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ABSTRACT
In this paper, we introduce periodically correlated space-time autoregressive processes with values in Hilbert spaces. The exis-
tence conditions and the strong law of large numbers are established. Moreover, we present an estimator for the autocorrelation
parameter of such processes.
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1. INTRODUCTION

In time series analysis, periodically correlated (PC) processes, which can be categorized in the class of nonstationary harmonizable processes,
have been widely used to characterize various real life phenomena, that exhibit some kind of seasonal behavior. Franses [1], Gardner [2],
Gardner et al. [3] andHurd andMiamee [4] and some other researchers remark the importance of PC processes theoretically and in applied
fields, such as metrology, communication, economics, etc. Besides, Hilbertian PC processes of weak type were introduced and studied by
Soltani and Shishehbor [5,6]. These processes have interesting time domain and spectral structures.

Among various models in the analysis of time series, autoregressive (AR) models are of great importance. Bosq [7] generalized the classical
AR models to processes with values in Hilbert spaces by introducing autoregressive Hilbertian (ARH) models. In his fundamental work,
Bosq [7] provides basic results on Hilbertian strongly second order AR and moving-average processes. The existence, covariance structure,
parameter estimation, strong law of large numbers and central limit theorem are also covered in his book. Thesemodels attract the attention
of various researchers, such as Mourid [8], Besse and Cardot [9], Pumo [10], Mas [11,12] and Horvath et al. [13], and are applied drastically
in modeling functional time series.

The PC autoregressiveHilbertian process of order one (PCARH(1)) was introduced by Soltani andHashemi [14]. They studied the structure
and existence of PC ARH processes by embedding them into higher dimensions, and provided necessary and sufficient conditions for the
existence of these processes. They considered the law of large numbers, the central limit theorem, and also suggested some methods for
parameter estimation.

Space-time processes are of great importance in studying spatial processes. The space-time autoregressive moving average (STARMA)
models were developed by Pfeifer andDeutsch [15–19]. Processes that can bemodeled by the STARMAmodels are characterized by a single
random variable observed at N fixed sites in space. The dependencies between the N time series are incorporated in the model through
hierarchical N × N weighting matrices, specified prior to analyzing the data. These weighting matrices should incorporate the relevant
physical characteristics of the system into the model. Each of the N time series are simultaneously modeled as linear combinations of past
observations and disturbances, as well as weighted past observations and disturbances at neighboring sites.
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A STARMA(p𝜆, qm)model is formulated as follows:

yt =
p∑

k=1

𝜆k∑
l=0
𝜙kl Wl yt−k −

q∑
k=1

mk∑
l=0
𝜃kl Wl 𝜀t−k + 𝜀t (1)

where p, q are the temporal AR and MA lags, 𝜆k and mk are the spatial lags, yt is the N × 1 vector of observations at time t at the N sites,
Wl is the N × N matrix of weights for spatial order l and, finally, 𝜀t is the random disturbance at time t, which is normally distributed. The
weightingmatrices, in AR andmoving-average parts, are the same as Pfeifer andDeutsch [17]. Thismodel has found numerous applications
ranging from environmental (Pfeifer and Deutsch [17]; Stoffer [20]) to epidemiological (Pfeifer and Deutsch [15]) and economical (Pfeifer
and Bodily [21]) problems.

In the last decades, the technological advances in various fields, such as chemometrics, engineering, finance andmedicine, makes it possible
to observe samples as curves. In these cases, it is common to assume that the sample has been generated by a stochastic function. To analyze
this type of data, it is convenient to use the tools provided by a recent area of statistics, known as functional data analysis (FDA).

Recently, FDA have been developed in the context of spatial statistics (Bosq [7]; Ruiz-Medina and Salmeron [22]). Ruiz-Medina [23,24]
introduced and studied the structural properties of spatial autoregressive and moving-average Hilbertian processes, which are called
SARH(1) and SMAH(1), respectively, in abbreviation.

