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ABSTRACT 

      We demonstrate the synergetic effect of Mo-doping and vacuum-annealing on dendritic nanostructured 

bismuth oxide (Bi2O3) thin films prepared by electrodeposition for visible-light-assisted photoelectrochemical 

(PEC) water oxidation. After evaluating various extents of Mo-doping as well as vacuum-annealing temperatures, 

it was evidenced that both Mo-doping and vacuum-annealing significantly improved the efficiency and PEC water 

oxidation performance. Compared to the undoped Bi2O3 photoanode, the optimized Mo-doped Bi2O3, after 

vacuum-annealing, resulted in more than 25-fold enhancement in the photoanodic current density to 

1.06 mA/cm2 at 1.23 VRHE under AM1.5 G illumination. The PEC enhancement is credited mainly to the 

increased PEC surface active sites in the Mo-doped vacuum annealed sample. Confirmed by combined XPS and 

Mott-Schottky (M-S) analysis, vacuum annealing resulted in surface oxygen vacancies that can contribute to the 

photocatalytic activity. Besides, Mo-doping resulted in reduced dimensions of the dendritic structure, revealed by 

FE-SEM and XRD measurements, resulting in larger surface area and, therefore, larger surface/electrolyte contact. 

This dual strategy (metal doping + vacuum annealing) can be generalized to assemble photoanodes of other 

materials used for the production of solar fuels. 
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1. Introduction 1 

     To proficiently hinder the depletion of fossil fuels and assuage the associated environmental problems caused 2 

by the amassing carbon-dioxide emissions, numerous researchers have attempted to construct new energy-supply 3 

systems that are clean and sustainable. Solar-assisted catalysis on semiconductor-based production of clean solar 4 

fuels is, generally, a proficient way to assuage environmental concerns and to satisfy the increasing global 5 

demands for energy. Photoelectrochemical (PEC) water splitting, with the aid of novel and proficient 6 

semiconductor-based materials, has emerged as a promising application in the domain of materials science.1 7 

During the past years, numerous research works have been performed on different semiconductor-based 8 

electrodes for solar-driven water oxidation,2-5, but using them as effective photoanodes is still a challenge. The 9 

following are the requirements of a proficient electrode for PEC water splitting: the electrode must possess a 10 

suitable bandgap (1.6–2.2 eV) with a high absorption coefficient, suitable valence-band (VB) and conduction 11 

band (CB) energy positions respectively for oxygen evolution reaction (OER) and hydrogen evolution reaction 12 

(HER), high carrier mobility, good photo and chemical stability, and cost-effectiveness.6–8 13 

     The most widely recognized semiconductor-based electrodes for performing solar-driven water splitting 14 

comprise TiO2, ZnO, BiVO4, CuO, and Fe2O3.
1-2 Particularly, the most common metal oxides, e.g. ZnO and TiO2, 15 

have wide bandgaps of approximately 3 eV, as a result of which these oxides absorb only the ultraviolet (UV) 16 

region of the solar spectrum (comprising about 4% of solar energy only). Bismuth oxide (Bi2O3) exhibits 17 

exceptional polymorphism having many reported polymorphs (α-, β-, γ-, δ-, ω- and η-Bi2O3), with other non-18 

stoichiometric polymorphs also exist.9-13 While the monoclinic α-Bi2O3 is the stable phase at room temperature 19 

for bulk Bi2O3, tetragonal β-Bi2O3 is the most stable one for Bi2O3 nanostructures.9,14 The stability of the tetragonal 20 

phase can, however, be demolished by extrinsic doping.18 Compared to common UV-absorbing oxides such as 21 

ZnO and TiO2, α and β phases have lower bandgaps allowing the absorption in a wider UV-visible range of the 22 

solar spectrum.16-20,24-25 β-Bi2O3 has a relatively lower bandgap compared to the α-Bi2O3.
15-16 Additionally, β-23 

