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Abstract Computational models of creativity are addressed from the viewpoint of
conceptual blending theory (CBT) in this paper. Specifically, in our scenario, an
unknown blend (a new/unknown concept) is addressed in a communication setting,
where the blend is transmitted from a generator agent to a receiver agent.

In this paper, we first posit that understanding new blends is also a creative pro-
cess in the framework of CBT. Albeit different from generating blends, understanding
a novel blend involves the disintegration and decompression of that blend, in such a
way that the receiver of that blend is able to re-create the conceptual network suppos-
edly intended by the emitter of the blend. Secondly, we also propose image schemas
as a tool that agents can use to interpret the spatial information obtained when disin-
tegrating/unpacking blends.

This process is studied in a communication setting where semiotics and mean-
ing are conveyed by visual and spatial signs (instead of the usual setting of natural
language or text). In this case study, qualitative spatial descriptors are applied for ob-
taining a formal description of an icon, which is later assigned a meaning by blending
with an image schema in a way that the received blend can be recreated.
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1 Motivation

Computational creativity is a multidisciplinary field originated in Artificial Intelli-
gence (AI) research and strongly related to cognitive psychology, philosophy and arts.
Summarily, the goal of computational creativity is to develop computational models
and systems that address tasks that can be considered creative when undertaken by
humans. This paper addresses a particular topic of interest in computational creativ-
ity, namely Concept Blending Theory (CBT) [20]. The theory of concept blending
(or integration) originates from cognitive science, specifically, cognitive linguistics.
CBT explains the process by which a new concept (also called a mental space) can be
created from two existing concepts (or mental spaces). CBT was first formalised in
category theory by Goguen [23], as shown in Fig. 1. Succinctly, given two concepts
or mental spaces I1 and I2, conceptual blending is characterised by (1) a generic
mental space G, that embodies some similarities or correspondences between I1 and
I2, and (2) a new mental space B (the blend) that integrates two partial projections
from the content of I1 and I2 following correspondences determined in G. A classical
example is this: given the input mental spaces of house and boat, two different blends
(with corresponding generic spaces) can be created: houseboat and boathouse. The
houseboat blend is shown in Fig. 2.
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Fig. 1 An overview of conceptual blending by Goguen [23].

A comprehensive computational model of conceptual blending was developed re-
cently [12]. This is a computationally feasible cognitively-inspired formal model of
concept invention developed in the CoInvent project [4]. This model follows Goguen’s
category theoretical approach [23] and, by incorporating the notion of amalgams [39],
it develops a feasible computational model that can effectively create blends in dif-
ferent representation formalisms of AI. Another computational model of conceptual
blending is the seminal Divago system [40] which later evolved into the Blendville
system [25]. Other approaches related to this paper are Divago’s approach applied
to visual blending [8] and previous work on generating new computer icons using
computational models of conceptual blending [6, 3].

However, although most computational models of conceptual blending focus on
the generation of novelty, this paper focuses on the dual problem: that regarding un-
derstanding and integrating novelty by agents different from the “creative agent”.
This dual problem is in fact envisaged by CBT in cognitive linguistics. In concept-
blending theory, understanding a (new/unknown) concept that is the result of a blend
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Fig. 2 The ‘houseboat’ blend, adapted from Goguen [24].

involves disintegration and decompression of that blend and reconstructing the net-
work of concepts linked to that blend. In the example above, houseboat or boathouse
could be understood by an agent who did not already knew them if that agent has the
house and boat metal spaces and applies a process of disintegration and decompres-
sion of that blend.

Nevertheless, this is not a well-defined task, specially if we intend to create a
computational model for (novel) concept understanding. A main goal of this paper is
to better understand such task and to advance in the development of such a computa-
tional model.

A relevant aspect in this paper is that we are dealing with unknown/novel con-
cepts, that is with a blend network created by an agent but which is new or unknown
by another agent. To deal with this novelty we have to add the level of communication
on top of the level of creative processes based on conceptual blending. The commu-
nication level requires the transmission of signs or descriptions of concepts, not the
concepts themselves (the mental spaces in CBT). In this scenario, a creative agent
generates a novelty by means of a blend network where a new concept is constructed,
and then the communication level is used to transmit a sign (encoded information)
about this novelty to a receiver agent.

Note that, if the concept is a novelty, then the blend network does not exist in the
receiver since what is transmitted by communication is a name (or sign, in the more
general semiotic sense). The CBT may say the receiving agent understands the new
concept when capable of “reconstructing” the blend network (e.g. the network in Fig.
1). However, the communication layover added between the creative agent and the
receiver agent implies that there is a less direct relation between receiving not a new
concept (mental space), but a new name or sign for a novelty and the process required
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by the receiver to Understand that novelty. For instance, upon receiving a word like
houseboat, if it is a novel/unknown concept for the receiver, he/she first needs to
identify that by splitting this word in a specific way (e.g. house-boat) then the words
house and boat can be associated to known mental spaces, and only then the agent
can reconstruct the blending network that yields houseboat (the blend). While the
CBT may take this for granted in cognitive linguistics because humans seem to do
this effortlessly, developing a computational model is not so simple.