In this article, we introduce PC space-time autoregressive Hilbertian (PCSTARH) processes as an extension of Pfeifer and Deutsch’s model
to an infinite dimensional Hilbert space, and provide a theorem which demonstrates their existence, the strong law of large numbers and
parameter estimation. Our methodology is to embed every PCSTARH(1, 1) with period T into a subclass of PCARHk (1) processes, and
then applied the results of Soltani and Hashemi [14].

This article is organized as follows. In Section 2, we provide the required definitions and present conditions which guarantees the existence
of the model. The strong law of large number of this model is presented in Section 3. In Section 4, we find estimators for autocorrelation
operators and prove their consistency and the last section is devoted to some conclusions.

2. PC SPACE-TIME PROCESS

Let stands for a real separable Hilbert space equipped with the scalar product ⟨., .⟩, the norm ∥ . ∥ and the Borel 𝜎-field . Besides, let () denotes the Hilbert space of bounded linear operators on . Consider (Ω, , P) stands for a probability space. A random variable
with values in is an∕measurable mapping fromΩ into. A random variableX is called strongly second order if E‖X‖2 <∞. For the
sake of simplicity, we refer to strongly second order random variables with values in as-valued random variables throughout the paper.

For -valued random variables X and Y, the covariance and the cross-covariance operators are defined in terms of tensorial product, as
follows:

CX (x) ∶= 𝔼 [(X⊗ X) x] = 𝔼 ⟨X, x⟩X, (2)

CX,Y (x) ∶= 𝔼 [(X⊗ Y) x] = 𝔼 ⟨X, x⟩Y, (3)

respectively. Note that, throughout this work, Xit will denote an-valued random variable at time t and site i.

In the first step, let us define PC and PC Hilbertian white noise processes, along with a sequence of T-periodic bounded linear operators.

Definition 2.1. An-valued stochastic process
{
Xit, i = 1,⋯ , k, t ∈ ℤ

}
is said to be PC space-time with period T, PCS in abbreviation,

if

CXin,Xim
(x) = CXi(n+T),Xi(m+T)

(x), (4)

for each n,m ∈ ℤ, x ∈  and some integer T > 0.

The smallest such T is called the period of the process. If T = 1, the process is called space-time stationary.

Definition 2.2. A PC space-time-valued process
{
𝜀it, i = 1,⋯ , k, t ∈ ℤ

}
is called white noise (PCHWN) if it satisfies the following

properties:

(i) 𝔼
(
𝜀it
)
= 0, 0 < E ∥ 𝜀it ∥2= 𝜎2it < ∞ for every i = 1,⋯ , k, t ∈ ℤ, where 𝔼 stands for the expected value based on the Bochner

integral.

(ii) C𝜀it (x) = C𝜀i(t+T) (x) for every i = 1,⋯ , k, t ∈ ℤ, when x ∈ .
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(iii) C𝜀it, 𝜀jl (x) = 0 for all t ≠ l or i ≠ j when x ∈ .
Definition 2.3. A sequence

{
𝜌t, t ∈ ℤ

}
in () is called T-periodic if 𝜌t = 𝜌t+T.

For a bounded linear operator, A, and an n × pmatrix, B, we define themultiplication of A and B, C=AB, as an n × pmatrix, whose elements
are Cij = ABij. Here and subsequently, Xit denotes an-valued random variable at time t and site i.

In the following, we provide the definition of PC space-time autoregressive Hilbertian process of order one (PCSTARH(1, 1)).

Definition 2.4. A Hilbertian process
{
Xit, i = 1,⋯ , k, t ∈ ℤ

}
is called a PCSTARH(1) with period T, if it is PC and satisfies

Xit = 𝜙tXi(t−1) + 𝜓t

k∑
j=1

wij Xj(t−1) + 𝜀it, (5)

where
{
𝜙t, t ∈ ℤ

}
and

{
𝜓t, t ∈ ℤ

}
are T-periodic sequences in () as the AR parameters of lag time t,

{
wij, i = 1,⋯ , k, j = 1,⋯ , k

}
are coefficients that satisfy the following properties:

wij ≥ 0, ∀i, j = 1,⋯ , k
wii = 0, ∀i = 1,⋯ , k

k∑
j=1

wij = 1,
(6)

and
{
𝜀it, i = 1,⋯ , k, t ∈ ℤ

}
is a PCHWN.