Bi2O3 supports more significant electron transport because of its c-axis-oriented tetragonal structure.17–18 The 24 

lone-pair Bi 6s orbital that contributes to the VB reduces the bandgap value and increases the mobility of 25 

photogenerated electrons as well.19 This combined effect, besides the less toxicity, earth abundance, and low cost, 26 

makes β-Bi2O3 an efficient catalyst material for light-induced catalyst in general17-28 and for solar water splitting 27 

in particular.20-21 28 

      Compared to the other polymorphs, pure β-Bi2O3 is usually challenging to synthesize at the nanoscale.17-19 In 29 

the literature, β-Bi2O3 nanostructures or nanostructured films could be suitably fabricated through numerous 30 

methodologies, including electrochemical deposition, hydrothermal process, and solid-state reactions.17, 24–26,30 31 
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The direct use of pure β-Bi2O3
 for solar water splitting has been reported by Hajra et al.31 to suffer from 32 

considerable loss of photocurrent with reduced stability. Further, there have been numerous reports about Bi2O3 33 

based composites for their photoelectrocatalytic applications.32-34  Enormous efforts have been made toward 34 

introducing metal dopants, such as Mo and W ions in their hexavalent state.  Especially, Mo has been of particular 35 

interest and has been reported to be a more efficient electron donor because of its generated higher density of 36 

states.39 Up to the extent of our knowledge, published work on Mo-doped Bi2O3 is almost naught.40-41 However, 37 

these metal dopants are reported to ultimately promote the intrinsic charge transport of BiVO4 oxides by 38 

strengthening the lattice distortion.35-39 39 

In addition to the extrinsic doping via metal dopants, the creation of surface oxygen vacancies (OVs) has 40 

been recognized as an essential strategy to improve the photoelectrochemical performance.42–43 In addition to 41 

increasing the donor density in bulk and thus improving the electron mobility, vacancies formed at the surface 42 

can function as active sites for adsorption and PEC reactions.42,44-46 It has been reported that the surface OVs 43 

supply coordinately unsaturated sites to initiate the PEC water oxidation. For instance, various research efforts on 44 

surface-OV-induced effects in TiO2,
47 Bi2WO6,

48 and Bi2O2CO3
49  revealed that OVs can considerably promote 45 

their photocatalytic activities. We recently reported that the combined effect of both OVs and metal doping could 46 

be an efficient strategy to increase the efficiency of solar water splitting. Notably, the combined effect of Zr-47 

doping and stimulation of OVs in TiO2 nanotubes have shown to enhance the visible-light absorption depth and 48 

enhanced the separation of the light-induced hole–electron pairs.50  49 

Interestingly, a dual strategy to simultaneously modify the Bi2O3 bulk (by Mo doping) and its surface 50 

activity (by simple vacuum annealing) has been successfully applied to obtain, up to the extent of our knowledge, 51 

unprecedented water-splitting efficiency of pure Bi2O3 electrodes. Our strategy reduced the effective bandgap of 52 

the prepared electrodes from 3.2 eV down to 2.6 eV in addition to enhanced surface area and improved surface 53 

activity.  By coupling Mo-doping and surface OVs in nanostructured Bi2O3 thin films, we achieved an efficient 54 

photoelectrode with a photocurrent density of 1.06 mA.cm2 at 1.23 VRHE, which is about 25-fold enhancement 55 

compared to that of reference Bi2O3 thin films. 56 

 57 

2. Experimental Section 58 

 Materials 59 

   Bismuth (III) nitrate (Bi(NO3)3·5H2O, ≥98.0%) and ethylene glycol (EG, HOCH2CH2OH, ≥99.8%) were 60 

acquired from Fisher Scientific. 61 

Preparation of β-Bi2O3 and Mo:Bi2O3 62 
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     The electrochemical deposition was performed in a single cell by using an electrochemical system (Autolab, 63 

PGSTAT30). In a typical process, a classical 3-electrode system comprised an FTO substrate as the working 64 

electrode, an Ag/AgCl (4 M KCl) reference electrode, and a Pt counter electrode. Subsequently, for preparing Bi-65 

metallic films from EG, an EG solution containing 20 mM Bi(NO3)3·5H2O was used. After that, the 66 

electrodeposition process of the solution was performed by passing 0.1 C/cm2 at E = −1.8 V vs. Ag/AgCl, followed 67 

by subjecting it to a resting time of 2 s. The electrochemical cycle was repeated five times to reach the total charge 68 

of 0.50 C/cm2. Subsequently, the obtained Bi films were annealed at 450 °C for 2 h in the air (ramp rate = 69 

