
Development of a role-playing video
game inspired in Maya Civilization

Alexandre Riera Martínez

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

May 28, 2021

Supervised by: Miguel Chover Selles

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my parents, for being my main support during the
development of this project.

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Miguel Chover
Selles, for the advice on how to direct this project and the recommendations to follow.
Thanks to Aida for giving me the inspiration to create this story.
To Irene for motivating and supporting me when I needed it most.
To Guille for all the afternoons and nights in Discord doing this project and all the
feedback.
I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this document.

i

http://lorca.act.uji.es/curso/latex/

Abstract

This is the memory of the final degree project in Video Game Design and Development.
In this document there will be presented all aspects related to the concept, design and
development of the video game K’an, a role-playing video game set in Maya civilization
that tells the dystopian story of Princess K’an and her desire to unify the city-states of
the Yucatan Peninsula to face the arrival of the Spanish invaders.
Special care has been taken to create an environment with tribal elements, a narrative
and a level design in which the player has to visit all the relevant locations and the
implementing of classic mechanics of Role-Playing Game (RPG), platforms and shooter
video games.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Related Subjects . 2
1.4 Resources . 2

2 Game Design Document 5
2.1 Introduction . 5
2.2 Story . 6
2.3 Main Characters . 6
2.4 Enemies . 7
2.5 Level Design . 9

2.5.1 Beat Chart . 9
2.5.2 Maya Ambient Justification . 10
2.5.3 Items and Enemies Location . 11

2.6 Gameplay . 11
2.7 Concept Art . 11
2.8 User Interface . 11

2.8.1 Graphic User Interface Objects . 12
2.9 Game Controls . 12

3 Functional and Technical Specification 19
3.1 System Design . 19

3.1.1 Flow Chart . 19
3.1.2 Functional Requirements . 19

3.2 Game Mechanics and Scripting . 23
3.2.1 Player . 23

PlayerController . 23
PlayerStats . 26
PlayerDialogueController . 27
PlayerInventoryController . 28

3.2.2 Enemies . 29

v

vi Contents

CalculatePatrolPoint . 29
EnemyStats . 30
MoveMiner . 31
MoveThrower . 33

3.2.3 Dialogue System . 35
Dialogue . 35
DialogueManager . 35
DialogueTrigger . 36

3.2.4 Inventory . 36
ConsumableItem . 36
ConsumableInventory . 37
ShowItemInfo . 37

3.2.5 Quest System . 38
QuestDialogueManager . 38

3.3 Art . 38
3.3.1 Modeling . 39

Main character . 39
Enemies . 39
NPCs . 41
Locations . 41

3.3.2 Terrain Creation . 41
3.3.3 Character Animations . 46
3.3.4 Minimap . 47
3.3.5 Assets . 47

3.4 Music and Sounds . 48
3.4.1 Overall goals . 48

4 Project Monitoring 51
4.1 Planning Control . 51
4.2 Changes and Evolution . 51

5 Results 55
5.1 Testing . 55
5.2 Limitations . 56
5.3 Problems and Solutions . 56

6 Conclusions 59
6.1 Objectives achieved . 59
6.2 Future work . 60

Bibliography 61

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 1
1.3 Related Subjects . 2
1.4 Resources . 2

This chapter explains the main objectives that have been reached through the de-
velopment of this project, the knowledge of which degree subjects has been applied and
what tools have been used.

1.1 Work Motivation

One of the motivations for carrying out this project was learning to develop typical Role-
Playing Game (RPG) mechanics because of it’s one of the most widespread genres and
on which more different mechanics can be developed, being able to create open scenarios
with elements of nature too.
It was also being able to create a game in Valencian since it is one of the official languages
of the Valencian Country and there aren’t many video games of this genre in this language
either.

1.2 Objectives

The main objectives that have been achieved by carrying out this work are:

1

2 Introduction

• The integration of the character models together with their main animations in a
video game engine.

• The programming of basic elements of a role-playing video game: minimap, in-
ventory, quest system, enemies, attacks, unlocking of new zones, unlocking of new
habilities, collecting and using items.

• The elaboration of a narrative in an open world.

• The creation of a level design that allows maintaining a balance between the me-
chanics developed and the objectives.

1.3 Related Subjects
This section shows each of the degree subjects related to the development of the project
and how their knowledge appears represented in the video game.

• VJ1208 – Programming II, for the class-oriented structure of all the scripts in
the game.

• VJ1216 – 3D Design, for modeling and applying textures of the main character,
the enemies, the non-player characters and the buildings.

• VJ1224 – Software Engineering, for the development of diagrams to organize
the project such as Gantt charts, flow charts, beat charts, etc.

• VJ1227 – Game Engines, for using optimization techniques like baked lights,
occlusion culling [1] and Fast approximate anti-aliasing (FXAA) [2].

• VJ1231 – Artificial Intelligence, for the implementation of various Artificial
Intelligence (AI) in the game and states machines [3].

1.4 Resources
The following tools have been used to elaborate the project:

• Unity, as the main game motor where all the game objects, scripts, assets and
logic of the game reside.

• Blender, for 3D modeling of the main characters and enemies.

• Visual Studio Code, for programming all scripts.

• Mixamo, for the animations of all the characters in the game.

• Illustrator, for designing the vector textures.

• Procreate, for reprinting the textures of the Non-Player Characters (NPC).

1.4. Resources 3

• Github, for managing the version control.

• Visio, for making the organizational charts.

• LaTeX, to layout this document.

C
h

a
p

t
e

r

2
Game Design Document

Contents
2.1 Introduction . 5
2.2 Story . 6
2.3 Main Characters . 6
2.4 Enemies . 7
2.5 Level Design . 9
2.6 Gameplay . 11
2.7 Concept Art . 11
2.8 User Interface . 11
2.9 Game Controls . 12

This chapter presents the Game Design Document [4], the part of the development
of a videogame that offers a guiding vision throughout the game creative process. It
contains all the information about the story, the gameplay, the level design, the concept
art, the user interface (UI) and the game controls.

2.1 Introduction

The title of the video game is K’an. It’s a role-playing video game in Valencian with a
3rd person view for Personal Computer (PC). The player takes on the role of Princess
K’an who must carry out quests in the city-state of Chichén Itzá.

The player will be able to walk, run, jump, attack using his powers, orient itself
with a minimap, talk to NPCs, save items in his inventory and use them, unlock new
abilities, etc. Two types of enemies will appear on the map (a bomb thrower that will

5

6 Game Design Document

move towards the player and another with a bayonet that will consecutively hide in the
ground and attack when it comes out) that will make completing these quests more
difficult.

2.2 Story

The story is based on the following question: what would have happened if the arrival
of the Spanish invaders to the Yucatan Peninsula had been a failure [5]? Thus, in a
dystopian Chichén Itzá, Chilam, one of the shamans from the Caracol observatory [6],
had a revelation from the gods where they warned that some “evil beings” would assault
the entire peninsula. Seeing that without the collaboration of the other cities it would
be impossible to face them, Chilam entrusted Princess K’an with the task of unifying
the other city-states with which they were faced, and gave her the blessing of Hunab Ku
[7] to begin her journey.

First of all, he commissioned K’an to make an offering to the gods before leaving
towards Mayapan [8]. She went to the town to collect a shield from the blacksmith
Kabáh and returned to the Cenote [9] to throw it and complete the ritual. Later,
Chilam entrusted her with the task of collecting some sacks of corn to take to the prince
of Mayapan as a gift since both tribes were at odds, but as they were speaking, they
realized that some invaders had established their camp in the Kukulkan [10].

K’an went there to confront them and once she finished, she went straight to the
town. There she spoke with Nicté, the farmer, who on behalf of the whole town thanked
her for the help. Nicté told K’an that if she needed corn she could go to his farm and
pick up whatever she needed. So K’an went to the farm, collected all the corn, and
defeated one of the enemies that were lurking around. She then returned to the Caracol
and Chilam confirmed that K’an was ready to leave.

He gave her the second blessing, this time from the god of fire Kauil [11], allowing the
princess to launch fireballs and being able to destroy the obstacles that prevented the
passage on the road to Mayapan. In this way, K’an left Chichén Itzá for other distant
destinations.

Stories tell that the princess’s journey lasted more than 10 years but she finally
managed to unify all the tribes and thus avoided the conquest of the Spanish in a final
battle in Cozumel [12].

2.3 Main Characters

The main characters that have a relevant role in the story are:

• K’an. She is the princess of Chichén Itzá and first in line to the throne. As it
is seen in Figure 2.1, she has green hair with braids and a characteristic poncho
that acts as a smock. She also wears a tribal mask that protects her face and also
makes her go unnoticed in some places. Thanks to the blessings received by the
gods, she has divine abilities such as casting spells with her hands. She is a bit

2.4. Enemies 7

shy and her main hobbies are traveling the vast plains of Chichén Itzá, climbing
mountains and playing ball [13].

Figure 2.1: K’An

• Chilam. He is the chief shaman of El Caracol. In Figure 2.2 it is shown he is
dressed in an orange and blue poncho and mask, and his hair is tied up in a bun.
He is a very wise man who is in constant contact with the gods who warn him of
upcoming events. During the game he will always be at the door of El Caracol
and will be the one who starts most of the quests.

• Kabáh. He is one of the inhabitants of the town of Chichen Itza. He has black
hair and is styled in three bows. He wears a red poncho and the typical mask that
all the villagers wear as it can be seen in Figure 2.3.

• Nicté. He’s a farmer from Chichén Itzá. He lives in the town, but has a farm
to the south of this. In Figure 2.4 it is shown he is dressed with a poncho and a
yellow mask typical of farmers and on his head he wears a straw hat.

2.4 Enemies

There are two types of enemies that will appear scattered on the map:

• Miner. It is one of the invading Spanish warriors. In Figure 2.5, he is dressed in a
morion [14] and suspenders. His main attack is to shoot with a bayonet and move
underground where he cannot be hit.