Note that, if we define Xt ∶= (X1t, X2t, ..., Xkt)
′ and 𝜀t ∶= (𝜀1t, ⋯ , 𝜀kt)

′ , ask-valued random variables, andW = (wij) as a k × k weight
matrix, then we can rewrite (5) as:

Xt = (𝜙tI + 𝜓tW)X(t−1) + 𝜀t (7)

In the sequel, we prove that the class of PCSTARH(1, 1) processes can be embedded into the class of PCARHk (1) processes. Let us present
the following lemma that is crucial in our approach.

Lemma 2.1. The Hilbertian process Xt = (𝜙tI + 𝜓tW)X(t−1) + 𝜀t is also a PCARHk(1) process, where
{
𝜙t, t ∈ ℤ

}
and

{
𝜓t, t ∈ ℤ

}
are

T-periodic sequences in () and W is a weight matrix.

Proof. We first show that 𝜌t = 𝜙tI+𝜓tW is a T-periodic sequence in (k). Since 𝜙t and 𝜓t are T-periodic bounded linear operators, we
have

𝜌t+T = 𝜙t+TI + 𝜓t+TW = 𝜙tI + 𝜓tW.

It can be shown that 𝜀t is PCHWN, since

(1) 𝔼
(
𝜀t
)
= 𝔼

(
𝜀1t, 𝜀2t, ⋯ , 𝜀kt

)′

= 0,

(2) C 𝜀n+T (x) = C 𝜀n (x) , because,

C𝜀n+T (x) = 𝔼
⟨
𝜀n+T, x

⟩
𝜀n+T

= 𝔼

( k∑
i=1

⟨
𝜀i(n+T), xi

⟩
𝜀1(n+T),⋯ ,

k∑
i=1

⟨
𝜀i(n+T), xi

⟩
𝜀k(n+T)

)′

= 𝔼

( k∑
i=1

⟨𝜀in, xi⟩ 𝜀1n,⋯ ,
k∑
i=1

⟨𝜀in, xi⟩ 𝜀kn)′

= C𝜀n (x)

(3) C 𝜀n, 𝜀m (x) = 0 for each n ≠ m, x ∈ k.

Consequently, the proof is completed.

Assumption A1: There are integers k0, k1, ..., kT−1 ∈ [1, ∞), such that
∑T−1

i=0
∥ 𝜌i ∥ki< 1, where 𝜌i = 𝜙iI + 𝜓iW.
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Corollary 2.1. If
∑T−1

i=0
2ki (∥ 𝜙i ∥ki + ∥ 𝜓i ∥ki∥ W ∥ki ) < 1, then assumption A1 holds.

Proof. It is enough to apply the known inequality

(x + y)p ≤ 2p(xp + yp),

where x, y and p are positive.

We now state a theorem, concerning existence and uniqueness of the PCSTARH(1,1) process.

Theorem 2.1. Under the assumption A1, the equation Xt = (𝜙tI + 𝜓tW)X(t−1) + 𝜀t has a unique solution given by

XnT+i =
∞∑
j=0

Aj,nT+i 𝜀nT+i−j =
∞∑
k=0

T−1∑
l=0

[
AT,nT+i

]kAl,nT+i𝜀 (n−k)T+i−l, (8)

where A0,i = I,A1,i = 𝜌i,A2,i = 𝜌i𝜌i−1,⋯ ,Ak,i = 𝜌i𝜌i−1 ⋯ 𝜌i−k+1 and 𝜌i = 𝜙iI + 𝜓iW.

Proof. Based on Lemma 2.1,Xt is a PCARHk(1) process that can be written asXt = 𝜌tX(t−1) + 𝜀 t with 𝜌t = 𝜙tI+𝜓tW. Then we can apply
Theorem 2.1 of Soltani and Hashemi [14] to prove that under the assumptionA1, a PCARH(1) process has a unique solution as in Equation
(8) and the proof is then completed.

2.1. Strong Law of Large Number

In this section, we prove the strong law of large numbers for PCSTARH(1, 1) processes.