This paper is a first step towards a computational theory of understanding novelty.
We use the CBT and the CoInvent project computational model of blending, but we
argue that understanding a novelty requires “disintegration and decompression”, but
also a creative process by the receiver agent too —the receiver agent creates a blend
in the process, using its own cognitive resources (e.g. image schemas in the case
study developed in this paper). Note that, understanding involves re-creation rather
than re-construction, that is, it involves not simply “disintegrating” a mental space
which will not yet exist in the receiving agent, if the concept is a novelty.

For this purpose, let us briefly examine some statements used in the literature re-
garding the CBT in order to explain understanding a (new) blend. For instance, “dis-
integration and decompression” are mentioned twice in [20]. One mention appears in
the definition of an optimisation principle:

The Unpacking Principle: Other things being equal, the blend all by itself
should prompt for the reconstruction of the entire network. (...) Unpacking is
often facilitated by disintegrations and incongruities in the blended space.

Also, section “How networks do compression and decompression” in [20] states
that:

In principle, a conceptual integration network contains its compressions and
decompressions. Typically, in use and processing, only parts of the network
are available and the rest must be constructed dynamically. In some cases,
decompression will be the main avenue of construction, and in other cases,
compression will.

However, our viewpoint is that we cannot assume as inputs the mental spaces
from which the blend is obtained by concept integration. If the blended concept is
really new, then unpacking the new concept into a full-fledged conceptual network
is not trivial. Although such a network may exist in the generation side of blends
(e.g. the speaker, the writer), it is not trivial how it can be (re-)created by the receiver
agent (e.g. the listener, the reader). We posit here that understanding is also a creative
task when it involves unpacking real novelty (a new blended concept). Certainly this
process requires disintegration and decompression, in this case with the goal of recre-
ating a (valid, adequate) concept network that is hopefully the one intended by the
utterer. Our intuition is that this requires not only unpacking the blended spaces (that
does not yet exist in the receivers agent), but also it requires harnessing internal cog-
nitive resources (like image schemas) to find the possible candidates to be the input
mental spaces that –if blended in an appropriate way (finding an adequate Generic
Space and two adequate partial projections)– create the same (or equivalent) concept.
Thus, similarly, reading a novel or a poem is a creative process. Of course, it is a dif-
ferent process than that undertaken by the writer, but it is a creative process and this
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might be the reason why readers find novels and poems pleasant but also challenging
at the same time.

Dealing with the complexity of natural language and the various theories of mean-
ing is a very complex task. The approach presented in this paper focuses on a more
straightforward and meaning-bearing language: graphical signs used in our society
to convey meaning, such as icons and signage. Thus, let us focus on how a receiver
can “decode the meaning” of graphical signs (i.e. understand that sign). Essentially,
iconic meaning involves spatial relations between lines which form shapes that are
interpreted as signs (e.g. interpreting a shape “←” as an “arrow” or as a “left arrow”).
We propose to use qualitative spatial descriptors to analyse complex spatial relations
in signs and image schemas to ascertain the meaning of those signs (e.g. interpreting
“left arrow” with the image schema “source-path-goal” may yield the meaning “mov-
ing on a path to the left”). Only after semiotic interpretation is performed, the receiver
can build the concept-blending process upon that basis. As far as we are aware, none
of the papers in the literature has dealt with this topic before.

The rest of the paper is organised as follows. Section 2 explains how understand-
ing can be interpreted as a creative process starting from a new concept B, which
is a novelty for the receiver agent who receives a semiotic sign (utterance) denoting
B (but not B itself, being a mental space). If the semiotic sign is an icon in a digi-
tal image, the process of deconstruction can be done using tools such as qualitative
image descriptors (presented in Section 4) which can deconstruct the icon by colour
segmentation, identify its components and then describe its shape, location, topology
and direction qualitatively, that is, using concepts. Then, the process of re-creation
can be carried out by the receiver using tools such as image schemas (presented in
Section 3). Section 5 shows the deconstruction process of the presented icon use case
by applying qualitative spatial descriptors. Then, Section 6 integrates spatial qualita-
tive descriptions with image schemas for extracting the meaning of elementary signs,
and finally, those are blended together obtaining the mental space corresponding to
the understanding (or interpretation) of the novelty concept B (icon use case). Finally,
Section 7 discusses the main issues addressed in the paper.

2 Understanding novelty as a creative process

This section describes the computational task of concept-blending by following the
computational model in [12]. It also introduces the computational task of blend un-
derstanding. Then it highlights the commonalities and differences of these tasks.