3.0 °C/min) to create nanostructured Bi2O3 thin films. The attained electrodes were cleaned using water and then 70 

allowed to air dry. Furthermore, this successive electrochemical deposition was performed to derive the required 71 

photoelectrodes. To fabricate Mo: Bi2O3 photoanodes, 70 µL of sodium molybdate (Na2MoO4.2H2O) in the 72 

DMSO solution was moved onto the electrodeposited Bi electrode, and, subsequently, the photoelectrode was 73 

annealed at 450 °C for 2 h in air. Second, the Bi2O3 or Mo:Bi2O3 films were placed into a porcelain combustion 74 

boat at 350 °C for various times (0.5 to 5.0 h) under vacuum to obtain oxygen vacancy OV-Bi2O3/OV-Mo:Bi2O3. 75 

Finally, the electrodes were cooled down naturally, and the pressure was gently released. 76 

Characterization of Bi2O3-based films 77 

    The crystalline purity and phases of the materials were recorded via X-ray diffraction (XRD, Rigaku-Mini Flex 78 

600, Japan) under Cu Kα radiation. Absorbance spectra of the fabricated electrodes were analyzed using UV-vis 79 

spectroscopy (Shimadzu UV-2600, Japan). Also, the morphological features of the Bi2O3 thin films were analyzed 80 

using field emission SEM (JEOL JSM-7000F, Japan). PEC performance of the fabricated electrodes was studied 81 

by evaluating their photocurrent density during water splitting. All the PEC analyses were conducted in 0.1 M 82 

phosphate buffer solution (PBS, pH = 7). The photocurrent density was assessed by using a potentiostat (Autolab, 83 

PGSTAT30) at the sweep rate of 10 mV/s. Furthermore, electrochemical impedance spectroscopy (EIS) analysis 84 

was performed via an electrochemical workstation.  85 

The applied bias photon to current efficiency (ABPE) is given by:  86 

𝐴𝐵𝑃𝐸 (%) =
𝐽𝑃𝐸𝐶(𝑚𝐴/𝑐𝑚2) ∗ (1.23 − 𝑉𝑏𝑖𝑎𝑠)𝑉

𝑃𝑖𝑛(𝑚𝑊/𝑐𝑚2)
× 100  

where JPEC denotes the photocurrent density, Vbias the applied bias, and Pin the incident illumination power density 87 

(AM 1.5G). 88 

 89 
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3. Results and Discussion 90 

Synthesis of Mo:Bi2O3 thin films  91 

   Synthesis. A novel, non-aqueous, electrochemical-deposition method was employed, which was based on 92 

the metal-organic precursors of Bi dispersed in EG solution. Then, Mo was introduced to the Bi-metal 93 

surface to prepare the thin films of Mo-doped Bi2O3 with tunable quantities of Mo. Subsequently, the 94 

fabricated thin films were subjected to the vacuum-annealing process. The various stages for the fabrication 95 

of electrodes are schematically depicted in Figure 1. 96 

 97 

 98 

Figure 1. Conversion of nanostructured dendritic Bi-metal electrodes to OV-Mo:Bi2O3 photoelectrodes 99 

 100 
Structural Characterization of Mo-doped Bi2O3 photoanodes 101 

To analyze the purity and crystalline nature of the Bi2O3, OV-Bi2O3, Mo:Bi2O3, and OV-Mo:Bi2O3 thin films, 102 

XRD was performed. The XRD spectra for all four electrodes are shown in Figure 2. The pure air-annealed 103 

Bi2O3 electrode could be purely indexed with the tetragonal Bi2O2.3 phase (JCPDS No. 01-76-2477). 104 

Furthermore, no other peaks corresponding to other phases were noticed, suggesting that Bi2O2.3 was the main 105 

phase in the product. This oxygen-deficient polymorph of β-Bi2O3 was similarly reported to form under 106 

thermal oxidation of Bismuth.20-21 Vacuum annealing of the pure electrodes did not result in any other 107 

impurity phase and could be fully indexed to the same Bi2O2.3 phase as well. There was, however, a slight 108 

shift on the 2θ axis to the left, see Figure 2b, indicating a slight lattice expansion that may be induced by 109 

oxygen vacancies. This might imply the creation of neutral oxygen vacancies, which were reported to cause 110 

such expansions or a mixture of both neutral and charged oxygen vacancies.51,52 The only slight shift along 111 
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the 2θ axis supports the latter possibility. In addition to the slight shift in peak position, their peak intensities 112 

were reduced in the vacuum annealed sample. This effect of vacuum annealing was also present for the Mo-113 

doped sample as well. This can be attributed to the creation of oxygen vacancies by vacuum annealing 114 

resulting in reduced crystalline order. As will be discussed below, this slight negative effect was, however, 115 

essential to gain the highly efficient photocatalytic activity caused by OVs.  116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