Definition 2.5. A PCSTARH(1, 1) ,
{
Xit, i = 1, ⋯ , k, t ∈ ℤ

}
, is said to be standard if assumption A1 holds.

Theorem 2.2. Let
{
Xit, i = 1,⋯ , k, t ∈ ℤ

}
be a standard PCSTARH(1,1) and Xi,0,Xi,1,⋯ ,Xi,NT−1 be a finite segment of this model. Then,

as N → ∞,

n
1
4

(log n)𝛽
Si,n(X)

n
a.s
→ 0, 𝛽 > 1

2
,

where Si,n(X) =
∑n−1

t=0
Xit and n = NT.

Proof. By defining Xt = (X1t,X2t,⋯ ,Xkt)
′ , Xt is a PCARHk (1) process and, using Theorem 2.2 of Soltani and Hashemi [14], we have

n
1
4

(log n)𝛽
Sn(X)
n

a.s
→ 0, 𝛽 > 1

2
.

and the proof is completed.

3. ESTIMATION OF THE AUTOCORRELATION PARAMETERS

Parameter estimation is an important feature ofmodel identification. In this section, the parameters of PCSTARH(1, 1)model are estimated
using the method of moment.

Let X0,⋯ ,Xn−1 be a finite segment from Xt = (𝜙tI + 𝜓tW)X(t−1) + 𝜀 t, where n is a multiple of T, n = NT, and Xt = (X1t,X2t, ...,Xkt)
′ . To

estimate the parameters, 𝜙t and 𝜓t, we first estimate 𝜌t = 𝜙tI + 𝜓tW.

The classical method of moments provides the following normal equations:

Dl−1 = 𝜌lCl−1, l = 1,⋯ ,T, (9)

where

𝜌l = 𝜙lI + 𝜓lW, (10)

Cl−1 = 𝔼
(
Xl−1 ⊗ Xl−1

)
,

Dl−1 = 𝔼
(
Xl ⊗ Xl−1

)
.

(11)
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Since Cl−1 is a compact operator, it has the following spectral decomposition

Cl−1 =
∑
m∈ℕ

𝜆m,l−1
(
em,l−1 ⊗ em,l−1

)
,

∑
𝜆m,l−1 ≤ ∞, (12)

where (𝜆m,l−1)m⩾1 is a sequence of the positive eigenvalues of Cl−1 and (em,l−1)m⩾1 is a complete orthonormal system ink.We define 𝜋m,l−1
as the associated sequence of projections, hence, 𝜋m,l−1 = em,l−1 ⊗ em,l−1 and Πkn ,l−1 =

∑kn
j=1
𝜋j,l−1.

First, it is crucial to note that, since C−1
l−1 is not necessarily invertible, we can not deduce from (9) that 𝜌l = Dl−1C−1

l−1, l = 1, ⋯ , T. A
necessary and sufficient condition for C−1

l−1 to be defined is that Ker(Cl−1) = 0, i.e. Cl−1(x) = 0 if and only if x = 0.

From Equation (9), we have

Dl−1
(
ej,l−1

)
= 𝜌lCl−1

(
ej,l−1

)
= 𝜆j,l−1𝜌l

(
ej,l−1

)
Then, for any x ∈ k, the derived equation leads to the representation

𝜌l (x) = 𝜌l

( ∞∑
j=1

⟨
x, ej,l−1

⟩
ej,l−1

)
=

∞∑
j=1

Dl−1
(
ej,l−1

)
𝜆j,l−1

⟨
x, ej,l−1

⟩
. (13)

Equation (13) gives a core idea for the estimation of 𝜌l. Therefore, we estimate Dl−1, 𝜆j,l−1 and ej,l−1 empirically and substitute them in
Equation (13). For this purpose, the estimated eigen elements

(
𝜆̂j,l−1, êj,l−1

)
1⩽j⩽n will be obtained using the empirical covariance operator

Ĉl−1 = 1
N

∑N−1

k=0
Xl−1+kT ⊗ Xl−1+kT. Besides, 𝜋̂j,l−1 is the empirical counterpart of 𝜋j,l−1 and Π̃kn,l−1 =