Let us define the task of blend generation, shown in Fig. 3, as follows:

Given Two (input) mental spaces I1, I2.
Find 1. G, a generic space of I1 and I2, and

2. B, a blended mental space of I1, I2 and G (that satisfies some optimality
criteria)

Note that the arrows in Fig. 3 indicate how the information flows in the task, and they
are different from the arrows in Fig. 2.

Blend “disintegration and decompression” can be considered the dual case of
blending (blend generation), that is, given the blend (a blended mental space), the task
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Fig. 3 The task of blend generation: two input spaces are assumed as given (I1, I2) and the task is, from
I1 I2, finding an adequate generic space G and a blend (B). Arrows indicate information flow.

is to find the input spaces and an adequate generic space. However, the task of blend
understanding, as shown in Fig. 4, is not exactly the dual task of blending because
the input (the “blend”) is not a complete and full-fledged mental space, but a semiotic
sign denoting the blend. The mental space of the blend exists in our computational
model only after re-constructing the blending network that yields the blend, that is,
when the receiver agent understands that blend. Otherwise, if the complete mental
space is available, there is no novelty for the receiving agent and therefore there is no
need to reconstruct the blending network since the agent already knows it, the task is
then recognising a sign (linking a sign with an existing mental space).

Therefore, let us define the task of novel blend understanding as follows:

Given 1. An (incomplete) description that refers to the mental space of a new con-
cept blend B, and

2. a collection of image schemas.
Find 1. two adequate mental spaces I1 and I2,

2. an adequate generic space G of I1 and I2,
3. a mental space for B created by blending I1 and I2 following G.

Note that last line is exactly the definition of conceptual blending. Hence, if the blend-
ing process of the CBT is a model for creativity (combinatorial creativity to be precise
[12]), then we claim that novel blend understanding should also be considered a cre-
ative process.

It is important to remark that arrows indicating information flow in Fig. 4 are
bidirectional: the incomplete blend B yields some information to find the adequate
input mental spaces, but then those input mental spaces are used to generate the actual
blend as a complete mental space.

As a case study, the process of understanding the icon shown in Fig. 5 has been
chosen. Notice that the input here is the visual sign, and the understanding task con-
sists on obtaining its meaning. In the case of computational agents, perceiving the
visual sign in Fig. 5 may not yield a blend immediately (i.e. the mental space built
by perception is not complete), only after reconstructing the blending network, they
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Fig. 4 The task of blend understanding: a blend is given (but as an incomplete mental space) and the task
is finding an adequate blending network that completes the mental space of the blend. Arrows indicate
information flow.

really have the (mental space of the) blend —which is equivalent, in our approach, to
understand the input, that is, to understand what the image in Fig. 5 means.

Fig. 5 Example of an icon: A concept visually representated by an arrow and a C-shaped area.

Thus, in the approach presented, the blend is not merely “unpacked” since that
blend is still not complete (i.e. as a mental space). The input is, like a word in lin-
guistic approaches such those of Wittgenstein or Grice1, not immediately given as
a concept (as a specific meaning), but as an index to concepts, and the relationship
between language and concepts is better modelled as a mapping between two sep-
arate domains. In our case of study, we have a visual sign (instead of a word or
a sentence), but the same principle applies: the meaning of the concept is not im-
mediately and unequivocally given by the visual sign: we understand it by being
able to construct a blending network that works, and that maps some lines to an
“arrow” (i.e. concept usually indicating direction) and other lines to a delimited C-
shaped space/area. These two elements generate a new meaning2 together. For that,

1 Grice [26, 27] contends sentence and word meaning can be analyzed in terms of what utterers mean.
2 We are assuming the visual sign is not already known, in which case no blending reconstruction is

needed, since it is just recalled from memory. The same is true of blends like “houseboat”: if we know
what a houseboat is we do not need to blend “house” and “boat”. Another example is “shipwreck”, that
is commonly understood as concept, without knowing whether it is (or historically originated from) a
blend of “ship” and “wreck” —Latin languages for this concept use words deriving from naufragium
whose etymology is from navis (“a ship”) and frangō (“I break”). Creative understanding addresses giving
meaning to signs that are novel with respect to an agent.
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agents can use tools such as: image schemas (see Section 3) and spatial descriptors
of shape/topology/location/direction (see Section 4) to indicate the relations of the
elements in the icon/sign.

3 Image Schemas

The definition of the term image schema in [34] and [30] emphasises the bodily,
sensory-motor nature of various structures of our conceptualisation and reasoning.
Image schemas are defined in [31] as:

recurring patterns of our sensory-motor experience by means of which we
can make sense of that experience and reason about it, and that can also be
recruited to structure abstract concepts and to carry out inferences about ab-
stract domains of thought.

As [31] pointed out, different types of image schemas exist, and some reflect
properties of space:

– Verticality schema: we give great significance to standing up, rising and falling
down because of the gravitational field we perceive.