8 Game Design Document

Figure 2.2: Chilam

Figure 2.3: Kabáh

• Thrower. Another one of the invading Spanish warriors. In Figure 2.6, he’s
dressed in a vest and belt with many bombs. It’s a heavyweight with a lot of life
that will move towards the player to throw bombs that will explode on contact
with him or after 3 seconds. While he’s throwing bombs at the player, he will keep
his distance with the player getting backwards in case he gets close.

2.5. Level Design 9

Figure 2.4: Nicté

Figure 2.5: Miner

2.5 Level Design

2.5.1 Beat Chart

The Figure 2.7 shows each of the objectives that the player must complete. Each time
one of them ends, the next one will be unlocked.

10 Game Design Document

Figure 2.6: Thrower

2.5.2 Maya Ambient Justification

The design of the level in which the entire game takes place is a reduced version of the
city-state of Chichén Itzá (See Figure 2.8). Thus, a search was carried out in order
to represent some of the most characteristic elements of the time and everything that
happened there.

The location where the game starts is El Caracol (See Figure 2.9), an ancient Maya
observatory that allowed the Maya to observe changes in the sky.

The next important location is the Sacred Cenote (See Figure 2.10), a cavern with
water in which the Maya made sacrifices and offerings to the gods. One of the quests
that K’an will have to carry out is to make an offering by throwing a shield inside the
Cenote.

Another characteristic location of Chichén Itzá, if not the most famous, is the
Kukulkan (See Figure 2.11), a pyramidal temple erected to worship the Maya God
Kukulkan. During the development of the game, some Spanish invaders set up their
camp in front of it and K’an will have to bring them down.

There are other locations such as a corn farm [15] (See Figure 2.12) because of it
was one of the foods that was most cultivated at that place, the town (See Figure 2.13)
represented with straw huts, rocks and other characteristic elements where the common-
ers lived and the sacbés [16] or limestone paths that are they used to draw roads and
connect towns with each other.

In conclusion, the important locations of the level are distributed following a logic
since the river divides the map into three parts, making the player have to follow the
route of the sacbés to advance with the events of the story, apart from the fact that it

2.6. Gameplay 11

also makes the player have to visit each of them.

2.5.3 Items and Enemies Location

Items and enemies are scattered throughout the map. As regards the firsts, both the
quest items and the consumables items are in easy-to-see places so that the player can
quickly identify them, such as near the sacbés, in the town, in the meadows and in
relatively open spaces.
On the other hand, the enemies will always find themselves in the sacbes, blocking the
player’s path and motivating him to have to kill them in order to advance.

In this way, so that the combats aren’t so difficult for the player, consumable items
are also placed in the enemy areas so that he can collect and use them while he’s in
combat to improve their stats such as life, mana, move faster, be invincible, etc.

2.6 Gameplay
The gameplay follows a system with many elements of classic role-playing video games,
but there are also shooter and platform parts. The player will be able to walk, run and
move in general around the map, performing a series of quests where he must take into
account their health and mana status.

He will be able to access an inventory to manage the consumable items he collects
and the items from quests. He can also choose from his unlocked abilities to shoot the
enemies using mana that will be progressively restored. Enemies will move within a
specific area and attack the player as soon as they see him.

2.7 Concept Art
For the art part, it has been decided on a low-poly/medium-poly style with very live
colors. Some references that have been taken from other video games are:

• AER: Memories of Old [17]. This Forgotten Key video game, released in 2017,
has served as one of the main artistic references as can be seen in its art and all the
aesthetics regarding forests, deserts and open spaces in general that it transmits
in the player a feeling of calm that can also be seen in K’an.

• The Legend of Zelda [18]. Many references have also been taken from this
saga for the magic part, the choice of different ranged attacks, the inventory, the
enemies, the jump and movement mechanics of the player, the exploration of the
open world and even dialogues with NPCs.

2.8 User Interface
In the Figure 2.14 it is shown all the elements of the HUD. While the player is in the
middle of a game, the HUD will display a life bar (Elem. 1), a mana bar (Elem. 2), and

12 Game Design Document

an icon [19] with the selected hability (Elem. 3) up to the left. Also, at the top right
the current objective (Elem. 4) of the player will be written. In the inventory (Elem. 5)
the player will be able to see the quest items (Elem. 6), the consumable items (Elem.
7) and the minimap (Elem. 8). The moment the player enters an important area, a
sign (Elem. 9) will appear above saying which one it is. When the player approaches an
NPC and talk to him, a panel [20] (Elem. 10) will appear showing the dialogue and the
name with which he is speaking.
On the stage the player can see other elements of the In-Game UI such as the life bars of
the enemies above their heads or glowing particles that reveal the location of important
items.

In the main menu (See Figure 2.15), three buttons will appear to see start a game,
see the about menu where the story and game controls appear, and the button to exit
the game.

2.8.1 Graphic User Interface Objects

For a greater compression of the UI by the player, issues such as the colors of the potions
were taken into account so that everything related to health would be green, those related
to mana would be blue and colors like red, grey or just transparent for other effects like
giving more velocity, being invencible or more damage to enemies (both In-Game and the
HUD the player can see these colors easily). The quest items were also identifiable due to
their characteristic flash effect and spin on themselves. In the inventory, a sprite, name
and description was associated with the 3d object that the player had just been collected.

The colors of the enemies were also important so that it was possible to quickly
differentiate what type it was (blue for the thrower and yellow for the miner).

2.9 Game Controls
In Figure 2.16 the controls to move around the game are displayed. As it is a video game
for PC, both mouse and keyboard must be used.

2.9. Game Controls 13

Figure 2.7: Beat Chart

14 Game Design Document

Figure 2.8: Minimap

Figure 2.9: El Caracol In-Game and in real life

2.9. Game Controls 15

Figure 2.10: Cenote In-Game and in real life

Figure 2.11: Kukulkan In-Game and in real life

Figure 2.12: Nicté’s Corn Farm

16 Game Design Document

Figure 2.13: Maya Town In-Game and in real life

2.9. Game Controls 17

Figure 2.14: HUD

18 Game Design Document

Figure 2.15: Main Menu

Figure 2.16: In-Game Capture of the Game Controls

C
h

a
p

t
e

r

3
Functional and Technical

Specification

Contents
3.1 System Design . 19
3.2 Game Mechanics and Scripting . 23
3.3 Art . 38
3.4 Music and Sounds . 48

This chapter presents everything related to the architecture that has been developed
for the execution of the game mechanics, the objectives to be achieved, the art, the
music, the level design and the functional requirements.

3.1 System Design

3.1.1 Flow Chart

The Figure 3.1 describes the actions that, depending on the situation that arises, the
player may or may not perform during the execution of the level. In addition, it is
included the way in which the system will process this data.

3.1.2 Functional Requirements

This section will deal with the functional requirements [21] of the video game, that is,
how the game logic transforms certain actions or inputs into results or outputs and a
description of what happens. So, the functional requirements are essentially specific
functionality that defines what a system is supposed to achieve.

19

20 Functional and Technical Specification

Figure 3.1: Flow Chart

3.1. System Design 21

Input: AWSD input
Output: Character moves
Each time the player hit A, W, S or D keys the character will move on X or Z
Axis

Table 3.1: Functional requirement «PLAY1. Movement»

Input: Spacebar input
Output: Character jumps
While the player is on the ground, the character will apply a positive force in
the Y Axis when the player hit the spacebar

Table 3.2: Functional requirement «PLAY2. Jump»

Input: Right click input
Output: Character aims
When the player hits the right click a zoom will be permormed and a reticle
will appear, allowing him to cast an hability

Table 3.3: Functional requirement «PLAY3. Aim»

Input: Left click input
Output: Character attacks
While the player is aiming and has enough mana, the character will cast an
hability towards what is pointing at

Table 3.4: Functional requirement «PLAY4. Attack»

Input: Tab input
Output: Open/Close inventory
Each time the player hits Tab key the game will be paused or resumed and the
inventory will be shown or hidden

Table 3.5: Functional requirement «PLAY5. Inventory»

22 Functional and Technical Specification

Input: Esc input
Output: Pause/Resume Game Time
When the player hits Esc key the game will be paused or resumed

Table 3.6: Functional requirement «PLAY6. Pause»

Input: Life == 0
Output: Game Over
When player’s life is equal to 0 the game will be over and he’ll go back to the
start

Table 3.7: Functional requirement «PLAY7. Death»

Input: Character triggers an item
Output: Add to inventory
If the character walks over an item it will be added to the inventory and will
be able to see it when the inventory is opened

Table 3.8: Functional requirement «INV1. Collect item»

Input: Player clicks over item
Output: Apply effect
If the player have 1 or more quantity of an item and clicks on it, the player
showed in the item description will be applied to the character

Table 3.9: Functional requirement «INV2. Use item»

Input: Patrol time > 0
Output: Move on stage
While the enemy didn’t reach the patrol spot he’s supposed to go he will move
until he’ll reach it. Then he’ll find another one

Table 3.10: Functional requirement «ENE1. Patrol»

Input: Character is near
Output: Attack
In case of character is close to the enemy he will perform his main attack

Table 3.11: Functional requirement «ENE2. Attack»

3.2. Game Mechanics and Scripting 23

Input: Life == 0
Output: Die
When the enemy life is equal to 0 because of the character attacks he will die

Table 3.12: Functional requirement «ENE3. Death»

Input: Character near
Output: Display dialogue
If the character is close to an npc and hits the e key the dialogue of the npc
will be shown

Table 3.13: Functional requirement «NPC. Talk»

Input: Player finish quest
Output: Unlock new quest
When player talks to a quest npc, defeats enemies or makes any action in order
to overcome the current quest a new one will be unlocked and showed in the
HUD

Table 3.14: Functional requirement «QUEST. Unlock»

3.2 Game Mechanics and Scripting

All the scripting part has been broken down in the project into different folders to speed
up programming and make some classes independent from each other, with the exception
of the Game Manager, which can be accessed by any class. First, it will present about
how the movement and actions of the character was developed.

