from TS-PILs 6 are a suit-
able platform for sensing application as: (i) the TS-PIL units do not react or interfere with 
the sensing dye, (ii) the polymer provides a uniform background not interfering in the 
color change, (iii) the mats present good surface properties, allowing the colorimetric sen-
sor to spread uniformly, which is reflected in the uniform mat color, and (iv) the NFs 
structure obtained by electrospinning render a microstructure with high surface area en-
hancing the diffusion of the analyte to the sensing unit and leading to a fast response. 

3.5. Application of the Fiber-Mats for Catalysis 
Electrospun NFs presenting catalytic units have demonstrated great potential in a 

variety of catalytic application [30]. The large surface area and optimal surface chemistry 
of electrospun nanofibers greatly enhance the catalyst–support interaction and can im-
prove their activity, selectivity, stability, and reusability. Although NFs mats obtained by 
electrospinning offers very attractive properties for the development of catalytic systems, 
there is not a single application, as far as we know, of electrospun NFs mats based on PILs 
and used in catalysis. 

Advanced materials based on PILs have been used as efficient systems for the cap-
ture, activation and conversion of CO2 [31]. For instance, different polymers containing IL-
like moieties have been reported as efficient catalysts for the cycloaddition reaction of CO2 
with various epoxides to generate cyclic carbonates, which is one of the most promising 

Figure 9. Naked-eye detection of a volatile amine (NH3) using NFm-6 doped with bromothymol
blue (BTB).

The colorimetric behavior of NFm-6 was compared, under the same conditions, with
that of films prepared by casting from and identical polymeric blend. The sensor obtained
by electrospinning, when exposed to the volatile amine, showed a faster and more intense
color change than the mat prepared by casting (Figure S11 and Videos S1–S3). Thus, NFm-6
is able to break the so-called “trade-off” rule in sensing harnessing high sensitivity and
fast response simultaneously in comparison with the membrane obtained by casting. The
good response relies on the open and well-defined porous structure defined by the NFs
(Figure 3) allowing a fast diffusion of the target analyte into the membrane and enhancing
its interaction with the sensing unit.

These initial results demonstrated that NFs mats obtained from TS-PILs 6 are a suitable
platform for sensing application as: (i) the TS-PIL units do not react or interfere with the
sensing dye, (ii) the polymer provides a uniform background not interfering in the color
change, (iii) the mats present good surface properties, allowing the colorimetric sensor to
spread uniformly, which is reflected in the uniform mat color, and (iv) the NFs structure
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obtained by electrospinning render a microstructure with high surface area enhancing the
diffusion of the analyte to the sensing unit and leading to a fast response.

3.5. Application of the Fiber-Mats for Catalysis

Electrospun NFs presenting catalytic units have demonstrated great potential in a
variety of catalytic application [30]. The large surface area and optimal surface chemistry of
electrospun nanofibers greatly enhance the catalyst–support interaction and can improve
their activity, selectivity, stability, and reusability. Although NFs mats obtained by electro-
spinning offers very attractive properties for the development of catalytic systems, there
is not a single application, as far as we know, of electrospun NFs mats based on PILs and
used in catalysis.

Advanced materials based on PILs have been used as efficient systems for the capture,
activation and conversion of CO2 [31]. For instance, different polymers containing IL-like
moieties have been reported as efficient catalysts for the cycloaddition reaction of CO2
with various epoxides to generate cyclic carbonates, which is one of the most promising
and efficient approaches for CO2 fixation [32]. In this context, the modified mat 14 was
studied for the catalytic reaction of styrene oxide with CO2. In general, this process requires
harsh experimental conditions (temperature > 130 ◦C and pressure > 10 bars) to lead to the
corresponding carbonates. When the mat 14 was tested as a heterogeneous catalyst for this
reaction (Scheme 2) 44% of conversion of the epoxide was observed with full selectivity to
the corresponding carbonate at 120 ◦C and 10 bar after 24 h. This is a remarkable result if
we consider the bromide content, as this is expected to be the nucleophilic anion catalyzing
the reaction, which was only 0.03% mol Br/substrate. This represents a notable TON
of 1244.
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4. Conclusions

We have demonstrated that NFs mats derived from the TS-PILs based on homocysteine
thiolactone can be obtained by electrospinning them as blends with PVP. The presence
of this functional moiety allowed the post-functionalization of these mats through the
aminolysis of the thiolactone ring in the presence of an amine that can be followed by a
thiol–alkene “click” reaction. Under controlled experimental conditions the modification
can be performed introducing different functionalization and crosslinking of the NFs.
The morphology of the modified mats was highly dependent of nature of the modifiers.
Different conditions were stabilized for the modification of the mat while maintaining the
nanostructure obtained by the electrospinning. Initial studies suggest that the NFs based
on these functionalized PILs can be used in both sensing and catalytic applications.
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Supplementary Materials: The following are available online at https://drive.google.com/file/d/12
oPPZsJbuGy0o07QhWyr92Iv_spenN_l/view?usp=drive_web. Figure S1: Images of fibers with the
formation of beads obtained by electrospinning of polymer 6 (65 % w/v). (a) Optical microscope
imagen, 10 x / 0.25 mm. (b) SEM imagen, scale bar represents 10 µm, Figure S3: (a) Comparison
of the ATR-FTIR spectra for NFm-6 and 7. (b) Optical images for mat 7 after modification. and
structure, Figure S5: (a) Comparison of the ATR-FTIR for the NFs mat 6 and 9. (b) Optical imagine
of the mat 9 after modification and structure. (c) NFs size distribution., Figure S6: (a) Comparison
of the ATR-FTIR for the NFs mat 6 and 10. (b) Optical imagine of the mat 10 after modification and
structure. (c) NFs size distribution, Figure S7: (a) Comparison of the ATR-FTIR for the NFs mat 6
and 11. (b) Optical imagine of the mat 11 after modification and structure. (c) NFs size distribution,
Figure S8: (a) Comparison of the ATR-FTIR for the NFs mat 6 and 12. (b) Optical imagine of the
mat 12 after modification and structure. (c) SEM of the polymeric mat 12, scale bars correspond to
10µm, Figure S9: (a) Comparison of the ATR-FTIR for the NFs mat 6 and 13. (b) Optical imagine of
the mat 13 after modification and structure. (c) SEM of the polymeric mat 13, scale bars correspond
to10µm, Figure S10: (a) Comparison of the ATR-FTIR for the NFs mat 6 and 14. (b) Optical imagine
of the mat 14 after modification and structure. (c) SEM of the polymeric mat 14, scale bars correspond
to 10µm (d) NFs size distribution, Figure S11: Comparison of color changing of the polymer blend
PVP/TS-PIL 6 obtained by (a) casting or by (b) electrospinning in presence of the NH3 vapor, Figure
S14: Spectrum of polymer 6. (a) 1H NMR spectra in D2O and (b) 13C NMR Spectra in D2O, Table S1:
Electrospinning parameters used to fabricate NFs mats., Table S1: Solubility evaluation of the NFs
mat obtained from PVP/TS-PIL 6, Video S1: Colorimetric changes of NFm-6 with butylamine, Video
S2: Colorimetric changes of NFm-6 with different amines, Video S3: Colorimetric changes of NFm-6
with ammonia.
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