Figure 2. Normalized XRD patterns of electrochemically deposited (a) undoped Bi2O3, (b) Mo-doped OV-Bi2O3 127 

photoelectrodes, (b). 128 

 129 

    When Bi2O3 was doped with Mo, the nanostructured doped film crystallized in a mixture of the original Bi2O2.3 130 

in addition to the α-Bi2O3 phase (JCPDS No. 41-1449) and Bi2O2.7 (JCPDS No. 03-065-4028). The stability of 131 

the tetragonal phase started to deteriorate by Mo doping.53 Upon vacuum annealing, there were no considerable 132 

changes in the phase or peak positions. Interestingly, upon performing Mo-doping, the diffraction peaks 133 

significantly broadened, along with a significant decrease in the crystallite size. As will be seen below, this is also 134 

confirmed by the SEM images showing smaller dendritic features for the Mo-doped samples. The generally 135 

observed decreased grain size of the vacuum annealed photoanodes is vital to promote more surface-active sites 136 

and thus enhance the interfacial charge-transfer rates, resulting in a superior PEC activity compared to that of an 137 

undoped or air-annealed photoanodes. 138 

     The optical nature of the fabricated photoanodes was investigated via UV-visible spectroscopy 139 

measurements. Figure 3 shows the absorbance spectra (Figure 3a) for the Bi2O3, OV-Bi2O3, Mo:Bi2O3, and OV-140 

Mo:Bi2O3 films and the Tauc plots (Figure 3b) used to estimate the optical bandgaps of the films. As depicted 141 
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in Figure 3a, all the electrodes of Bi2O3, OV-Bi2O3, Mo:Bi2O3, and OV-Mo:Bi2O3 photoanodes exhibited strong 142 

absorption in the visible region, with absorption onsets in the range between 400–490 nm. The pure vacuum 143 

untreated β-Bi2O3 film showed the poorest absorption characteristics in both optical density and absorption edge. 144 

After vacuum annealing, the absorption edge is red-shifted with a considerable increase in the optical density 145 

above the bandgap. The red-shifting of the bandgap can be partially explained by the lattice expansion noticed in 146 

the XRD results. Most importantly, oxygen vacancies, especially those at the surface, can create shallow levels at 147 

the conduction band edge reducing the effective bandgap of the material.54   148 

For the Mo-doped vacuum untreated α-Bi2O3, there is a remarkable effect of the Mo-doping in both 149 

reducing the bandgap and increasing the optical density. The ionic radius of Mo is almost half that of Bi.53 The 150 

bandgap reduction can, therefore, be an indication of interstitial doping of Mo ions rather than direct substitution 151 

of Bi sites, which would have slightly increased the bandgap. Upon annealing, the optical density increased with 152 

a large red-shift of the absorption edge that can be noticeably seen as a long absorption tail. This absorption tail 153 

can be attributed to the combined effect of shallow energy levels created by oxygen vacancies and the lattice 154 

distortion created by Mo doping. The reported values for the bandgaps of different Bi2O3 phases varied greatly in 155 

the literature, where the preparation method played an important role on determining the bandgap. Values between 156 

~ 2-4 eV were reported for the α and β-Bi2O3 phases.11-13,19,55 Among these methods, thermal oxidation of a 157 

previously prepared Bi film, which is close to the preparation conditions in our case, showed a considerable 158 

disagreement of reported values.12-14 For our samples, the bandgaps of the prepared Bi2O3, OV-Bi2O3, Mo:Bi2O3, 159 

and OV-Mo:Bi2O3 electrodes were estimated by the Tauc plots in Figure 3b to be 3.2, 3.1, 2.8, and 2.6 eV, 160 

respectively. Remarkably, the combined effect of Mo-doping and vacuum annealing could reduce the bandgap by 161 

more than 0.5 eV, allowing solar optical absorption in the visible range. 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 
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 173 