3.2.1 Player

The main character is made up of 4 scripts that control most of the actions he can
perform:

PlayerController

It’s a general class where all movement, jumping, aiming and throwing habilities are
managed. All animations are also managed. This class depends on all the other classes
of the character as it uses data such as life from the Player Stats, if the player is talking
from the Player Dialogue Controller, if the player is using the inventory from the Player
Inventory Controller, if the player is changing cameras when aiming from the Aim Con-

24 Functional and Technical Specification

troller, etc.
Within the script the following functions are executed:

• Move() manages the AWSD inputs so that the character moves in the X-Axis and
Z-Axis and also rotates the character where the camera is pointing when moving,
and that the character looks where the camera is facing when he’s aiming. It
also manages the shift input to increase speed when held down and change the
animation from walking to running.

1 void Move() {

2 Vector3 velocity = rb.velocity;

3 velocity.x *= drag;

4 velocity.z *= drag;

5 rb.velocity = velocity;

6
7 float h = Input.GetAxis("Horizontal");

8 float v = Input.GetAxis("Vertical");

9 shiftPressed = isAiming || (h == 0 && v == 0) ? false : Input.GetKey(KeyCode.LeftShift);

10 anim.SetBool("Running", shiftPressed);

11 activeFeetParticles();

12 if (!GetComponent < PlayerStats > ().canMoveFaster) speed = shiftPressed ? 25 : 10;

13 else speed = shiftPressed ? 30 : 15;

14
15 anim.SetFloat("Vertical", v);

16 anim.SetFloat("Horizontal", h);

17
18 transform.rotation *= Quaternion.AngleAxis(Input.GetAxis("Mouse X") * 2, Vector3.up);

19 followTransform.transform.rotation *= Quaternion.AngleAxis(Input.GetAxis("Mouse X") * 2,

20 Vector3.up);

21 followTransform.transform.rotation *= Quaternion.AngleAxis(Input.GetAxis("Mouse Y") * 2,

22 Vector3.left);

23
24 Vector3 angles = followTransform.transform.localEulerAngles;

25 angles.z = 0;

26
27 float angle = followTransform.transform.localEulerAngles.x;

28
29 if (angle > 180 && angle < 350) {

30 angles.x = 350;

31 } else if (angle < 180 && angle > 60) {

32 angles.x = 60;

33 }

34
35 followTransform.transform.localEulerAngles = angles;

36 nextRotation = Quaternion.Lerp(followTransform.transform.rotation, nextRotation,

37 Time.deltaTime * rotationLerp);

38
39 if (Input.GetAxis("Horizontal") == 0 && Input.GetAxis("Vertical") == 0) {

40 nextPosition = transform.position;

41 if (Input.GetMouseButton(1)) {

42 followTransform.transform.localEulerAngles = new Vector3(angles.x, 0, 0);

43 }

44 return;

3.2. Game Mechanics and Scripting 25

45 }

46
47 Vector3 movement = new Vector3(h, 0, v).normalized;

48 rb.AddRelativeForce(speed * movement, ForceMode.VelocityChange);

49
50 transform.rotation = Quaternion.Euler(0,

51 followTransform.transform.rotation.eulerAngles.y, 0);

52 followTransform.transform.localEulerAngles = new Vector3(angles.x, 0, 0);

53 }

• Jump() handle the spacebar input so that the character applies a force vertically
when it is touching the ground. It also has a small delay to synchronize the jump
with the animation so that when the character pushes her legs, the force is applied.

1 void Jump() {

2 grounded = Physics.CheckSphere(feet.position, 0.5 f, groundLayer);

3 anim.SetBool("Grounded", grounded);

4
5 if (!isAiming && Input.GetButton("Jump") && grounded && !isJumpingAnimationActive) {

6 anim.SetTrigger("Jump");

7 Invoke("applieJumpForce", jumpTime);

8 isJumpingAnimationActive = true;

9 }

10 }

• Aim() manages the input of the right click causing one prefab or another to be
instantiated depending on the hability selected. If the hability is changed, a new
prefab would be instantiated.

1 void Aim() {

2 if (Input.GetMouseButtonDown(1)) isAttackinAnimationActive = false;

3 if (Input.GetMouseButton(1)) {

4 isAiming = true;

5 if (habilityInHand == null && !checkIfItsAttackingAnimation()) {

6 habilityInHand = GameObject.Instantiate(habilitiesPrefabs[currentHability],

7 hand.position, hand.rotation);

8 habilityInHand.transform.parent = hand.transform;

9 }

10 } else {

11 isAiming = false;

12 if (habilityInHand != null) {

13 Destroy(habilityInHand);

14 }

15 }

16 anim.SetBool("Aiming", isAiming);

17 }

• ChangeHability() manages the Q key input to switch habilities between those
unlocked. The information of which habilities are unlocked is provided to us by
the Game Manager.

26 Functional and Technical Specification

1 void ChangeHability() {

2 if (Input.GetKeyDown(KeyCode.Q)) {

3 int currentHabilityBeforeChange = currentHability;

4 if (currentHability == GameManager.instance.getNumHabilitiesUnlocked())

5 currentHability = 0;

6 else currentHability++;

7
8 if (habilityInHand != null && currentHabilityBeforeChange != currentHability) {

9 Destroy(habilityInHand);

10 }

11 }

12 }

• Attack() is the function that manages the input of the left click, adding a Rigid-
Body to the prefab created previously and throwing it with a force towards where
the camera is pointing in the case of having enough mana.

1 void Attack() {

2 if (Input.GetMouseButtonDown(0) && !isAttackinAnimationActive

3 && GetComponent < PlayerStats > ().EnoughManaToAttack()) {

4 anim.SetTrigger("Attack");

5 GetComponent < PlayerStats > ().UseMana();

6 isAttackinAnimationActive = true;

7 }

8
9 if (isAttackinAnimationActive) {

10 if (habilityInHand != null && anim.GetCurrentAnimatorStateInfo(0).normalizedTime > 0.1

11 && anim.GetCurrentAnimatorStateInfo(0).normalizedTime > 0.11

12 && checkIfItsAttackingAnimation()) {

13 habilityInHand.transform.parent = null;

14 habilityInHand.AddComponent < Rigidbody > ();

15 habilityInHand.GetComponent < Rigidbody > ().AddForce(cam.transform.forward * 120 +

16 transform.right * 2.2f * 2.5f + cam.transform.up * 10, ForceMode.Impulse);

17 habilityInHand = null;

18 isAttackinAnimationActive = false;

19 }

20 }

21 }

PlayerStats

It’s the script that manages the life and mana of the character and the application of
potions.

• In the Update() it’s constantly updating so that the value of mana and health
appears correctly in the sliders. Each time mana is used it will be restored slowly.
There’s also a delay of 1 second so that the character in case he’s injured is not
constantly receiving damage. The function ends with a call to the usePotions()

3.2. Game Mechanics and Scripting 27

function where the usage times of each potion are managed in case it was being
used and the sliders that appear in the HUD.

1 private void Update() {

2 healthBar.value = health;

3 manaBar.value = mana;

4
5 if (!canGetHurt) {

6 damageDelay -= Time.deltaTime;

7 if (damageDelay < 0) {

8 canGetHurt = true;

9 damageDelay = 1;;

10 }

11 }

12
13 if (mana < 100) {

14 mana += Time.deltaTime * 2;

15 }

16
17 if (health <= 0) {

18 isAlive = false;

19 }

20
21 usePotions();

22 }

• The Damage() function is the function that when the delay has not been applied
or if, on the contrary, an invincibility potion has not been consumed, it reduces
the player’s health and activates a small shake in the camera.

1 public void Damage(int damage) {

2 if (canGetHurt && !isInvencible) {

3 GetComponentInChildren < AimController > ().Shake(5 f, 0.1 f);

4 health -= damage;

5 canGetHurt = false;

6 }

7 }

• The whichPotionIsUsing() function is called by the Game Manager when using
a potion where the id of the one just used is passed to it. In PlayerStats a series of
functions are called in which a corresponding Boolean variable is simply activated
to say that one potion or another is activated. Particles are also activated in the
character to show that there is an effect being applied.

PlayerDialogueController

It’s the script that manages the actions of the player while he’s talking with an NPC.

• The StartDialogue() function is executed as soon as a dialog is started to deac-
tivate the PlayerController, preventing the player from moving and making also
the player and the NPC look at each other.

28 Functional and Technical Specification

1 public void StartDialogue() {

2 GetComponent < PlayerController > ().enabled = false;

3 GetComponent < Rigidbody > ().velocity = Vector3.zero;

4 GetComponent < Animator > ().SetFloat("Horizontal", 0);

5 GetComponent < Animator > ().SetFloat("Vertical", 0);

6 GetComponent < Animator > ().Play("Walk", 0);

7 transform.LookAt(new Vector3(NPC.transform.position.x, transform.position.y,

8 NPC.transform.position.z));

9 NPC.transform.LookAt(new Vector3(transform.position.x, NPC.transform.position.y,

10 transform.position.z));

11 NPC.GetComponentInChildren < QuestDialogueManager > ().

12 dialogueTriggerCurrentQuest().cam.SetActive(true);

13 NPC.GetComponentInChildren < QuestDialogueManager > ().

14 dialogueTriggerCurrentQuest().buttonOverHead.SetActive(false);

15 NPC.GetComponentInChildren < QuestDialogueManager > ().

16 dialogueTriggerCurrentQuest().TriggerDialogue();

17 }

• On the contrary part, it is the EndDialogue() function that reactivates the player
controller and deactivates the dialog camera that focuses on the NPC.

1 public void EndDialogue() {

2 GetComponent < PlayerController > ().enabled = true;

3 NPC.GetComponent < DialogueTrigger > ().cam.SetActive(false);

4 dialogueIsStarted = false;

5 }

PlayerInventoryController

It’s the script in charge of blocking or allowing the movement of the character while he’s
using the inventory.

• In the Update() the input of the tab is managed where while the player is alive
and not in a dialogue the inventory will be opened or closed.

1 void Update() {

2 if (Input.GetKeyDown(KeyCode.Tab) && GetComponent < PlayerStats > ().isAlive

3 && !PlayerDialogueController.dialogueIsStarted) {

4 if (!isOpened) {

5 openInventory();

6 } else {

7 closeInventory();

8 }

9 }

10 }

• The openInventory() and closeInventory() functions are used to resume or
pause the time each time inventory is used, make the cursor appear or disappear,
and activate a Gaussian blur [22] on the HUD.