– Source-path-goal: we experience and draw inferences about rectilinear/curved
and even deviating motions that have no obvious goal.

– Scale schema: we continuously monitor our degree, intensity and quality of feel-
ings or body states which is the basis of our sense of scales of intensity of a
quality.

– Container schema: we interact with containers of all shapes and sizes, and we
naturally learn the logic of containment, also hearing or reading the word in acti-
vates our container image schema to understand the scene.

– Center-Periphery schema: we project right, left, back, near and far throughout
the horizon of our perceptual interactions, because of our embodiment.

There is also a logic in image-schemas, for example, as [31] says, via the transitive
logic of containment, if the car keys are in your hand and your hand is in your pocket,
then we infer that the car keys are in your pocket. That is, image schemas arise in our
perception and bodily movement and have their own logic, which can be applied to
abstract conceptual domains. The book by Lakoff and Núñez [33] shows examples
of the use of image-schematic structure in abstract reasoning in mathematics. They
prove that image schemas (operating within conceptual metaphors) make it possible
for us to employ the logic of our sensory-motor experience to perform high-level
cognitive operations for abstract entities and domains. Each image schema can be
conceived of as a cluster of related schemas, as shown in [28], where a family of
schemas around the notion of path, following in the Source-path-goal image schema,
are analysed from a computational point of view.

Research on image schemas is an active area of study in cognitive science that has
not yet been comprehensively formalised. This paper formalises two image schemas
to apply them to our case study (see Sections 5 and 6). Note that it is out of the scope
of this paper to formalise all image schemas in general.
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Apart from image schemas, next section presents other tools that agents can use
for obtaining an interpretation of an icon: spatial descriptors. Many image schemas
are also related to spatial descriptors as the following section shows.

4 Qualitative Spatial Descriptors and its Relation to Image Schemas

Qualitative modelling [21] concerns the representations and reasoning that people use
to understand continuous aspects of the world. Qualitative Spatial Representations
and Reasoning (QSR) [42, 2, 35] models and reasons about properties of space (i.e.
topology, location, direction, proximity, geometry, intersection, etc.) and their evolu-
tion between continuous neighbouring situations. Spatio-temporal reasoning models
deal with imprecise and incomplete knowledge on a symbolic level. Qualitative spa-
tial descriptors that represent properties of space are the following: (i) topology: 4IM
[11], 9IM [10], RCC-8 [7]; (ii) shape: QSD [14], LogC-QSD [41]; (iii) location:
[29, 22]; (iv) orientation: [37, 19]; (v) orientation and distance: [1], etc.

In the literature, qualitative models have been applied in AI, for example, the
extended Qualitative Image Descriptor and Logics QIDL+ apply computer vision
algorithms to digital images and extract spatial logics automatically from them [16,
15]. Other qualitative spatial descriptors have also been used in cognitive science to
solve perceptual tests for matching 3D perspective descriptions [18], for paper folding
reasoning [13], for solving Raven Progressive Matrices intelligence test by analogical
reasoning [36], etc. In the context of creativity, spatial descriptors and qualitative
shape and colour descriptors and their similarity formulations were tools for object
replacement and object composition in the theoretical approach presented by [38]
to solve Alternative Uses Test. As qualitative descriptors are suitable for modelling
human spatial reasoning [18, 13, 36], a relation can be established between image
schemas and qualitative descriptors, as some examples are shown in Table 1.

Table 1 Relation between Images Schemas and Qualitative Descriptors

Image Schema Qualitative Descriptor
Path-source-goal orientation[37, 19], direction [19]
Scale shape [14, 41], relative length [17]
Container topology [11, 10, 7];
Verticality location [29, 22], orientation[37, 19]
Centre-Periphery orientation and distance [1]

Thus, qualitative spatial descriptors can link the digital representation of an icon
with a conceptual representation which can be related to a more cognitive interpre-
tation, for example, using image schemas. In the use case presented in Fig. 5, note
that the lines in the icon may correspond to concepts with meaning by matching with
corresponding shape descriptors (i.e. arrows); and, interior and exterior areas in icon-
parts can be also identified by topology descriptors. All these is detailed in the next
section.
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5 Deconstructing a visual blend

Following the part-whole schema, let us consider that the meaning of a whole icon
can be composed by the meaning of its parts and their relationships. Specifically, in
our case of study, Fig. 6 shows the icon deconstructed in two parts: Part-I labelled as
an arrow shape, and Part-II labelled as a C-shape. Note that these two parts can be
easily extracted in the icon by the colour segmentation approach used by Qualitative
Image Descriptors [16, 15]. Then, these two parts are both described qualitatively (as
Fig. 10 and Fig. 11 show below) and then recognised as an arrow and a C-shape using
pattern recognition algorithms (for more details see [14]).

Fig. 6 The use case icon decomposed in parts.

Each icon-part is further interpreted acquiring spatial meaning in relation to an
image schema, as shown in Fig. 7. This relation is showed next.