Figure 3.  Optical properties of photoanodes: (a) Diffuse reflectance spectra of undoped Bi2O3; oxygen-174 

deficient OV-Bi2O3, Mo:Bi2O3, and oxygen-deficient OV-Mo:Bi2O3 photoanodes; (b) Tauc plots of (αhν)1/2 vs. 175 

the energy of the light absorbed for the fabricated photoanodes. 176 

 177 

      Figure 4 depicts the FE-SEM images of the nanostructured Bi2O3 electrodes with and without the optimum 178 

Mo-doping for two different thermal processes (air and vacuum). All films have randomly arranged dendrites 179 

with a micro-nano hierarchical structure. Dendritic structured photoanodes have been the main focus for many 180 

researchers because of their excellent connectivity between the crystals, making them effective photoanodes.59-61 181 

Especially, the inter-leaf spacing in this 3D nanostructure offers a favorable pathway for electrolyte ions; 182 

therefore, more electrochemically active sites, as well as minor branches, will decrease the internal resistance.20  183 

For the undoped samples (Figure 4a, b), the stems in the dendrites are in the range of 1–2 μm in length with many 184 

side nano-branches less than 200 nm long. Interestingly, Mo-doping (Figure 4c,d) resulted in reduced dimensions 185 

of the dendritic network, confirming the broader XRD peaks mentioned above. This would have resulted in a 186 

more substantial surface area and, therefore, more active surface sites for the PEC reactions, as revealed by the 187 

PEC behavior of photoanodes mentioned below. For both Mo-doped and undoped samples, vacuum treatment 188 

had resulted in virtually no morphological changes in the photoanodes. Finally, the elemental mapping of the OV-189 

Mo: Bi2O3 dendritic structures are depicted in Figure S1, unambiguously confirming the existence of constituent 190 

elements, namely, Mo and Bi, in the tested photoanodes.  191 
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 193 

Figure 4. Morphological characteristics of photoanodes. FE-SEM micrographs of (a) nanostructured Bi2O3 194 

photoanodes fabricated using electrodeposition on FTO substrates, (b) oxygen-deficient OV-Bi2O3 photoanodes 195 

fabricated after vacuum-annealing, (c) FE-SEM images of dendritic-structured Mo:Bi2O3 on FTO, and (d) FE-196 

SEM images of OV-Mo:Bi2O3 photoanodes fabricated using electrodeposition followed by vacuum-annealing. 197 

 198 

      Figure 5 shows the XPS spectra of Bi 4f and O1s of bare Bi2O3 and OV-Bi2O3. The Bi 4f7/2 and Bi 4f5/2 199 

doublets positioned at 159.6 eV and 165.1 eV respectively indicate the Bi3+ oxidation state and successful 200 

formation of Bi2O3.56,57 The two samples showed no appreciable changes in the Bi 4f region (Figure 5a). The O1s 201 

spectra showed, in addition to the ~ 529 eV peak corresponding to oxygen in the lattice (OL), another higher 202 

energy peak (OV) at ~ 531 eV (Figure 5b), which is attributed to oxygen vacancies on the surface.56-58 203 

Interestingly, the OV contribution in the OV-Bi2O3 sample is remarkably more significant compared to the bare 204 

Bi2O3 indicating the existence of chemisorbed oxygen that is caused by existing oxygen vacancies on the 205 

surface.56,57 From the integrated areas of respective oxygen peak components, the OV/OL ratio is estimated to be 206 

~ 0.4 and 1 for the bare Bi2O3 and OV-Bi2O3, respectively. As mentioned above, this increase of surface oxygen 207 

vacancy sites can also contribute to enhancing the photocatalytic activity, which was observed in the PEC 208 

experiments below. 209 
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 226 

 227 

Figure 5. Surface characterization of electrodes. High-resolution XPS results on Bi 4f (a) and O 1s orbital (b) 228 

for bare Bi2O3 and OV-Bi2O3 electrodes 229 

 230 

PEC behavior of photoanodes 231 

Figure 6a depicts the linear sweep volumetric (LSV) PEC behavior of the four samples. First, distinctive 232 

LSV plot data indicate that the photoanodes have no photo-activity under dark conditions. The sole Bi2O3 without 233 

any dopant or surface activation exhibited almost no photocurrent over the whole 0-1.23V region (Figure 6a), 234 

indicating that Bi2O3 is not photoactive. Vacuum annealing alone resulted in a fair improvement of the 235 

photocurrent, while Mo-doping alone resulted in a more significant contribution. The combined effect of both 236 