3.2. Game Mechanics and Scripting 29

1 public void openInventory() {

2 isOpened = true;

3 cam.GetComponent < SuperBlurBase > ().enabled = true;

4 inventory.SetActive(true);

5 foreach(ShowItemInfo sii in inventory.GetComponentsInChildren < ShowItemInfo > ())

6 sii.closeInfo();

7 Time.timeScale = 0 f;

8 Cursor.visible = true;

9 }

10
11 public void closeInventory() {

12 Time.timeScale = 1 f;

13 isOpened = false;

14 cam.GetComponent < SuperBlurBase > ().enabled = false;

15 Cursor.visible = false;

16 inventory.SetActive(false);

17 }

3.2.2 Enemies

Enemies will attack the player whenever they see him and when they are defeated they
will spawn again in a short period of time. There are several scripts common to both
while each has a specific one that determines all its logic.

The scripts that all enemies have in common are:

CalculatePatrolPoint

As using a NavMesh [23] for their movement (See Figure 3.2), the CalculatePatrol-
Point script is assigned to an empty object (parent of all enemies) that defines the
maximum radius or space through which the enemies can move. It is composed of two
functions:

• The first function is RandomPoint() in which a random point is extracted and
returns true in case it is within the radius of space in which they can be moved.

• The second function is GetRandomPoint() in which RandomPoint() is called
until a correct point is extracted and returns the position if the new random point
extracted. This function is called in the MoveThrower and MoveMiner scripts to
carry out the patrols.

1 bool RandomPoint(Vector3 center, float range, out Vector3 result) {

2 Vector3 randomPoint = center + Random.insideUnitSphere * range;

3 NavMeshHit hit;

4 if (NavMesh.SamplePosition(randomPoint, out hit, 1.0 f, NavMesh.AllAreas)) {

5 result = hit.position;

6 return true;

7 }

8 result = Vector3.zero;

9 return false;

30 Functional and Technical Specification

10 }

11
12 public Vector3 GetRandomPoint(Transform point = null, float radius = 0) {

13 Vector3 _point;

14 bool pointFound = false;

15 do {

16 pointFound = RandomPoint(point == null ? transform.position : point.position,

17 radius == 0 ? Range : radius, out _point);

18 if (pointFound) {

19 Debug.DrawRay(_point, Vector3.up, Color.black, 1);

20 return _point;

21 }

22 }

23 while (!pointFound);

24 return point.transform.position;

25 }

Figure 3.2: NavMesh

EnemyStats

In EnemyStats, the enemy’s life is managed by updating in Update() his life variable
with the one that appears in the slider above his head, and it also has an EnemyGets-
Damaged() function that is called every time a hability thrown by the player touches
an enemy.

1 private void Update() {

2 chb._healthValue = health;

3 if (health <= 0) {

4 isAlive = false;

3.2. Game Mechanics and Scripting 31

5 }

6 }

7
8 public void EnemyGetsDamaged(int damage) {

9 if (enemyCanGetDamaged) health -= damage;

10 }

Now, for each enemy exists the following specific scripts:

MoveMiner

In the MoveMiner all the logic of the miner is managed. Most of it is executed in the
FixedUpdate() where it make calls to various functions:

1 private void FixedUpdate() {

2 if (GetComponent < EnemyStats > ().isAlive) {

3 if (!agent.hasPath) {

4 minerIsStopped();

5 } else {

6 minerIsMoving();

7 }

8 manageAnimations();

9 } else {

10 minerDeath();

11 }

12 }

• The minerIsStopped() function is executed when the miner has reached one of
the calculated patrol points. Here, the canvas with the life bar would be shown and
the enemyCanGetDamaged variable of the EnemyStats would be activated
so the player could already harm him. During the execution of the function, the
waiting time would be subtracted and, in the meantime, if the player was nearby,
the miner would begin to attack.
Once the wait time reaches zero, the “jump into floor” animation is activated, the
wait time is reset for the next time the miner reach the patrol point, and therefore
the new patrol point is recalculated.

1 private void minerIsStopped() {

2 enemyLifeBarCanvas.enabled = true;

3 GetComponent < EnemyStats > ().enemyCanGetDamaged = true;

4 timeToWait -= Time.deltaTime;

5 if (timeToWait < 0) {

6 jumpInAnimationActive = true;

7 anim.SetTrigger("Jump in");

8 foreach(ParticleSystem ps in allPs) ps.Play();

9 resetTimeToWait();

10 resetTimeToRecalculateRoute();

11 agent.SetDestination(patrolArea.GetRandomPoint());

12 } else {

13 if (!executeOnce) jumpOutAnimationActive = true;

32 Functional and Technical Specification

14 foreach(ParticleSystem ps in allPs) ps.Stop(true, ParticleSystemStopBehavior.StopEmitting);

15 canBeHurt = true;

16 anim.SetBool("Shoot", playerIsNear);

17 if (playerIsNear) {

18 Attack();

19 }

20 }

21 }

• On the other hand, the minerIsMoving() function is executed while the miner
is traversing the map until it reaches the assigned patrol point. While it is going,
the life bar doesn’t appear and it cannot be hurt either. In the case that by any
chance he gets stuck somewhere or the place he has to go to is inaccessible, a new
route will be recalculated after 10 seconds.

1 private void minerIsMoving() {

2 enemyLifeBarCanvas.enabled = false;

3 GetComponent < EnemyStats > ().enemyCanGetDamaged = false;

4 timerToRecalculateNewPath -= Time.deltaTime;

5 if (timerToRecalculateNewPath < 0) {

6 resetTimeToRecalculateRoute();

7 agent.SetDestination(patrolArea.GetRandomPoint());

8 }

9 }

• In Attack() the miner constantly looks at the player and each time the firing
animation is executed in 50% of the animation (that is, when it is seen that it is
going to fire) an explosion and a bullet with a force are instantiated.

1 private void Attack() {

2 transform.LookAt(new Vector3(player.transform.position.x, transform.position.y,

3 player.transform.position.z));

4 float nT = anim.GetCurrentAnimatorStateInfo(0).normalizedTime -

5 (int) anim.GetCurrentAnimatorStateInfo(0).normalizedTime;

6 if (nT > 0.53 f && nT < 0.56 f &&

7 anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_ATTACK)) {

8 explosionWhenPullTheTrigger();

9 instantiateBullet();

10 } else {

11 bullet = null;

12 }

13 }

• InmanageAnimations() it is verified that the animations of entering and leaving
the ground are running and that objects such as the SkinnedMeshRenderer, the
helmet and the bayonet appear or not.

1 private void manageAnimations() {

2 if (jumpInAnimationActive) {

3 if (anim.GetCurrentAnimatorStateInfo(0).normalizedTime > 0.8 f &&

3.2. Game Mechanics and Scripting 33

4 anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_JUMP_IN)) {

5 mr.enabled = false;

6 shotgun.SetActive(false);

7 helmet.SetActive(false);

8 jumpInAnimationActive = false;

9 executeOnce = false;

10 }

11 }

12
13 if (jumpOutAnimationActive) {

14 executeOnce = true;

15 mr.enabled = true;

16 shotgun.SetActive(true);

17 helmet.SetActive(true);

18 anim.SetTrigger("Jump out");

19 jumpOutAnimationActive = false;

20 }

21 }

• In minerDeath() the death animation is simply executed and once it is finished
the enemy is destroyed, existing a small chance of instantiating a potion on the
ground.

1 private void minerDeath() {

2 anim.SetTrigger("Death");

3 if (anim.GetCurrentAnimatorStateInfo(0).normalizedTime > 0.8 f &&

4 anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_DEATH)) {

5 Destroy(gameObject);

6 }

7 }

MoveThrower

The MoveThrower script contains all the logic of the Thrower enemy. In this script
a state machine has been implemented in Update() where the thrower can be in the
PATROL, FOLLOW or ATTACK state.

While in PATROL, it will patrol at random points within the allowed zone and pause
for a few seconds before calculating a new point. When the player enters the thrower’s
trigger, it will change its state to FOLLOW and it will move towards the player and, if
it’s at a certain distance, it will change its state to ATTACK. In this state, in case the
player gets closer to the thrower, it would execute a call to the RunFrom() function and
move backwards while maintaining the distance.

Otherwise, the thrower would continue to spawn bombs towards the player. Within
the same Update() the operation to throw the bombs is executed in case the transition
between the animations fails. Also within the Update() it’s executed that in the event
that the enemy died, the death animation would be carried out and later it would be
destroyed, being able to instantiate a potion.

34 Functional and Technical Specification

1 void Update() {

2 if (GetComponent < EnemyStats > ().isAlive) {

3 float nT = anim.GetCurrentAnimatorStateInfo(0).normalizedTime

4 - (int) anim.GetCurrentAnimatorStateInfo(0).normalizedTime;

5 if (currentState == State.PATROL) {

6 agent.speed = 10;

7 anim.SetBool("Attack", false);

8 anim.SetBool("isWalking", true);

9 agent.isStopped = false;

10 if (!agent.hasPath) {

11 anim.SetBool("Attack", false);

12 anim.SetBool("isWalking", false);

13 timeToWait -= Time.deltaTime;

14 if (timeToWait < 0) {

15 resetTimeToWait();

16 agent.SetDestination(patrolArea.GetRandomPoint());

17 }

18 }

19 } else if (currentState == State.FOLLOW) {

20 agent.speed = 30;

21 anim.SetBool("Attack", false);

22 anim.SetBool("isWalking", true);

23 agent.isStopped = false;

24 agent.SetDestination(player.position);

25 if (Vector3.Distance(transform.position, player.position) < 25) {

26 currentState = State.ATTACK;

27 }

28 } else if (currentState == State.ATTACK) {

29 if (Vector3.Distance(transform.position, player.position) < 15

30 && Vector3.Distance(transform.position, player.position) > 5) {

31 RunFrom();

32 } else Attack();

33 }

34 if (nT < 0.45

35 && anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_ATTACK)) bombThrowed = false;

36 if (nT > 0.45 && nT < 0.47 && !bombThrowed

37 && anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_ATTACK)) {

38 GameObject bullet = GameObject.Instantiate(bulletPrefab, hand.position, hand.rotation);

39 bullet.GetComponent < Rigidbody > ().AddForce(transform.forward * 1500

40 + new Vector3(0, 250, 0), ForceMode.Force);

41 bombThrowed = true;

42 }

43 } else {

44 agent.isStopped = true;

45 anim.SetTrigger("Death");

46 if (anim.GetCurrentAnimatorStateInfo(0).normalizedTime > 0.8 f

47 && anim.GetCurrentAnimatorStateInfo(0).shortNameHash.Equals(HASH_DEATH)) {

48 Destroy(gameObject);

49 }

50 }

51 }

3.2. Game Mechanics and Scripting 35

3.2.3 Dialogue System

Now it will present the three scripts that have managed the dialogs:

Dialogue

TheDialogue script is simply a class formed by the name of the NPC and some sentences
that it has to say. This class will be used to build dialogs more easily.