Container 
image Schema

Inside / outside

Path 
image Schema

Origin / trajectory / destination

Property:
Trajector goes from Origin to Destination

Fig. 7 A description of the two visual signs interpreted by two corresponding image schemas.
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5.1 Part-I: Arrow-Icon Description

Arrows are visual signs that are very present in our daily lives. Fig. 9 reminds us

Fig. 8 Examples of Arrows: straight arrows, curved arrows, round arrows, dashed arrows and double-
arrows.

of different examples of arrows. As it can be observed, all the examples of arrows
provided have many shapes. However, studies on qualitative spatial reasoning about
arrow description [32] determine that arrows in general can be defined by three com-
ponent slots: the tail slot, the body slot and the head slot (Fig. 9).

Fig. 9 Arrows are spatial signs that have a starting and ending point indicating a direction.

Thus, let us give a logical definition of an arrow a as follows:

tail(a, x) ∧ head(a, y) ∧ body(a, x, y)⇒ arrow(a, x, y)

Another property that can be observed is that the head of the arrow is very character-
istic and it is mostly defined by 3 points (i.e. y, y2 y3 in Fig. 9) — the main point in
the head, and two other points that define a triangular shape:

head(a, y) ∧ triangle(y, y2, y3)⇒ triangular-shape(a, y)

The body of the arrow is defined by the tail and the head. Thus it has a length, which
can be calculated as the distance between both points.

tail(a, x) ∧ head(a, y) ∧ distance(x, y, l)⇒ has-length(x, y, l)

When the tail and head of an arrow are the same point, then the arrow can be cate-
gorised as a round-arrow, which can be defined as:

arrow(a, x, y) ∧ arrow(a, y, x)⇒ round-arrow(a, x, y)

A double arrow is characterised by having 2 heads and 2 tails, as follows:

head(a, x) ∧ head(a, y) ∧ tail(a, x) ∧ tail(a, y)⇒ double-arrow(a, x, y)



12 Zoe Falomir, Enric Plaza

The shape s of the arrow body can also be described –for example using a Qualitative
Shape Descriptor (QSD) [14].

tail(a, x) ∧ head(a, y) ∧ body(a, x, y)⇒ has-shape(a, x, y, s)

Different kinds of arrows can be categorised using shape, but this is beyond the scope
of our paper.

The orientation o of the arrow is indicated by the location of its head with respect
to its tail:

tail(a, x) ∧ head(a, y) ∧ has-orientation(o, x, y)⇒ orientation(a, o)

Orientation Descriptor. In order to obtain the orientation of an object (i.e. an
arrow), the coordinates of the front/head (p1) and the back/tail (p0) are compared. In
2D, their increasing or decreasing x and y values define the orientation of the object
as indicated by the Orientation Reference System (ORS) [19] summarised as follows:

Orientation ORS

towards-right 4x
towards-right-up 4x4y
towards-right-down 4x5y
towards-left 5x
towards-left-up 5x4y
towards-left-down 5x5y
towards-up 4y
towards-down 5y
cyclic none

Thus, the Arrow-Icon part can be described using some of the previous predicates,
as shown in Fig. 10.

tail(arrow-icon, x).
head(arrow-icon, y).
body(arrow-icon, x, y).
arrow(arrow-icon, x,y).
has-length(arrow-icon, x, y, 3).
has-shape(arrow-icon, x, y, straight).
orientation(arrow-icon, towards-right).

Fig. 10 Describing Arrow-Icon using qualitative descriptors.

5.2 Part-II: C-Icon Description

Let us describe the topology of the space delimited by C-Icon by taking into account
the Gestalt closure principle and the study on open containers [9], which show that
human perception tends to fill in the missing information in order to close shapes.
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Thus, according to RCC-8 [7], it can be stated that a point p is part of the interior
of an object (obj) if a line can be built using 2 points in the border of the object and
this point P is included in that straight line:

border-point(obj, b1) ∧ border-point(obj, b2) ∧ line(b1, b2, l) ∧ point-in-line(p, l)

⇒ interior(p, obj)

Therefore an interior space and an exterior space can be defined for the C-Icon shape.
Moreover, the shape of C-Icon can be described using a Qualitative Shape De-

scriptor (QSD) [14] as shown next in Fig. 11.

interior(c-icon,p).
...
hasQSD(c-icon,p1,qsd(line-line,right,convex,much-larger)) ∧
hasQSD(c-icon,p2,qsd(line-line,right,convex,similar)) ∧
hasQSD(c-icon,p3,qsd(line-line,right,convex,similar)) ∧
hasQSD(c-icon,p4,qsd(line-line,right,convex,much-shorter))

Fig. 11 Describing C-Icon using qualitative descriptors.