Mo-addition and vacuum-annealing resulted in superior photocurrents as compared to those in OV-Bi2O3, 237 

Mo:Bi2O3, and undoped Bi2O3. For comparison, at the potential of 1.23 VRHE, the photoanodic current densities 238 

of the sole-Bi2O3, OV-Bi2O3, Mo:Bi2O3, and OV-Mo:Bi2O3 photoanode films were 0.04, 0.16, 0.49, and 1.06 239 
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mA·cm–2, respectively. Therefore, the synergetic effect of vacuum annealing and Mo-doping could successfully 240 

offer an efficient photoanode treatment strategy boosting the generated photocurrent by > 25-fold.  241 

 The role of vacuum annealing and Mo-incorporation was also investigated under chopped 1-sun 242 

illumination conditions. Figure 6b represents the comparative LSV plots under chopped illumination with a fixed 243 

time interval for the OV-Mo:Bi2O3 photoanode film in comparison with bare Bi2O3. From the figure, the 244 

photocurrent performance of the OV-Mo:Bi2O3 photoanode increases at all applied bias. However, for the OV-245 

Mo:Bi2O3 photoanode film, the observed photocurrent of the chopped light of LSV is almost linear, which is 246 

reached instantly upon turning on the light. This typical behavior is similar to earlier reports on CoPi-loaded 247 

electrodes evaluated in the presence of an electrolyte comprising a fast redox shuttle.3 On the other hand, shifting 248 

of the onset of photocurrent to the lower potential region through vacuum annealing and Mo-doping, as shown in 249 

Figure 6b, demonstrates the photocatalytic behavior of Mo in an aqueous medium.6,8  The observed PEC 250 

enhancement for the OV-Mo:Bi2O3 photoanodes can be credited mainly to the increased PEC active sites 251 

generated by the higher surface area of Mo-doped samples and by the surface OVs created y vacuum annealing. 252 

Moreover, the more definite current transients between 0.5 and 1.7 V for the OV-Mo:Bi2O3 photoanodes suggest 253 

that the photoinduced carriers live longer after vacuum annealing and Mo incorporation.  254 

This substantial enhancement in the photocurrent density is supplemented by a considerable cathodic shift 255 

in the photocurrent-onset potential. Furthermore, a considerable photocurrent density was attained in the lower 256 

bias region (0.6 VRHE) in all photoanodes, as depicted in Figure S2, whis is very interesting for tandem 257 

photoanode-photocathode configurations. 258 

 259 
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 260 

Figure 6. PEC nature of photoanodes. (a) Photocurrent-potential features for undoped Bi2O3, oxygen-deficient 261 

OV-Bi2O3, Mo-doped Bi2O3, i.e., Mo:Bi2O3, and oxygen-deficient OV-Mo: Bi2O3 photoanodes in the PBS (0.1 262 

M, pH 7.5) measured under constant (b) J-V curve of the optimized OV-Mo:Bi2O3 photoanodes in comparison 263 

with bare Bi2O3 under chopped illumination condition. (c) Photocurrent-potential characteristics at 1.23 V versus 264 

RHE for different Mo-doping concentrations (red symbols) and different annealing conditions (blue symbols) in 265 

the PBS solution at pH 7.5, and (d) equivalent applied-bias photon-to-current efficiency of the fabricated 266 

photoanodes. 267 
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Finally, Figure 6c presents the generated photocurrent at 1.23 VRHE under different Mo doping and vacuum 268 

annealing temperatures, signifying that the best performance was obtained for 5.0 mole% Mo and vacuum 269 

annealing at 350 °C, which are the optimum conditions used for the electrodes in Figure 6a. To evaluate the solar 270 

conversion efficiency of the photoanodes, the ABPE was assessed versus the applied bias and are depicted in 271 

Figure 6d. The estimated photoconversion efficiencies were only 0.01% and 0.05% at 0.8 VRHE for the undoped 272 

Bi2O3 and OV-Bi2O3 electrodes, respectively. However, with Mo-doping, the higher conversion efficiency of 273 