1 public Dialogue(string name, string[] sentences) {

2 this.name = name;

3 this.sentences = sentences;

4 }

DialogueManager

The DialogueManager script appears as a single instance and is the one in charge of
writing the Dialogue in the HUD. Its main functions are StartDialogue() to put all
the sentences in a queue, DisplayNextSentence() to unqueue the sentences that then
TypeSentence() will take care of writing slowly. Finally, EndDialogue() is in charge
of closing the dialog canvas and, if the dialog that the player just had was from a quest,
the next one would be unlocked.

1 public void StartDialogue(Dialogue dialogue) {

2 dialogueBoxAnimator.SetBool("isOpen", true);

3 isDialogueQuest = false;

4 textName.text = dialogue.name;

5 sentences.Clear();

6 foreach(string sentence in dialogue.sentences) {

7 sentences.Enqueue(sentence);

8 }

9 DisplayNextSentence();

10 }

11 public void DisplayNextSentence() {

12 if (sentences.Count == 0) {

13 StartCoroutine(EndDialogue());

14 return;

15 }

16 string sentence = sentences.Dequeue();

17 StopAllCoroutines();

18 StartCoroutine(TypeSentence(sentence));

19 //textSentence.text = sentence;

20 }

21 IEnumerator EndDialogue() {

22 dialogueBoxAnimator.SetBool("isOpen", false);

23 yield

24 return new WaitForSeconds(0.5 f);

25 FindObjectOfType < PlayerDialogueController > ().EndDialogue();

26 if (isDialogueQuest && !newQuestUnlocked) {

27 newQuestUnlocked = true;

28 GameManager.instance.unlockNextQuestDialogueNPC();

36 Functional and Technical Specification

29 }

30 }

31
32 IEnumerator TypeSentence(string sentence) {

33 textSentence.text = "";

34 foreach(char letter in sentence.ToCharArray()) {

35 textSentence.text += letter;

36 yield

37 return new WaitForSeconds(0.03 f);

38 }

39 }

DialogueTrigger

Finally, the DialogueTrigger, that is the script that each of the NPCs has. Simply
every time a dialogue is going to be executed, the TriggerDialogue() function will be
called which, depending on whether it is a quest dialogue, will execute one function of
the DialogueManager or another. In case it is not a quest dialogue, the chooseRan-
domDialogue() function will be called so that one of the predefined dialogs is written.

1 public void TriggerDialogue() {

2 PlayerDialogueController.dialogueIsStarted = true;

3 if (isDialogueQuestActive)

4 FindObjectOfType < DialogueManager > ().StartDialogueQuest(new Dialogue(this.name,

5 dialogueQuest.sentences));

6 else

7 FindObjectOfType < DialogueManager > ().StartDialogue(chooseRandomDialogue());

8 }

9
10 private Dialogue chooseRandomDialogue() {

11 return dialoguesRandom[Random.Range(0, dialoguesRandom.Length)];

12 }

3.2.4 Inventory

For the consumable items management part of the inventory, three scripts have been
used:

ConsumableItem

It’s the script that is assigned to each of the potions that appear distributed throughout
the map. With it the system can identify key variables such as its id, its name, its
description and the associated image so that when taking one or the other in the HUD
it is displayed correctly.

1 public class ConsumableItem: MonoBehaviour {

2 public int itemID;

3 public Sprite itemImage;

4 public string itemName;

3.2. Game Mechanics and Scripting 37

5 public string itemDescription;

6 void OnTriggerEnter(Collider other) {

7 if (other.gameObject.CompareTag("Player")) {

8 GameManager.instance.setNewConsumableItem(itemID);

9 Destroy(gameObject);

10 }

11 }

12 }

ConsumableInventory

It’s the script associated with the canvas where, when starts the game, loads the prefabs
of the empty items in the HUD grid layout and, each time a consumable is used or
collected, the inventory is updated with the refreshItemQuantity() function.

1 private void Start() {

2 consumablesInstantiated = new GameObject[prefabsConsumables.Length];

3 for (int i = 0; i < prefabsConsumables.Length; i++) {

4 GameObject go = Instantiate(prefabConsumableUI, gridLayout);

5 Image[] images = go.GetComponentsInChildren < Image > ();

6 TextMeshProUGUI[] texts = go.GetComponentsInChildren < TextMeshProUGUI > ();

7 images[1].sprite = prefabsConsumables[i].itemImage;

8 texts[0].text = GameManager.instance.getQuantityOfAnItem(i).ToString();

9 texts[0].color = Color.red;

10 texts[1].text = prefabsConsumables[i].itemName;

11 texts[2].text = prefabsConsumables[i].itemDescription;

12 go.GetComponent < InventorySlotIdClick > ().id = prefabsConsumables[i].itemID;

13 consumablesInstantiated[i] = go;

14 consumablesInstantiated[i].GetComponent < Button > ().interactable = false;

15 }

16 }

17
18 public void refreshItemQuantity(int id) {

19 consumablesInstantiated[id].GetComponentsInChildren < TextMeshProUGUI > ()[0].text =

20 GameManager.instance.getQuantityOfAnItem(id).ToString();

21 consumablesInstantiated[id].GetComponentsInChildren < TextMeshProUGUI > ()[0].color =

22 int.Parse(consumablesInstantiated[id].GetComponentsInChildren < TextMeshProUGUI > ()[0].text) > 0

23 ? Color.black : Color.red;

24 consumablesInstantiated[id].GetComponent < Button > ().interactable =

25 int.Parse(consumablesInstantiated[id].GetComponentsInChildren < TextMeshProUGUI > ()[0].text) > 0

26 ? true : false;

27 }

ShowItemInfo

It’s a simple script to manage when the player places or not the cursor on an item in
the HUD to show the information of this.

38 Functional and Technical Specification

3.2.5 Quest System

One of the fundamental pillars of the video game is the quest system. As the quests are
basically of three types (talking with NPCs, collecting/transporting items and defeating
enemies) a Quest script composed of an integer as the quest id and an active boolean
was used to know if the quest was active or not. In this way, the logic of the Game
Objects that had this script would only be executed at the moment in which the id
of the current quest matches its associated id, with the Game Manager in charge of
managing the change of quests.

1 public class Quest : MonoBehaviour

2 {

3 public int id;

4 public bool active;

5 }

QuestDialogueManager

A QuestDialogueManager script was also created so that any NPC could have dif-
ferent dialogues depending on which quest they were on. Thus, to do this, the same
number of DialogueTrigger scripts as Quest were attached to each NPC so that the
first DialogueTrigger coincided with the first Quest, the second with the second, etc.

So, the next piece of the QuestDialogueManager shows how depending on the
Quest the character is in, the NPC will activate a DialogueTrigger or another.

1 public void ActiveNextDialogueQuestInNPC() {

2 if (questPlayerIsGonnaExecute < quests.Length - 1) {

3 quests[questPlayerIsGonnaExecute].enabled = false;

4 dialogueTriggers[questPlayerIsGonnaExecute].enabled = false;

5 questPlayerIsGonnaExecute += 1;

6 quests[questPlayerIsGonnaExecute].enabled = true;

7 dialogueTriggers[questPlayerIsGonnaExecute].enabled = true;

8 } else {

9 dialogueTriggers[questPlayerIsGonnaExecute].disableDialogueQuest();

10 }

11 }

12
13 public DialogueTrigger dialogueTriggerCurrentQuest() {

14 return dialogueTriggers[questPlayerIsGonnaExecute];

15 }

Finally, as each quest was executed differently, various scripts were created for each of
them, thus isolating them from each other to avoid conflicts (PickShield.cs, MakeOffer.cs,
FightKukulkanEnemies.cs, PickCorn.cs, UnlockFireHability.cs and BurnWood.cs).

3.3 Art
In this section it will be presented the modeling of the characters, the terrain creation,
the elements of the HUD, the animations and all the assets and elements that make up

3.3. Art 39

the artistic part of the video game.

3.3.1 Modeling

For the modeling of the main character and the enemies, Blender’s modifiers were used
such as Subdivision Subsurface to soften the edges of the figures and the Mirror to
facilitate modeling making the objects completely symmetrical.

Main character

For the creation of the main character (See Figures 3.3 and 3.4), it wanted to make
a characterization so that with just a few elements that tribal aspect, indigenous to
Mesoamerica of that time, was represented. In this way, the 3 elements that give K’an
personality are her hair, her mask and her poncho. As she had to attend to a low
poly style, there isn’t much detail in terms of textures since it simply use flat colors and
a very similar chromatic range with cold tones in the suit, poncho and mask.

Figure 3.3: K’an Model

So that the character wasn’t so "static", physics were applied (See Figure 3.5) to
both the poncho and the hair using a Cloth [24] modifier and instantiating a series of
collider in each of his bones or in areas where necessary in order to generate that fluid
and realistic movement.

Enemies

Both enemies were modeled with a similar structure since at the beginning a "base"
model (See Figure 3.6) was created with a poor characterization so that changing a few

40 Functional and Technical Specification

Figure 3.4: Poncho Model

Figure 3.5: Colliders attached to K’an Skeleton

3.3. Art 41

things would create different characters but with the same essence (See Figures 3.7 and
3.8). It was understood that the enemies had that cartoon and low poly aspect that can
be seen throughout the game but that they also imposed fear on the player.