5.3 Relating Arrow-Icon and C-Icon

The spatial relation of the Arrow-Icon and C-Icon parts (with respect to each other
and with respect to the overall icon) can be described by qualitative descriptors of
location and topology.

Topological Descriptors describe situations in space that are invariant under trans-
lation, rotation and scaling transformations. Some common topological relations used
in describing the situation of an object a with respect to another object c (a wrt c) are
the following:

TLabel = {disjoint, touching, inside, container}

In 2D space, an object a is disjoint from another object c, if they do not have any
edge or vertex in common. In contrast, they are touching if, at least, there is a point
from a (pa) included in the border of c (bc), or vice versa —i.e., if they have at least a
point in their border in common. Note that disjoint and touching are inverse relations.
This can be expressed logically as follows:

has-border(a, ba) ∧ has-point(ba, pa) ∧ has-border(c, bc) ∧ has-point(bc, pc)∧
(point-in-border(pa, bc) ∨ point-in-border(pc, ba))⇒ touching(a, c)

¬touching(c, a)⇒ disjoint(a, c)
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Location Descriptors. For obtaining the location of an object a (or a point of an
object x) with respect to another object c, the following Location Reference System
(LoRS) [29, 22] is used which divides the space into nine regions (see Fig. 12):

LoRSLabel= {up, down, left, right, up-left, up-right, down-left, down-left, centre}

Fig. 12 Locations described by the QIDL+.

An excerpt of the qualitative descriptors which relate the icon parts are shown in
Fig. 13.

arrow(arrow-icon, x,y).
orientation(arrow-icon,towards-right).
...
interior(x,c-icon) ∧ exterior(y,c-icon)

...
right(y,c-icon) ∧ centre(x,c-icon)

...
up(c-icon, x) ∧ up-left(c-icon, x) ∧ left(c-icon, x) ∧
down-left(c-icon,x) ∧ down(c-icon,x)

Fig. 13 Some qualitative descriptors for the icon use case.

6 Recreating the novel blend

This section presents the relation between the two extracted icon parts (and its quali-
tative descriptors) with two image schemas. Intuitively, the goal to achieve is a blend
that understands the icon meaning. For this purpose, this section will proceed as fol-
lows: the arrow-shape will be related to the Source-Path-Goal image schema, the
C-shape will be related to the Container image schema, and thus the two input
mental spaces needed for blending will be obtained. Finally, the last blend of this two
input spaces will be undertaken; the result is a re-creation of the blending network
with last blended space giving the meaning exit to our use case icon (see Fig. 14).
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Combination of Container and Path

Mapping: container:inside = Path:origin
Mapping: container:outside = Path:Destination

Property:
Trajector goes from Inside to Outside

Interpretation:
To exit = to go from Inside to Outside

Fig. 14 A schema-based description of the Exit visual concept as a blend of visual signs interpreted as
image schemas.

6.1 Container image schema

Let us define the Container image schema as:

∀x ∈ Space

Ax : Within(x,Border)⇒ x ∈ IN ;

x ∈ OUT ⇔ x 6∈ IN

that is, a schema that defines two subspaces (IN and OUT) in a space with an abstract
Border separating IN from OUT.

Blending the Container image schema with the C-Icon, as shown in Fig. 15, re-
quires a generic space G1 with mappings f and g that identify the elements in the
two input spaces with the generalised elements a1, a2:

f(a1) = border g(a1) = obj

f(a2) = x ∈ IN g(a2) = interior(x, obj)

where obj refers to the visual object with the C-shape icon part that is identified with
the abstract border, and when being situated in the interior the C-shape is identified
with being situated inside the container (x ∈ IN ).

The blend B1 that relates the Container schema and the C-shape part of the icon
is directly obtained by the identifications made in G1:

∀x ∈ Space

Axioms : interior(x, obj)⇔ x ∈ IN ;

exterior(y, obj)⇔ y ∈ OUT

x ∈ OUT ⇔ x 6∈ IN

that is, the interior of the C-shape icon part (noted as obj) is identified with the IN
subspace of the Container schema (and the rest with the OUT subspace).
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Container
∀X ∈ SPACE

 X∈ OUT ⟺ X ∉ IN

Blend1

IN OUT
a1

a2

Border

X∈IN

Obj

Inside(X, Obj)

g f

g f

G1

Fig. 15 A blend of a visual representation and the Container image schema.

6.2 Source-Path-Goal image schema

Let us define the Source-Path-Goal (SPG) image schema as follows3:

source(x) ∧ goal(y) ∧ path(x, y) ∧ trajector(p);

Axioms: loc(p, x, t) ∧ loc(p, y, t′)⇒ t < t′

where loc(p, x, t) stands for the entity p located at place x in time t.
The generic space G2 in Fig. 16 establishes the mappings f and g that identify the

elements in the two input spaces with the generalised elements a1, a2, a3, as follows:

f(a1) = source g(a1) = tail

f(a2) = goal g(a2) = head

f(a3) = path g(a3) = body

Let us rename, for clarity’s sake, the generalised elements a1, a2, a3 respectively as
origin, destination, and trajectory; then the blend B2 in Fig. 16 can be defined as:

arrow(a, x, y) ∧ origin(x) ∧ destination(y)∧
trajectory(x, y) ∧ trajector(p)∧

loc(p, x, t) ∧ loc(p, y, t′) ∧ t < t′

that is to say, the arrow is interpreted as a visual metaphor for the SPG schema and
this interpretation adopts some properties of the SPG (i.e. an implicit “trajector” and
a temporal dimension).