∑kn
j=1
𝜋̂j,l−1 is the projector on the

space spanned by the kn first eigenvectors of Ĉl−1. Note that by the finite sample, the entire sequence (𝜆j,l−1, ej,l−1) cannot be estimated and
just a truncated version can be obtained, which leads to

𝜌̂l(x) =
kn∑
j=1

D̂l−1
(
êj,l−1

)
𝜆̂j,l−1

⟨
x, êj,l−1

⟩
. (14)

If kn grows to infinity by the sample size, the estimator 𝜌̂l will be consistent. On the other hand, we know that 𝜆j,l−1 → 0. Hence, it will be a
delicate issue to control the behavior of 1

𝜆̂j,l−1
. In fact, a small error in the estimation of 𝜆j,l−1 can have an enormous impact on (14).

We now turn to estimate 𝜙l and 𝜓l. Let B = (1, 0,⋯ , 0)
′
and W be an invertiable matrix, then

𝜙l = B′𝜌lB (15)

𝜓l = W−1(𝜌l − 𝜙l I). (16)

To study consistency of estimators, we begin by proving the consistency of 𝜌̂. In order to study consistency of the estimators, we need the
following assumptions:

Assumption B1: 𝜒 =
{
Xn; n ∈ ℤ

}
is a standard PCARH(1) such that E∥Xn∥4 ≤ ∞ for all n ∈ ℤ.

Assumption B2: 𝜆1,l−1 ≥ 𝜆2,l−1 ≥ ⋯ ≥ 0.

Assumption B3: 𝜆̂kn,l−1 ≥ 0, a.s.

Following Hashemi and Soltani [25], the next theorem can be proved.

Theorem 3.1. Suppose that B1, B2 and B3 hold and 𝜌l,l = 1,⋯ ,T, are Hilbert Schmidt operators. Then, if for some 𝛽 ≥ 1,

𝜆−1kn,l−1

∞∑
j=1

aj,l−1 = O(n
1
4
(
log n)𝛽

)
, (17)

we obtain

‖𝜌̂l − 𝜌l‖ a.s
→ 0, l = 1,⋯ ,T, (18)
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where aj,l−1 = 2
√
2max

[(
𝜆j−1,l−1 − 𝜆j,l−1

)−1, (𝜆j,l−1 − 𝜆j+1,l−1)−1] if j ⩾ 2, and a1,l−1 = 2
√
2(𝜆1,l−1 − 𝜆2,l−1)

−1.

Proof. Consider the decomposition (
𝜌̂l − 𝜌l

)
(x) =

[
𝜌̂l (x) − 𝜌lΠkn,𝓁−1 (x)

]
+
[
𝜌lΠkn,𝓁−1 (x) − 𝜌lΠ̃kn,𝓁−1 (x)

]
+
[
𝜌lΠ̃kn,𝓁−1 (x) − 𝜌l (x)

]
∶= âl (x) + b̂l (x) + ĉl (x) ,

(19)

and put

𝛼̂l = sup‖x‖≤1‖âl (x)‖, 𝛽l = sup‖x‖≤1‖b̂l (x) ‖, 𝛾̂l = sup‖x‖≤1‖ĉl (x)‖.
It is easy to see that

𝛼̂l
a⋅s
→ 0,

𝛽l
a⋅s
→ 0,

𝛾̂l
a⋅s
→ 0,

(20)

and the proof is completed. For more details, see Theorem (3.3) of Hashemi and Soltani [25].

Next corollary states the consistency of 𝜙 and 𝜓estimators, define in (15) and (16).

Corollary 3.1. Under the assumptions of Theorem 3.1, 𝜙̂l and 𝜓̂l are consistent estimator.

4. CONCLUSION

Our objective in this paper is to introduce a new model for PC space-time data. We first introduce PC space-time autoregressive processes
in an Hilbert space and provide conditions for their existence.

Our main aim is to show that there exists a relation between PCSTARH(1, 1) and PCARH(1) and so we can show some properties for
PCSTARH(1, 1)models, such as the strong law of large numbers. PCSTARH models have sophisticated statistical structures that open up
promising new resources for datamodeling strategies.We have focused only on the theoretical setup and leave applied approaches for future
research.
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