For this, they are very large humanoid beings with very large eyes who are dressed
in clothes that could refer to the costumes that the Spanish used during colonization
with their morions, braces, etc.

Figure 3.6: Enemy Base

NPCs

For the creation of the NPCs, an Unwrap was applied to the main character’s maya to
make a series of reprints (See Figure 3.9) on the poncho, mask and clothing. Thus, with
few changes, different characters could be built (See Figure 3.10). For example, different
hairstyles were also added to them or simply that they wore a hat on their head.

Locations

To generate the map decorations, only the El Caracol was modeled (See Figure 3.11),
all other elements being third-party assets, which will be explained later.

3.3.2 Terrain Creation

For the creation of the level, the Terrain [25] object from Unity was used in which, with
brushes, the terrain could be flattened or lifted, painted with textures such as grass,
limestone, earth, etc. Sprites of plants and flowers and 3d models of trees (See Figure
3.12) were also taken from various assets that were instantiated in the same way with

42 Functional and Technical Specification

Figure 3.7: Miner Model

Figure 3.8: Thrower Model

3.3. Art 43

Figure 3.9: Texture reprints of the mask, the poncho and the cloths

44 Functional and Technical Specification

Figure 3.10: Examples of different NPCs In-Game

3.3. Art 45

Figure 3.11: Caracol Model

the brushes.
The entire stage was designed in such a way that the details appeared in a proportionate
way and didn’t disturb the gameplay, but was merely an accompaniment to the stage.

Figure 3.12: Terrain Textures, Flower Details and Trees

46 Functional and Technical Specification

3.3.3 Character Animations

For the animation, all of them have been taken from the website Mixamo. There, the
meshes were uploaded and an autorigging [26] was performed so any animation could
be attached easily. Every character has an Animator Controller (See Figure 3.13, 3.14
and 3.15) filled with various animations that change between them depending an specific
parameters managed in the scripts.

What’s more, some of these animations were put together in blend trees [27] to make
it easier to handle and thus avoid putting too many transitions and parameters for very
similar movements. For example, as it can be seen in the Figure 3.13, a Blend Tree was
used for the walking and running animation, and then other loose animations such as
jumping, falling, aiming, shooting or dying.

Figure 3.13: K’an Animator Controller

3.3. Art 47

Figure 3.14: Miner Animator Controller

3.3.4 Minimap

For the creation of the minimap (See Figure 2.8), it was drawn a vector image with
indigenous and tribal artistic motifs and a typeface similar to that used in westerns.
For the programming of this, an orthographic camera was positioned on the stage where
the K’an icon was simply rendered (to determine the position and direction) within a
Render Texture.
This texture was shown in the inventory within a Raw Image, so putting the image
made in Illustrator underneath it gave the feeling that the character was actually moving
through the image.

3.3.5 Assets

Most of the third-party imported assets that have been used in the game have been
mainly for decorative elements of the map and to improve the aesthetic part of the
video game. Thus, for the decoration of the environment, asset packs have been used
[28, 29, 30, 31], which included 3d models of rocks, trees, logs, flowers, plants, carts,
cabins, tents, etc. Examples of this assets can be seen in Figure 3.16.

48 Functional and Technical Specification

Figure 3.15: Thrower Animator Controller

Various assets have also been used for visual effects such as particles [32, 33, 34, 35]
for explosions, fire, magic and camera effects. Examples of this assets can be seen in
Figure 3.17.

3.4 Music and Sounds

3.4.1 Overall goals

For the sound section, an intro music is played in the main menu [36] and a quiet
background music during the execution of the game [37]. For the SFX, some of effects
represents actions of the player like when he moves [38], when he jumps [39], when re-
ceives damage [40] or when he talks to a NPC [41]. In the same way, there are some
effects for actions of the enemies like shooting [42], exploding a bomb [43] or dying. [44].
Some relevant events in the game have also an associated sound like pressing a button
[45], collecting an item [46], using a potion [47], completing a quest [48] and unlocking
a new hability [49].

All these sounds have been extracted from YouTube where the value of the search
was to find that they recreate that tribal and indigenous environment that is shown in
the game.

3.4. Music and Sounds 49

Figure 3.16: Examples of Imported Assets

50 Functional and Technical Specification

Figure 3.17: Examples of Particles

C
h

a
p

t
e

r

4
Project Monitoring

Contents
4.1 Planning Control . 51
4.2 Changes and Evolution . 51

In this chapter, all aspects related to the planning of the project, changes in the
mechanics and construction of the game, problems that arose during its development
and the solutions that were found will be presented.

4.1 Planning Control

The Figure 4.1 shows how the planning of the entire project has been structured, indi-
cating the possible delays and the estimated times for each of the tasks.

4.2 Changes and Evolution

From the beginning of the project, the idea was to make a video game that was set in
nature. In the first instance it was going to be simply a walking simulator type adventure
where a landscape would be shown, the character would be made of leaves and a story
would be told.

Later the idea changed to a slightly more dynamic video game in the style of the
Flower video game (Thatgamecompany, 2009) [50] where the player was made up of
leaves and was avoiding obstacles in order to reach the end of a level with the maximum
number of leaves possible. Finally, the idea of the project was re-evaluated since it was

51

52 Project Monitoring

a little bit poor of content and it opted for simply making a role-playing video game,
maintaining at all times the first idea of placing it in an open stage set in nature.

With this proposal already established, a search for information was made since the
idea was to make a video game with indigenous tribes and it seemed a good option to
find out if throughout history some tribes had united in order to defeat a foreigner. In
this way, a dystopian story was made narrating the opposite that happened during the
fall of Maya civilization.

4.2. Changes and Evolution 53

Figure 4.1: Gantt Chart

C
h

a
p

t
e

r

5
Results

Contents
5.1 Testing . 55
5.2 Limitations . 56
5.3 Problems and Solutions . 56

In this chapter, the results that have finally been achieved are presented, establishing
the limitations that have been found at the time of development, in what way the testing
has been carried out as functionalities were included and most of the problems that
appeared. In Figure 5.2 it can be seen some game captures of the final result where an
image of a combat versus a miner, of a dialogue with Kabáh in town and two of the
landscape and environment of the level are shown.

5.1 Testing
For the integration of all the functionalities, all the elements of the game have been
built little by little, keeping a version control in a repository on Github. Firstly, it
was started with the modeling of K’an, importing her into Unity and developing the
PlayerController, creating the walking, running and jumping mechanics along with their
corresponding animations. As physics had to be used for the main movements, it was
tested for several days in order to solve problems with the RigidBody.

Afterwards, it began with the modeling of the enemies, their import into Unity and
the development of the patrol and attack scripts, also putting and synchronizing their
animations. Once both the character and the enemies were working correctly, the stage
began to be set up. Various tests were carried out on the movement of the enemies since,

55

56 Results

as they had to move through a NavMesh, there were times that they did not recalculate
the spots well and ended up staying fixed without moving.

With the stage set up, the patrols of the NPCs and the dialogues were programmed.
From there the entire inventory system began and finally with the quest system. With
the level already in the Alpha phase, some bugs with the enemies were finished and the
reprinting of the NPCs was finished.

5.2 Limitations
Some limitations that have been found all along the project are:

• Time has been one of the main limitations since, having all the basic programming
developed, with a longer time it would have been possible to build more levels and
continue expanding the story.

• The High Definition Render Pipeline (HDRP) [51], due to the fact that
at the beginning of the project an interactive shader for grass was implemented
[52] but in the end it could not be included since when changing to the Universal
Render Pipeline [53] it did not allow to compile it.

Figure 5.1: Example of the Interactive Grass shader

5.3 Problems and Solutions
Now the list of problems that have occurred during the development of the project will
be presented in chronological order. In the first place, one of the problems that have

5.3. Problems and Solutions 57

been present since the beginning of the project has been the jump and move of the
character since, as physics had to be used, many times the synchronization of the jump
with the applied force was not carried out correctly or wrong transitions were made
towards other different animations. As the terrain was used, there were many times that
it did not detect when it was grounded and could jump indefinitely. Many changes were
made in the RigidBody parameters (mass, drag, freeze rotations, etc) and in PlayerCon-
troller variables (jump force, jump time, grounded) until finally there was an good jump.

Another problem was the initial use of HDRP since it gave many compatibility
problems and there were times that the camera did not render certain objects or all the
materials of the scene were simply erased and they turned pink. Also the HDRP gave
problems with the Terrain since it did not allow details such as flowers or plants to be
placed.

Also mention that a lot of hours were dedicated to the poncho and the hair since
they caused many problems when making collisions with other objects but in the end it
was quite natural.

Finally, comment that there were quite a few bugs with the movement of the
enemies and the attacks, especially with the thrower since many times it instantiated
more bombs than it should or simply did not point towards the player, but they have
been fixed in the final version of the game.

58 Results

Figure 5.2: In-Game Captures of Final Result

C
h

a
p

t
e

r

6
Conclusions

Contents
6.1 Objectives achieved . 59
6.2 Future work . 60

In this chapter, the conclusions of the work, as well as its future extensions are shown.

6.1 Objectives achieved

As a final conclusion, it can be seen that all the objectives described in section 1.2 have
been achieved in the project.
First of all, it has integrated the modeling of the main character, the enemies
and the npcs within the game engine, providing them with animations and assigning
specific actions to each one through scripting.

In the same way, it has been possible to implement the basic elements of role-
playing video games such as the complete movement of the character, the quest
system, the character’s abilities, the inventory with the minimap and the collectible
items, the attacks and movements of the enemies, the dialogue system and the unlocking
of new areas.

It has also made the developing of a plot that involves different characters and
places in an open world through dialogues and in-game events.

And as the last objective achieved, it has been possible to create a level design that
allows the player to go through all the important locations, maintaining a balance be-
tween the mechanics that the player can permorm and the quest that he has to complete.

59

vmarti
Highlight

60 Conclusions

In this way, the game shows up a large amount of programming of the different
mechanics and visual elements that follow a specific aesthetic, applying so many of the
knowledge learned in the degree. It is definitely a game that it could be considered
academically balanced because of most of the knowledge learned in the degree of pro-
gramming as well as art and narrative is applied.