3 Note that this is not intended to be a general valid specification for the Source-Path-Goal (SPG)
schema, just a consistent interpretation of SPG suitable for our purpose of study. Regarding the approach
where an image schema is considered to be a family of similar but distinct schemas, e.g. see [28]. In this
view, we use an image schema of the SPG family.
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Source-Path-Goal
x: Source, y:Goal, 

p:Trajector, Path (x,y).
Ax: loc(p,x,t) ⋀
loc(p,y,t’) ⇒ t<t’

x:Source

Path(x,y)

y:Goal

Blend2
G2

a1

a3
a2

Source

Goal
Path

Tail

Head
Body

g f
g
g

f
f

loc(p,x,t)⋀loc(p,y,t’) 
⇒ t<t’

Fig. 16 A blend of a visual representation and the Source-Path-Goal image schema.

6.3 The “Exit” Blend

Let us explain that the final “Exit” blend may be achieved by taking as input spaces
the two previous blends, B1 and B2, as shown in Fig. 17. For that purpose, let us first
specify how B1 and B2 match in a new generic space G3:

f(a1) = origin(x) g(a1) = interior(x, obj)

f(a2) = destination(y) g(a2) = exterior(y, obj)

That is to say, G3 maps the origin of the arrow (x) to an interior point of the C-shape
icon part (obj) and that the arrows head (y) is mapped to an exterior point.

Blend1

IN OUT

Source

Path

Goal

Blend2

Blend3

a1

a2

Source

Goal

In

Out

g f
g f

G3

x: Source, y:Goal, 
x ∈ IN, y ∈ OUT 

Path (x,y),  
Ax: x≠y, 
loc(p,x,t) ⋀

loc(p,y,t’) ⇒ t<t’

Fig. 17 Blending the two previous blends to understand the meaning of the icon “Exit”.

Given the mappings at G3, the blend B3 is created as shown in Fig. 17. This blend
B3 gives meaning to the “exit” icon by projecting and fusing the two previous blends
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that serve as input spaces yielding the following:

arrow(a, x, y) ∧ origin(x) ∧ destination(y)∧
trajectory(x, y) ∧ trajector(p)∧

interior(x, obj) ∧ exterior(y, obj)∧
loc(p, x, t) ∧ loc(p, y, t′) ∧ t < t′

that is to say, the origin of the arrow is inside the container (a place, an inside),
the destination is outside the container, and there is a trajector that starts inside the
container and moves until reaching a place in the exterior of the container (an outside)
at a later time. This is precisely equivalent to a conceptual description of the verb exit
—“an act of going out of or leaving a place” (New Oxford American Dictionary).
Notice that the blend B3 mentions the arrow but not the place (or container): it states
properties of places inside or outside of that elided place. This is consistent to the use
of the visual sing “Exit”, where the place is also implicit: it is the place where the sign
is located (be it a building lobby, an airport lounge, etc.) that indicates (deictically)
the place to be exited from. Similarly, the trajector is not explicitly given.

The overall process of re-creating the blend (or more technically the blended net-
work) is shown in Fig. 18 (where generic spaces are omitted). Notice that the blended
mental spaces, including the blend B3, have visual information (qualitative spatial
descriptors) and abstract properties (from the image schemas). Initially, creative un-
derstanding has only the visual information, that is perceived and characterised as
a collection of qualitative spatial descriptors (finding out the “arrow” and the “C-
shaped-Icon” shapes and their spatial relationship). Finding image schemas that fit
well with the visual information gives a possible interpretation for the meaning of the
“arrow” and the “C-shaped-Icon” by blending them to obtain the Exit-icon mental
space by reconstruction of the blending network.

Finally, notice that there is more than one possible blend to be obtained when
reconstructing the blending network. For example, for our use case, in addition to the
blend B3 “Exit”, another blend B′

3 could have been obtained with meaning “Exit to
the right”. That would be possible if the predicate orientation(arrow-icon,towards-
right) in B2 was included in the partial projection from B2 to B′

3, so that B′
3 would

include a further spatial LoRS predicate like this: orientation(x,y,towards-right). This
fact shows that the process of understanding a (novel) blend is more complex than a
mere unpacking of information that is “already there”. Instead, we view understand-
ing (or interpreting) a novel visual sign as a full-fledged blending process (in the
sense the computational blending model by [12]) that aims at creating the concept
blend that corresponds to that novel sign.