0.1% at 0.8 VRHE was achieved for Mo:Bi2O3 film, which was further enhanced to 0.26% at 0.8 VRHE after vacuum 274 

annealing. These results also confirm that the combination of optimal Mo-doping and vacuum-annealing 275 

conditions synergistically improved the PEC performance.  276 

 277 

Figure 7. Electrochemical impedance investigation. Nyquist plots electrochemically deposited undoped Bi2O3, 278 

oxygen-deficient OV-Bi2O3, Mo-doped Mo:Bi2O3, and oxygen-deficient OV-Mo:Bi2O3 photoanodes. The 279 

impedance analysis was completed at 1.0 VRHE in the frequency varying from 100, 000 to 0.05 Hz, and the figure 280 

inset shows the equivalent circuit and its enlarged view. 281 

       Furthermore, EIS analysis was performed to examine the charge-transfer kinetics at the 282 

photoelectrode/electrolyte interface. The Nyquist plots of the electrodeposited photoanodes tested under constant-283 

light conditions at 1 VRHE and its corresponding equivalent circuits are depicted in Figure 7. Mostly, the diameter 284 

of the semicircle in the higher frequency region is attributed to the charge-transfer resistance (Rct). As seen from 285 

Figure 7, the radius of the arc of the Nyquist plots of the OV-Mo:Bi2O3 films is comparatively lesser than those 286 

of other fabricated photoanodes, signifying rapid interfacial charge-transfer and, also, effective separation of the 287 
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induced charge carriers. This can be attributed to the more significant number of PEC active sites generated by 288 

both the increased vacuum-generated surface VOs and the higher surface area of the Mo-doped film. Interestingly, 289 

Mo-doping enhanced both the charge-carrier density and electrical conductivity, thus lowering the resistance 290 

(Table 1).  291 

 292 

Table 1. Impedance parameter values derived from the fitting to the equivalent circuit for the impedance spectra 293 

were examined under constant illumination condition at 1.0 V vs. RHE. Rs = solution resistance, Rct = charge-294 

transfer resistance. 295 

Samples Rs (ohm) CPE-P; n CPE-T; Q 

[Ω-1s-n] 

Rct 

[kΩ] 

Bi2O3 47.0 0.94 1.74*10-5 393 

OV-Bi2O3 25.1 0.93 5.2*10-5 43.8 

Mo:Bi2O3 41.3 0.92 2.4*10-10 4.76 

OV-Mo:Bi2O3 27.9 0.92 4.7*10-10 3.71 

 296 

      To further gain insights into the influence of the creation of oxygen vacancies/Mo-doping on the electrical 297 

features of Bi2O3, Mott–Schottky (M-S) analysis was performed to assess the charge carrier density of the 298 

fabricated electrodes. Capacitance measurements were carried out to acquire M-S plots (Figure 8) at each 299 

potential with 10 kHz frequency. A detailed M-S plot of the fabricated photoanodes is discussed in supporting 300 

information. The result of the calculation is in Table 2. They all have positive slopes, which specify that Bi2O3 301 

based electrode is an n-type semiconductor with electrons as the major charge carriers. In contrast to earlier works 302 

where the use of reductive atmospheres led to increased donor density,56 this parameter did not considerably 303 

change in all tested conditions (Table 2), revealing that the higher density of oxygen vacancies assessed by XPS 304 

is not translated into the Bi2O3 bulk (Figure 8a). A similar phenomenon is observed for Mo:Bi2O3 electrodes 305 

(Figure 8b) and in our earlier reports on Zr-doped TiO2 nanotubes.47 The obtained donor density is almost similar 306 

before and after vacuum annealing, which can be a good indication that created oxygen vacancies are located 307 

mostly on the surface, allowing them to directly contribute to the PEC process. Further, compared with Mo:Bi2O3 308 

sample, the OV-Mo:Bi2O3 sample exhibits a shift in the cathodic direction of 170 mV of effective EFB, as displayed 309 

by the M-S plots of bare Bi2O3 and OV-Bi2O3 (Table 2). More importantly, the EFB is cathodically shifted upon 310 

vacuum thermal treatment, which is consistent with the cathodic shift of the photocurrent onset potential for the 311 

optimal combination in Figure 6a. A cathodic shift in VFB is advantageous for electrons to pass through the circuit 312 

to the counter electrode, thus resulting in decreasing the onset potential for anodic photocurrent. Clearly, the 313 