6.2 Future work
For future development, new levels could be created to continue with the main narra-
tive of the video game since there is already a large amount of programming explicitly
prepared to create more levels.

New mechanics could be included such as a save system and control points to
facilitate user gameplay and allow quitting the game at any time, and a decision system
with multiple paths where the dialogues with the NPCs are more complex and the player
has the option to decide how K’an will act, with each act having repercussions in the
future.

A monetization system could also be integrated where the player has to collect
coins around the map or simply drop them by enemies when they die. With these coins,
there could be shops where the player can buy potions, new abilities or different outfits
for the main character.

Finally, it could be interesting to integrate new enemies or a final boss at the end
of each level where the player puts into practice all the habilities that he has developed
throughout the game.

Bibliography

[1] U. Documentation, “Occlusion culling.” https : / / docs . unity3d . com / 560 /

Documentation/Manual/OcclusionCulling.html. Accessed: 2021-05-22.

[2] Wikipedia, “Fast approximate anti-aliasing.” https://en.wikipedia.org/wiki/

Fast_approximate_anti-aliasing. Accessed: 2021-05-22.

[3] Wikipedia, “Finite-state machine.” https://en.wikipedia.org/wiki/Finite-state_

machine. Accessed: 2021-05-22.

[4] Wikipedia, “Game design document.” https://en.wikipedia.org/wiki/Game_

design_document. Accessed: 2021-05-21.

[5] Wikipedia, “Spanish conquest of the maya.” https://en.wikipedia.org/wiki/

Spanish_conquest_of_the_Maya. Accessed: 2021-05-22.

[6] Wikipedia, “El caracol, chichen itza.” https://en.wikipedia.org/wiki/El_Caracol,
_Chichen_Itza. Accessed: 2021-05-22.

[7] Wikipedia, “Hunab ku.” https://es.wikipedia.org/wiki/Hunab_Ku. Accessed:
2021-05-22.

[8] Wikipedia, “Mayapan.” https://en.wikipedia.org/wiki/Mayapan. Accessed: 2021-
05-22.

[9] Wikipedia, “Sacred cenote.” https://en.wikipedia.org/wiki/Sacred_Cenote. Ac-
cessed: 2021-05-22.

[10] Wikipedia, “El castillo, chichen itza.” https://en.wikipedia.org/wiki/El_

Castillo,_Chichen_Itza. Accessed: 2021-05-22.

[11] Mitologia.info, “Kauil.” https://mitologia.info/kauil-dios-maya-del-fuego/. Ac-
cessed: 2021-05-22.

[12] Wikipedia, “Cozumel.” https://en.wikipedia.org/wiki/Cozumel. Accessed: 2021-
05-22.

[13] Wikipedia, “Mesoamerican ballgame.” https : / / en . wikipedia . org / wiki /

Mesoamerican_ballgame. Accessed: 2021-05-22.

61

https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html
https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html
https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing
https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Game_design_document
https://en.wikipedia.org/wiki/Game_design_document
https://en.wikipedia.org/wiki/Spanish_conquest_of_the_Maya
https://en.wikipedia.org/wiki/Spanish_conquest_of_the_Maya
https://en.wikipedia.org/wiki/El_Caracol,_Chichen_Itza
https://en.wikipedia.org/wiki/El_Caracol,_Chichen_Itza
https://es.wikipedia.org/wiki/Hunab_Ku
https://en.wikipedia.org/wiki/Mayapan
https://en.wikipedia.org/wiki/Sacred_Cenote
https://en.wikipedia.org/wiki/El_Castillo,_Chichen_Itza
https://en.wikipedia.org/wiki/El_Castillo,_Chichen_Itza
https://mitologia.info/kauil-dios-maya-del-fuego/
https://en.wikipedia.org/wiki/Cozumel
https://en.wikipedia.org/wiki/Mesoamerican_ballgame
https://en.wikipedia.org/wiki/Mesoamerican_ballgame

62 Bibliography

[14] Wikipedia, “Morion.” https://en.wikipedia.org/wiki/Morion_(helmet). Accessed:
2021-05-22.

[15] E. camino más corto, “The sacred corn in the life and food of the mayans.” https:

//en.elcaminomascorto.es/maiz-alimentacion-mayas/. Accessed: 2021-05-22.

[16] Wikipedia, “Sacbe.” https://en.wikipedia.org/wiki/Sacbe. Accessed: 2021-05-22.

[17] D. Entertainment, “Aer memories of old - release trailer.” https://www.youtube.com/
watch?v=ldJr6nUDqAs&ab_channel=DaedalicEntertainment. Accessed: 2021-05-22.

[18] Nintendo, “The legend of zelda: Breath of the wild - nintendo switch presenta-
tion 2017 trailer.” https://www.youtube.com/watch?v=zw47_q9wbBE&ab_channel=

NintendoNintendo. Accessed: 2021-05-22.

[19] Findicons, “Orbz icon pack.” https://findicons.com/pack/164/orbz. Accessed:
2021-05-22.

[20] Pngwing, “Dialog box.” https://www.pngwing.com/en/free-png-kelsv. Accessed:
2021-05-22.

[21] Wikipedia, “Functional requirement.” https://en.wikipedia.org/wiki/Functional_
requirement. Accessed: 2021-05-22.

[22] Wikipedia, “Gaussian blur.” https://en.wikipedia.org/wiki/Gaussian_blur. Ac-
cessed: 2021-05-21.

[23] U. Documentation, “Building a navmesh.” https://docs.unity3d.com/Manual/

nav-BuildingNavMesh.html. Accessed: 2021-05-22.

[24] U. Documentation, “Cloth.” https://docs.unity3d.com/es/2018.4/Manual/

class-Cloth.html. Accessed: 2021-05-22.

[25] U. Documentation, “Creating and editing terrains.” https://docs.unity3d.com/

Manual/terrain-UsingTerrains.html. Accessed: 2021-05-22.

[26] Wikipedia, “Skeletal animation.” https://en.wikipedia.org/wiki/Skeletal_

animation. Accessed: 2021-05-22.

[27] U. Documentation, “Blend trees.” https : / / docs . unity3d . com / Manual /

class-BlendTree.html. Accessed: 2021-05-22.

[28] A. Bringer, “Simplistic low poly nature.” https://assetstore.unity.com/packages/

3d/environments/simplistic-low-poly-nature-93894. Accessed: 2021-05-21.

[29] Elcanetay, “Low poly nature - free vegetation.” https://assetstore.unity.com/

packages/3d/vegetation/low-poly-nature-free-vegetation-134006. Accessed:
2021-05-22.

https://en.wikipedia.org/wiki/Morion_(helmet)
https://en.elcaminomascorto.es/maiz-alimentacion-mayas/
https://en.elcaminomascorto.es/maiz-alimentacion-mayas/
https://en.wikipedia.org/wiki/Sacbe
https://www.youtube.com/watch?v=ldJr6nUDqAs&ab_channel=DaedalicEntertainment
https://www.youtube.com/watch?v=ldJr6nUDqAs&ab_channel=DaedalicEntertainment
https://www.youtube.com/watch?v=zw47_q9wbBE&ab_channel=NintendoNintendo
https://www.youtube.com/watch?v=zw47_q9wbBE&ab_channel=NintendoNintendo
https://findicons.com/pack/164/orbz
https://www.pngwing.com/en/free-png-kelsv
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Gaussian_blur
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/es/2018.4/Manual/class-Cloth.html
https://docs.unity3d.com/es/2018.4/Manual/class-Cloth.html
https://docs.unity3d.com/Manual/terrain-UsingTerrains.html
https://docs.unity3d.com/Manual/terrain-UsingTerrains.html
https://en.wikipedia.org/wiki/Skeletal_animation
https://en.wikipedia.org/wiki/Skeletal_animation
https://docs.unity3d.com/Manual/class-BlendTree.html
https://docs.unity3d.com/Manual/class-BlendTree.html
https://assetstore.unity.com/packages/3d/environments/simplistic-low-poly-nature-93894
https://assetstore.unity.com/packages/3d/environments/simplistic-low-poly-nature-93894
https://assetstore.unity.com/packages/3d/vegetation/low-poly-nature-free-vegetation-134006
https://assetstore.unity.com/packages/3d/vegetation/low-poly-nature-free-vegetation-134006

Bibliography 63

[30] S. Night, “Low poly pack - environment lite.” https://assetstore.unity.com/

packages/3d/props/exterior/low-poly-pack-environment-lite-102039. Accessed:
2021-05-21.

[31] . S. Robots and Counting..., “Free low poly desert pack.” https://assetstore.

unity.com/packages/3d/environments/free-low-poly-desert-pack-106709. Ac-
cessed: 2021-05-21.

[32] M. Carnivore, “Particle ribbon.” https://assetstore.unity.com/packages/vfx/

particles/spells/particle-ribbon-42866. Accessed: 2021-05-21.

[33] PavelDoGreat, “Super blur.” https://github.com/PavelDoGreat/Super-Blur. Ac-
cessed: 2021-05-21.

[34] R. Knight, “Fantasy skybox free.” https://assetstore.unity.com/packages/2d/

textures-materials/sky/fantasy-skybox-free-18353. Accessed: 2021-05-21.

[35] M. Inc., “Effect textures and prefabs.” https://assetstore.unity.com/packages/

vfx/particles/effect-textures-and-prefabs-109031. Accessed: 2021-05-21.

[36] Fantasy and W. M. by the Fiechters, “Tribal jungle music - mayan pyra-
mids.” https://www.youtube.com/watch?v=QYUdwh2nTWs&ab_channel=Fantasy%

26WorldMusicbytheFiechters). Accessed: 2021-05-23.

[37] Fantasy and W. M. by the Fiechters, “Rpg towns music and rpg vil-
lages music.” https : / / www . youtube . com / watch ? v = xu2pESvXcmM & ab _ channel =

Fantasy%26WorldMusicbytheFiechtersFantasy%26WorldMusicbytheFiechters. Ac-
cessed: 2021-05-23.