7 Dicussion

In a communication setting, what is transmitted by the utterer is not a conceptual
blend, but a (semiotic) sign: a blend, we shall recall here, is a mental space in CBT.
Thus, the expression “unpacking the blend” may be misleading, in that it seems to
assume we have already the blend we need to unpack. The approach taken in this
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Container
∀x ∈ SPACE

 Ax: x∈ OUT ⟺ x ∉ IN

Blend1

IN OUT

Source

Path

Goal

Blend2

Blend3 EXIT

x: Source, y:Goal, 
x ∈ IN, y ∈ OUT 

Path (x,y),  
Ax: x≠y, 
loc(p,x,t) ⋀

loc(p,y,t’) ⇒ t<t’

Source-Path-Goal
x: Source, y:Goal, 

p:Trajector, Path (x,y).
Ax: loc(p,x,t) ⋀
loc(p,y,t’) ⇒ t<t’

Fig. 18 The overall process of understanding the visual representation fro Exit. Generic spaces are omitted.

paper, at least for computational models of blending, requires some creative processes
of blending whenever a received sign is novel/unknown, that is, does not have an
already known meaning. The receiver hypothesises the elements of that sign (be it
houseboat or “Exit”) which can be understood if a blend that reconstructs the intended
meaning of the sign is found by recreating the blending network that was used in
generating that sign.

In the visual language scenario of icons, pictograms and signage, our approach
shows that meaning can be grounded whenever pre-existing mental spaces can be
used to reconstruct such blending network. Failure to find adequate mental spaces
(e.g. for the visual information of Fig. 5) ends up in failing to create a blend and thus
failing to understand the meaning of that visual sign.

Therefore, we assume that, understanding a new blended space is also a creative
process, whether the blend is a new concept (e.g. “houseboat”), a new metaphor (e.g.
“This surgeon is a butcher”) or a new pictogram (e.g. the “Exit” icon). The reason
is that understanding a “new blend” (that is in fact a sign charged with a not yet
ascertained meaning) involves creating a new blended space that (if successful) re-
constructs the blending network (and thus the meaning) of the utterer. Thus, under-
standing requires conceptual blending, and even more: it also requires to create the
mental spaces that will serve as input spaces, together with the generic space that
determines which elements and relations of both input spaces are identified. If this
summary is correct, and we have shown here a case study with the “Exit” icon ex-
ample, blend understanding requires the same components and processes as blend
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generation: (1) creating metal spaces for the two input spaces (note that this can be a
complex process, including selecting an image schema and a specific blending pro-
cess); (2) creating a generic space that determines what is identified as commonalities
in both input spaces; and (3) blending the two input spaces.

In this paper, we argue that both generation and understanding of new blends are
creative (in that they involve the same components and operations, at least from the
point of view of a computational model). However, they are not the same, so the
question of how they differ must also be clarified. A way to do so, is to take an ap-
proach to meaning such as Grice in our computational models: that the relationship
between language (oral, textual or pictographic) and concepts is better modelled as a
mapping between two separate domains. This approach is also consistent with con-
struction grammar models of linguistics, where a construction (f, c) is a pairing of
forms (sounds, pictograms) and content (conceptual structures having semantic and
pragmatic meaning). In this view, generation is a process c −→ f (from content to
form) while understanding is a process f −→ c (from form to content or meaning).

Thus, this involves that, for a pictographic sign like “Exit” to be understood, a
process f −→ c, and creating c requires constructing a blending network that uses
“unpackaged” information from f . However, we should not call f a blended mental
space, instead it is better to consider f as a sign that constitutes a partial specification
of a mental space that needs to be created. The blended mental space is a pairing (f, c)
where c has been created by one or several blends, and it is successful if (or as long
as) it reconstructs the intended meaning by the utterer of f . Previous work has been
focused on designing computer icons by means of conceptual blending [3, 5], that is,
going from an intended meaning to a pictogram the can express that meaning. That
work considers icons as pairings (f, c) (visual form and concept structure), and it
considers also icon understanding as the dual process (going from form to meaning).
However, this duality goes further than expected: understanding was assumed to be
‘simpler’ than generating but, as we have tried to show in this paper, understanding
requires the whole gamut of mental space creation, generic space determination, and
blend generation. For this reasons we state that understanding of a novel/unknown
concept, a creative artefact, is also a creative process in the sense of CBT.

As future work, we intend to evaluate our approach by asking designers to create
novel icons which we will use as inputs for our system to obtain an interpretation. For
that, designers may use a tool which may obtain automatically a qualitative descrip-
tion of the icons. This description will be the logic input to our approach. Finally, in
order to validate the interpretations obtained by our approach, we will ask different
people to find out the meaning of that novel icons and we will find out if they agree
with our approach, with the designers or with both.
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