charge carrier density has been dramatically increased after Mo doping  (Figure 8c, Table 2). It further verified 314 
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that Mo is a shallow donor in doped Bi2O3 films. All the obtained results clearly revealed the introduction of 315 

oxygen vacancies and Mo-doping influence the PEC performance deeply. 316 

 317 

 Figure 8. Mott-Schottky (M-S) plots of the capacitance of bare-Bi2O3 (a) electrodes thermally treated in air and 318 

vacuum, and comparison with Mo doped bare-Bi2O3 (b), comparative M-S plots of bare-Bi2O3 and Mo:Bi2O3 319 

thermally annealed in vacuum.  320 

 321 

Table 2. Parameters obtained from the Mott-Schottky performances obtained from Figure 8  322 

 323 

 324 

 325 

 326 

 327 

    328 

 329 

  The long-term stabilities of undoped OV-Bi2O3, Mo:Bi2O3, and OV-Mo:Bi2O3 photoanodes were comparatively 330 

evaluated in the PBS solution for more than 5 h at 1.23 VRHE under constant-light conditions (see Figure 9). 331 

Notably, the observed photocurrent values were in agreement with the results acquired from the corresponding 332 

LSV-plots. The photocurrent density of undoped OV-Bi2O3 declined from 0.20 to 0.05 mA/cm2 under constant-333 

light conditions for 5 h (i.e., 75% loss), because the undoped OV-Bi2O3 suffered not only from the incessant 334 

illumination-induced photocorrosion but also from the chemical corrosion due to H2O2, owing to oxygen reduction 335 

on the Bi2O3 surface.63 The observed results are consistent with those in earlier research works.64,65 The vacuum-336 

annealed OV-Mo:Bi2O3 thin films, which signify the combined effect of both Mo-doping and vacuum-annealing, 337 

could sustain a significant photocurrent density after 5 h of approximately 0.95 mA·cm–2, corresponding to ~ 92% 338 

Samples EFB (V vs. SCE) Donor density (cm-3) 

bare-Bi2O3 -0.28 V 8.82 × 1019 

OV-Bi2O3 -0.31 V 9.25 × 1019 

Mo:Bi2O3 -0.65 V 3.89 × 1020 

OV-Mo:Bi2O3 -0.82 V 3.59 × 1020 
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of its original value. Furthermore, the photocurrent loss over time takes place mainly in the first 10-20 minutes 339 

with no visible sign of long-term decay after 5 h, suggesting substantial long-lasting durability of the photoanodes. 340 

Furthermore, under an on-off switching, the current density was abruptly retained with even slight improvement. 341 

The investigation, as mentioned above, evidenced that the synergetic effect of both the optimal Mo-doping and 342 

vacuum-annealing conditions in OV-Mo:Bi2O3 photoanodes enhanced both the PEC performance and the stability 343 

of the photoanodes. 344 

 345 

Figure 9. Durability investigation of photoanodes. J–t curves for long-standing photostabilities of OV-Mo: 346 

Bi2O3 thin-film electrodes (red), Mo:Bi2O3 electrodes (black), and undoped OV-Bi2O3 (blue) measured in the PBS 347 

solution (0.1 M, pH 7.5) at 1.23 VRHE under illumination conditions. 348 

4. Conclusions 349 

    We fabricated nanostructured oxygen-deficient OV-Mo:Bi2O3 photoanodes via simple electrochemical 350 

deposition followed by post-annealing under vacuum. Notably, we revealed that the synergetic effect of Mo-351 

doping and vacuum-annealing improved the surface activity of the nanostructured Bi2O3 films, leading to 352 

enhanced PEC water-oxidation performance. Both Mo-doping and vacuum-annealing resulted in a more effective 353 

Bi2O3 surface, which resulted first in the establishment of surface defects (OVs), thereby enhancing the carrier 354 

transport. Also, Mo-doping is revealed to increase the surface area of the prepared films, further increasing the 355 

active sites that are in contact with the electrolyte. This combined effect of both Mo-doping and vacuum-annealing 356 

in optimized OV-Mo:Bi2O3 photoanodes demonstrated a nearly 25-fold improvement, as compared with undoped 357 

Bi2O3 increasing the photocurrent density from 0.05 mA.cm-2 to approximately 1.06 mA·cm−2 at 1.23 VRHE . 358 
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