[38] S. E. SoundEffectsONE, “Steps and stepping.” https :

/ / www . youtube . com / watch ? v = A2JGpBHqucM & ab _ channel =

SoundEffects-SoundEffectsONESoundEffects-SoundEffectsONE. Accessed: 2021-05-
23.

[39] S. E. Free, “Jump sound effect.” https://www.youtube.com/watch?v=z8O8mu365Rc&

ab_channel=SoundEffectsFreeSoundEffectsFree. Accessed: 2021-05-23.

[40] S. E. N. Copyright and F. Download, “Damage sound effect pack.” https://

www.youtube.com/watch?v=Uwh5iyQhy1w&ab_channel=SoundEffects-NoCopyright%

26FreeDownloadSoundEffects-NoCopyright%26FreeDownload. Accessed: 2021-05-23.

[41] B. Tris, “Dialogue blip.” https://www.youtube.com/watch?v=KG4Y27IeSV4&ab_

channel=BTris. Accessed: 2021-05-23.

[42] Q. Productions, “Free gunshot sound effects.” https://www.youtube.com/watch?v=

KXYfW8AUh0c&ab_channel=QuandaryProductions. Accessed: 2021-05-23.

https://assetstore.unity.com/packages/3d/props/exterior/low-poly-pack-environment-lite-102039
https://assetstore.unity.com/packages/3d/props/exterior/low-poly-pack-environment-lite-102039
https://assetstore.unity.com/packages/3d/environments/free-low-poly-desert-pack-106709
https://assetstore.unity.com/packages/3d/environments/free-low-poly-desert-pack-106709
https://assetstore.unity.com/packages/vfx/particles/spells/particle-ribbon-42866
https://assetstore.unity.com/packages/vfx/particles/spells/particle-ribbon-42866
https://github.com/PavelDoGreat/Super-Blur
https://assetstore.unity.com/packages/2d/textures-materials/sky/fantasy-skybox-free-18353
https://assetstore.unity.com/packages/2d/textures-materials/sky/fantasy-skybox-free-18353
https://assetstore.unity.com/packages/vfx/particles/effect-textures-and-prefabs-109031
https://assetstore.unity.com/packages/vfx/particles/effect-textures-and-prefabs-109031
https://www.youtube.com/watch?v=QYUdwh2nTWs&ab_channel=Fantasy%26WorldMusicbytheFiechters)
https://www.youtube.com/watch?v=QYUdwh2nTWs&ab_channel=Fantasy%26WorldMusicbytheFiechters)
https://www.youtube.com/watch?v=xu2pESvXcmM&ab_channel=Fantasy%26WorldMusicbytheFiechtersFantasy%26WorldMusicbytheFiechters
https://www.youtube.com/watch?v=xu2pESvXcmM&ab_channel=Fantasy%26WorldMusicbytheFiechtersFantasy%26WorldMusicbytheFiechters
https://www.youtube.com/watch?v=A2JGpBHqucM&ab_channel=SoundEffects-SoundEffectsONESoundEffects-SoundEffectsONE
https://www.youtube.com/watch?v=A2JGpBHqucM&ab_channel=SoundEffects-SoundEffectsONESoundEffects-SoundEffectsONE
https://www.youtube.com/watch?v=A2JGpBHqucM&ab_channel=SoundEffects-SoundEffectsONESoundEffects-SoundEffectsONE
https://www.youtube.com/watch?v=z8O8mu365Rc&ab_channel=SoundEffectsFreeSoundEffectsFree
https://www.youtube.com/watch?v=z8O8mu365Rc&ab_channel=SoundEffectsFreeSoundEffectsFree
https://www.youtube.com/watch?v=Uwh5iyQhy1w&ab_channel=SoundEffects-NoCopyright%26FreeDownloadSoundEffects-NoCopyright%26FreeDownload
https://www.youtube.com/watch?v=Uwh5iyQhy1w&ab_channel=SoundEffects-NoCopyright%26FreeDownloadSoundEffects-NoCopyright%26FreeDownload
https://www.youtube.com/watch?v=Uwh5iyQhy1w&ab_channel=SoundEffects-NoCopyright%26FreeDownloadSoundEffects-NoCopyright%26FreeDownload
https://www.youtube.com/watch?v=KG4Y27IeSV4&ab_channel=BTris
https://www.youtube.com/watch?v=KG4Y27IeSV4&ab_channel=BTris
https://www.youtube.com/watch?v=KXYfW8AUh0c&ab_channel=QuandaryProductions
https://www.youtube.com/watch?v=KXYfW8AUh0c&ab_channel=QuandaryProductions

64 Bibliography

[43] Rikki, “Explosion sound effct.” https://www.youtube.com/watch?v=Ruwoj_qzCLA&ab_

channel=rikki. Accessed: 2021-05-23.

[44] S. Lah, “Growtopia death sound effect.” https://www.youtube.com/watch?v=

wVcTdCPFTug&ab_channel=SidanLahSidanLah. Accessed: 2021-05-23.

[45] A. Alake, “Sound effect - button press.” https://www.youtube.com/watch?v=

hXD78SxXsD4&ab_channel=AdamAlakeAdamAlake. Accessed: 2021-05-23.

[46] S. E. Database, “Arcade game collect item sound effect.” https://www.youtube.

com/watch?v=Zg_20JvQxFU&ab_channel=SoundEffectDatabaseSoundEffectDatabase.
Accessed: 2021-05-23.

[47] S. Source, “Collect item sound effect.” https://www.youtube.com/watch?v=

BVXUp8RaVWI&ab_channel=SFXSource. Accessed: 2021-05-23.

[48] C. Fluke, “Level up sound effect.” https://www.youtube.com/watch?v=P_u0k2uElHI&

ab_channel=CPhTFlukeCPhTFluke. Accessed: 2021-05-23.

[49] 2MirrorsDialogue, “Magic sound effects.” https://www.youtube.com/watch?v=

O5Y1QGG0q90&ab_channel=GamingSoundEffectsGamingSoundEffects. Accessed: 2021-
05-23.

[50] Wikipedia, “Flower (video game).” https://en.wikipedia.org/wiki/Flower_

(video_game). Accessed: 2021-05-22.

[51] U. Documentation, “Getting started with the high definition render
pipeline.” https://docs.unity3d.com/Packages/com.unity.render-pipelines.

high-definition @ 7 . 1 / manual / Getting-started-with-HDRP . html. Accessed:
2021-05-22.

[52] K. B. 14, “Unity 3d interactive grass shader graph.” https://www.youtube.com/

watch?v=zm7rKXEPa9M&ab_channel=KAYB14. Accessed: 2021-05-22.

[53] U. Learn, “Introduction to urp.” https : / / learn . unity . com / tutorial /

introduction-to-urp. Accessed: 2021-05-22.

https://www.youtube.com/watch?v=Ruwoj_qzCLA&ab_channel=rikki
https://www.youtube.com/watch?v=Ruwoj_qzCLA&ab_channel=rikki
https://www.youtube.com/watch?v=wVcTdCPFTug&ab_channel=SidanLahSidanLah
https://www.youtube.com/watch?v=wVcTdCPFTug&ab_channel=SidanLahSidanLah
https://www.youtube.com/watch?v=hXD78SxXsD4&ab_channel=AdamAlakeAdamAlake
https://www.youtube.com/watch?v=hXD78SxXsD4&ab_channel=AdamAlakeAdamAlake
https://www.youtube.com/watch?v=Zg_20JvQxFU&ab_channel=SoundEffectDatabaseSoundEffectDatabase
https://www.youtube.com/watch?v=Zg_20JvQxFU&ab_channel=SoundEffectDatabaseSoundEffectDatabase
https://www.youtube.com/watch?v=BVXUp8RaVWI&ab_channel=SFXSource
https://www.youtube.com/watch?v=BVXUp8RaVWI&ab_channel=SFXSource
https://www.youtube.com/watch?v=P_u0k2uElHI&ab_channel=CPhTFlukeCPhTFluke
https://www.youtube.com/watch?v=P_u0k2uElHI&ab_channel=CPhTFlukeCPhTFluke
https://www.youtube.com/watch?v=O5Y1QGG0q90&ab_channel=GamingSoundEffectsGamingSoundEffects
https://www.youtube.com/watch?v=O5Y1QGG0q90&ab_channel=GamingSoundEffectsGamingSoundEffects
https://en.wikipedia.org/wiki/Flower_(video_game)
https://en.wikipedia.org/wiki/Flower_(video_game)
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.1/manual/Getting-started-with-HDRP.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.1/manual/Getting-started-with-HDRP.html
https://www.youtube.com/watch?v=zm7rKXEPa9M&ab_channel=KAYB14
https://www.youtube.com/watch?v=zm7rKXEPa9M&ab_channel=KAYB14
https://learn.unity.com/tutorial/introduction-to-urp
https://learn.unity.com/tutorial/introduction-to-urp

	Contents
	Introduction
	Work Motivation
	Objectives
	Related Subjects
	Resources

	Game Design Document
	Introduction
	Story
	Main Characters
	Enemies
	Level Design
	Beat Chart
	Maya Ambient Justification
	Items and Enemies Location

	Gameplay
	Concept Art
	User Interface
	Graphic User Interface Objects

	Game Controls

	Functional and Technical Specification
	System Design
	Flow Chart
	Functional Requirements

	Game Mechanics and Scripting
	Player
	PlayerController
	PlayerStats
	PlayerDialogueController
	PlayerInventoryController

	Enemies
	CalculatePatrolPoint
	EnemyStats
	MoveMiner
	MoveThrower

	Dialogue System
	Dialogue
	DialogueManager
	DialogueTrigger

	Inventory
	ConsumableItem
	ConsumableInventory
	ShowItemInfo

	Quest System
	QuestDialogueManager

	Art
	Modeling
	Main character
	Enemies
	NPCs
	Locations

	Terrain Creation
	Character Animations
	Minimap
	Assets

	Music and Sounds
	Overall goals

	Project Monitoring
	Planning Control
	Changes and Evolution

	Results
	Testing
	Limitations
	Problems and Solutions

	Conclusions
	Objectives achieved
	Future work

	Bibliography

